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Abstract

As snow is deposited at the surface of a pack, compaction takes place in two stages. There is an initial period of settlement
where the rate of volume decrease is dominated by thermal processes, reflecting the rapid metamorphism as branched crystals
break down. This is followed by further slower densification as pores collapse, which is largely caused by the overburden. The
conventional assumption is that of a linearly viscous relation between the rate of decrease of volume and the pressure, with the
viscosity depending on the density and temperature. In view of the long time scales associated with the accumulation of polar
snow, compared with observed pore collapse times, an alternative view is that the densification takes place instantaneously,
which can be described simply by a pressure—density-temperature relation. This, of course, may depend also on the particular
snow structure which is determined by the deposit conditions and subsequent metamorphism. Here, we investigate the special,
and much simplified, case of a pressure—density law, ignoring temperature influence, to demonstrate that such a law is consistent
with the same data used to infer the viscous law. The function relating density to pressure is determined from observed density
profiles with depth, assuming that the snow was deposited at a fixed constant density p,, but no restriction on the accumulation
variation is necessary. The model is then used to predict the pressure, density and velocity fields for general surface conditions
of deposit density and accumulation rate, to show how the density and velocity fields are influenced by surface conditions for
this alternative model. The density profiles with depth are confirmed to be independent of time when the deposit density is held
constant, and independent of the accumulation rate variation.

1. Introduction

A description of the mechanical and thermal
response of a snow pack to surface forcing by pressure
and temperature variation, and to accumulation,
involves to some degree an irreversible compaction as
pores collapse. Recent investigations of pressure and
thermal forcing over seasonal time scales of a dry snow
pack comprising firstly ice grains and air (Gray and
Morland, 1994), then ice grains, water vapour and air
(Gray et al., 1994) made the simplifying assumption
of a stationary ice matrix, no compaction, relevant to a
fully consolidated pack. This is not satisfactory though
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during the evolution of a pack due to continuing accu-
mulation.

As snow is first deposited at low density there is a
rapid metamorphism as branched crystals break down,
for which Anderson (1976) proposes a law relating
the rate of volume decrease to temperature. This was
subsequently adopted by Jordan (1991) to describe the
near surface settlement of recently deposited snow. It
is then observed that the deeper snow densifies at a
slower rate largely determined by the overburden pres-
sure. Sorge (1935, 1938) concluded from observations
of density profiles made in Greenland that the density
profile relative to the (rising) snow surface was
approximately independent of time. Bader (1954)
drew attention to these observations and proposed a
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linearly viscous law (Bader, 1960, 1962), between
snow pressure, p, and the vertical strain-rate, €,, with a
density dependent compactive viscosity, 7, to describe
the process. Using the snow mass balance 2.8 (derived
later) this relationship can be expressed as

p_Lldp_

=_¢ 1.1
n pdi ¢ (b

for snow density p. In the steady-state when the density
profile with depth is time-invariant and the accumula-
tion rate is held constant (no intervals between snow
falls), the compactive viscosity can then be determined.
Based on these assumptions Kojima (1964) drew
together an extensive set of Antarctic depth—density
profiles extending to 10 m, from which he deduced the
form of the compactive viscosity as a function of den-
sity. Yoshida et al. (1956) proposed a further depend-
ence on the absolute temperature of the snow. This has
been adopted in some current numerical models (e.g.
Bader and Weilenmann, 1992; Jordan, 1991).

Mellor (1975) expressed some reservations to this
approach. He suggested that when new snow falls, each
underlying layer densifies rapidly, but when accumu-
lation stops the compaction becomes insignificant. That
is, the densification occurs in events of limited duration,
rather than as steady creep. The apparent value of a
compactive viscosity correlation must then hinge on
the interval between snow falls, and is not strictly a
material property. He further concluded that constitu-
tive properties of snow exhibited such bewildering
complexities that it was necessary to adopt greatly sim-
plified descriptions, concentrating on the characteris-
tics that dominate in a particular problem. We now take
this alternative view that the densification takes place
on much shorter time scales than the accumulation and
so is described by an instantaneous response relating
pressure to density and temperature. We make the fur-
ther simplification here that pressure depends only on
density, ignoring temperature. The process is assumed
irreversible, so there would be no density decrease due
to removal of the pressure. This model, therefore, pre-
dicts that each snow layer moves vertically downwards
as it compacts during accumulation, but when there is
no accumulation the motion ceases. In reality we would
expect further creep under the overburden stress, but
this would eventually decay without increase of the
overburden. That is, the response would better be

described by a viscoelastic law. A viscous law is the
other extreme, which predicts indefinite creep under a
constant overburden.

To determine the function relating density to pres-
sure directly from given density profiles with depth, it
is necessary to assume that the snow was deposited at
a fixed density p, during the whole evolution of the
pack, but no restriction on the accumulation variation
is necessary. However, correlating a viscous model
with a density profile requires the further assumption
of a constant surface accumulation rate, with no inter-
vals between snow falls during the entire pack devel-
opment. We use the same density profile data here to
construct our pressure—density relation as Kojima
(1964) used to determine the dependence of the com-
pactive viscosity on density. This supposes that there
is a universal pressure—density law for all snow struc-
tures, independent of any thermal processes which take
place. The model is then used to determine the pressure,
density and velocity fields for general surface condi-
tions of deposit density and accumulation rate, to show
how the density and velocity fields are influenced by
surface conditions.

2. Pack evolution equations

The dry snow pack is viewed as an interacting mix-
ture of rigid ice grains and air occupying the pore space
in the matrix. The three-dimensional mass, momentum
and energy balances for this two constituent model have
been formulated in the framework of interacting con-
tinua theory by Gray and Morland (1994). These equa-
tions are used as a starting point for our analysis and
we focus on a one-dimensional vertical snow pack that
has no lateral gradients and whose horizontal velocity
components are identically zero.

In each element of the snow pack there is a propor-
tion of each of the constituents, defined by the volume
fraction of constituent v per unit volume of mixture,
¢ ”. Adopting the same notation as Gray and Morland
(1994), the constituent letters v=a,i are used to refer
to the air and ice respectively. By definition the volume
fractions lie between zero and unity, with unit sum:

0<p’<l, P*+di=1 (2.1)

Partial variables are defined per unit mixture volume,
while intrinsic variables are defined per unit constituent
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volume. The partial density and pressure are related to
their intrinsic counterparts by linear volume fraction
scalings

p =¢"p", pr=¢'p" (2.2)
where the superscript constituent letters are lower case
for partial and upper case for intrinsic variables. A
detailed three-dimensional formulation of mixture the-
ory with such interpretations is presented by Morland
(1992). The mixture density p and mixture pressure p

are given by summing the partial density and partial
pressure over each constituent, respectively

pitp'=p, p+p'=p (2.3)
Both constituents satisfy a mass balance equation of
the form

dap”
ot

d
+—(pv") =0 (v=ia) (2.4)
0z

where z denotes the vertical co-ordinate measured in
the upward sense, and v * is the vertical velocity com-
ponent of constituent v. For the very slow motions
arising in a snow pack the momentum conservation
equations reduce to the equilibrium equations

v

p
—p”g+pB*=0 2.
o PEte (2.5)

where g is the gravitational body force, and pB" is the
interaction drag exerted on constituent v by the other
constituents per unit volume of mixture.

By definition the interaction drag experienced by the
ice due to the motion of the gas, pB', is equal in mag-
nitude but opposite in sign to the interaction drag expe-
rienced by the gas, pB? as it passes through the ice
matrix. Thus, the interaction drag can be eliminated by
summing the air and ice momentum balances (2.5),
and, using (2.3), a simple relation between the mixture
density and mixture pressure is obtained:

ap_

P8 (2.6)

The sum of the air and ice mass balances (2.4) can be
expressed in the form
dp

0 . d .
Y4 — i _ ag a__ i —
o (pv )+aZ [p*(v*=0v")]=0 (2.7)

Using (2.2) and (2.3) the snow density is given by
p=¢'p"'+ »*p*, which implies that p* << p for intrin-
sic densities p'=918 kg m~3, pA=1 kg m~3, and
typical volume fractions of comparable magnitude. The
upward air velocity v? resulting from the loss of pore
space as the matrix collapses, maximum if there is free
drainage, should not exceed |v'} by too great a factor,
so |p*?| << |pv'| is assumed. Then the total snow
mass balance equation (2.7) is approximated by
4 9 iy —
at+8z (pv')y=0 (2.8)
The conservation equations (2.6), (2.8) need a con-
stitutive relation for the pack pressure, which will
describe the irreversible collapse of the pore space, to
close the system. As described in the introduction, we
now propose to investigate a constitutive law which
simply relates pressure to density. A convenient form
is
To=fo=p), f0)=0 (29)
where the function f is to be determined from field
observations, and the reference density p; is the density
at which the snow element was deposited at the pack’s
surface where the pressure was the constant atmos-
pheric pressure p®. The reference density is therefore
a constant for each ice particle and must be conserved
along its particle path, thus

9 0ps _
" +u % =0 (2.10)
We shall suppose that at t=0 the snow starts to
accumulate on a fixed impervious horizontal surface,
at z=0. At the lower boundary we therefore apply the
condition that the ice velocity v' = 0. For a normal accu-
mulation flux g(t) per unit mixture area per unit time,
the kinematic condition which describes the evolution
of the snow surface, z="~4(r), is

h(t) =0 (ht) +q(1) (2.11)

where the dot indicates differentiation with respect to
time. The evolution of the free surface is therefore
dependent on the internal deformation of the pack
through v(h,t) during the collapse, as well as on the
snow accumulation rate. At z= A the total pressure p is
at atmospheric pressure p* and the surface density
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defines the reference density p, of the current surface
element. Thus, we must solve Egs. (2.6), (2.8), (2.9)
and (2.10) subject to the initial conditions

t=0,z=0: v'=0,p=p*, p=p,=p,(0)  (2.12)
and the boundary conditions

z=0: v'=0

z=h: h(t)=v'(h1) +q(1), p=p*, (2.13)

p(hat) =ps(h’t) =pl1(t)

where p, = p,(?) is the density at which the snow falls
at the surface. Despite the apparent simplicity of the
equations this problem involves a moving interface at
which boundary conditions must be applied, and the
interface position is itself part of the solution. Numer-
ical methods to treat moving boundary value problems
are not routine. A fixed domain mapping technique
(Morland, 1982) is adopted for our solution construc-
tion and applications.

The dominant forcing arises from the snow deposited
at the surface, which is the cause of the densification
process. Typical accumulation rates are of orderg * =1
m yr~! and ice matrix velocities can approach this
value in the near surface layers, suggesting the velocity
scaling magnitude v * = (z*/¢") =g ~. For the forcing
scenarios envisaged it is appropriate to use a time scale
t* =1 year and length scale z * = I metre. It is sensible
to scale the snow density, p, the reference density, p;,
and the surface density, py, on the intrinsic ice density
p' which is their maximum attainable magnitude.
Finally, the boundary condition (2.13) implies that the
pressure at the free surface is always at atmospheric
pressure, and the hydrostatic balance in (2.6) suggests
a perturbation from atmospheric pressure with depth as
the overburden of snow increases. Thus, we introduce
non-dimensional variables

t=t"t,z2=2"Z0'=0"0,9=q"G, p=p"p,

p,=p'Be pr=p'Prp=p*+p'gz’p (2.14)
where
g =0v"=3%X10"%ms"’,

t*=3X107s,z°=1m (2.15)

and the tilde denotes a non-dimensional variable. The
non-dimensional equations are

ap 0

— 4+ — (f0) = 2.16
252 () =0 (2.16)
aﬁs ~aﬁ.\'

=+ =0 2.17
ot v 07 ( )
Z—’i:—ﬁ (2.18)
Z

PP _fp) (2.19)
1-p;

where f(p) = f(p-p™). These equations are subject to
the initial conditions

1=0,7=0:5=0,5=0, p=p, = p(0), (2.20)

and the boundary conditions

£=0:0=0

g=h: h(D) =0(hD +q(D, p=0, (2.21)
ﬁ(h» )=ﬁs(h’ t)=ﬁh(t)

This notation is cumbersome so we shall omit the tildes
on the implicit understanding that non-dimensional
variables are used henceforth throughout the remainder
of the text.

3. Construction of pressure density law

Eq. (2.17) indicates that p, equals p, evaluated at
the time of its deposition along a given particle path.
In the special case that p, is constant and equal to py
(say) over the whole accumulation history, then p, will
be equal to p, along every particle path, and, therefore,
the reference density p, = p, throughout the pack. In
this situation (2.18) and (2.19) are equations for p and
p independent of the velocity field v. We now show
how, with the further assumption that p and p are func-
tions of depth

s=h(t)—z (3.1)

with no other dependence on ¢, and with the profile
p=p(s) given by data, (2.18) and (2.19) determine
the function f(p). By (2.18) and the surface condition
(2.21),,

s

p(s) =fp(s’)ds’ (3.2)

0
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Fig. 1. The non-dimensional density profile with depth at sites EH
60 #29 (bold line), NV 59 II (dashed line), EH 60 #8 (dotted line)
and BH 58 III (dot-dashed line). These curves are derived from the
experimental data of Kojima (1964).

and by (2.19) with p,= pq,

___P(S) —Po
1=po

flp(s)] (3.3)

and p(s), p(s) andf] p(s) ] are strictly increasing func-
tions of 5. Therefore, plotting p(s) against f[p(s)] for
the given p(s) determines f=f(p). It should be empha-
sized that this correlation is entirely independent of the
accumulation rate variation during the pack evolution,
in contrast to the correlation with a viscous law
(Kojima, 1964) which applies only if the accumulation
rate remains constant throughout. The present model
therefore allows consistent applications to varying sur-
face accumulation, which is not necessarily the case
with the viscous law. The model function f(p), how-
ever, could also be site dependent, depending on the
deposited snow structure.

The observed density variations at four sites in Ant-
arctica known as NV 59 II, EH 60 #8, EH 60 #29 and
BH 58 III (Kojima, 1964) are illustrated in Fig. 1 in
non-dimensional density and spatial units. Each of the
curves have a similar shape with density increasing
monotonically with depth, and the largest density gra-
dients occur between 1 and 5 spatial units. Following
the procedure described in Egs. (3.2), (3.3), the pres-
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Fig. 2. The pressure—density relation, f(5), corresponding to sites
EH 60 #29 (bold line), NV 59 II (dashed line), EH 60 #8 (dotted
line) and BH 58 I1I (dot-dashed line). These curves are derived from
the experimental data of Kojima (1964).

sure and f(p) are computed at regular spatial intervals
at each site. Then f(p) is plotted as a function of p as
illustrated in Fig. 2. Three of the curves lie in quite a
narrow region of the graph, which suggests that an
approximately common function fmight be found. The
data from site EH 60 #29 was used to model the func-
tion fin the investigations presented here. An accurate
Chebyshev polynomial representation of f(p) was con-
structed for inclusion in the numerical algorithm devel-
oped to solve the system for the general surface
conditions (2.21),. This can apply only to the pressure
range correlated, and extrapolation to higher pressures
would require a different representation. Site NV 59 II
appears to be slightly anomalous, this could be due to
a variation in the history of surface density accumula-
tion which is discussed at further length in Section 4,
or a manifestation of some sort of temperature depend-
ence that is beyond the scope of this paper.

4. Solution for general surface conditions

The one-dimensional model presented in Section 2
is a non-linear system of partial differential equations
for p, p, p,, v and the surface position h(t), which is
complicated by the presence of a moving boundary at
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the surface of the snow pack, and hence a solution will
only be available by numerical means. For problems
involving moving boundaries direct numerical meth-
ods are suspect. Here we adopt a fixed domain mapping
technique (Morland, 1982), which has been success-
fully implemented by Kelly et al. (1990) for perma-
frost evolution. The boundary is now specified and the
boundary velocity becomes an unknown variable.

We make a change of variables in which the spatial
co-ordinate z remains unchanged, but the snow depth
h, strictly increasing with time, is adopted as an inde-
pendent variable in place of time ¢. This analysis, there-
fore, does not extend to the limit A(f) =0, and so the
method fails if there are periods with no snow fall.

The evolution equations (2.16)~(2.19) become, in
the (z,4) domain without changing function notation,

@+—9( y=0 4.1
Yot (P = (4.1)
dp, | p,
s, OPs _ 2
oh o 0 (42)
3
Z=—p (43)
Z
—Ps
—L=f(p) (4.4)
Ps
where
dh
h) = —— 4.5
y(h) o (4.5)

is the interface velocity. Once y(4) is determined the
time ¢ for any 4 is given by

h

dn’
= o5 (46)

0

These equations are subject to the initial conditions

h=0,z=0: v=0,p=0, p=p, =p,(0) 4.7)
and the boundary conditions

z=0: v(0,h) =0,

z=h: y(h)y=v(hh) +q(h), p=0, (4.8)

p(hh) = p,(hh) = p, ()

The snow pack configuration is illustrated in Fig. 3. It
occupies the lower triangular region between the A axis,

0 h
Fig. 3. The (z,h) domain for the snow pack.

which is the fixed impervious boundary z=0, and the
surface interface position, z=#, which lies along the
45° line in (z,h) space. Thus, a regular discretization
scheme, with equal uniform steps in z and &, ensures
that all the boundary conditions are evaluated at a grid
node. Note that a direct method would have to apply
the boundary conditions at some estimated position
between adjacent grid cells on the upper boundary.
The reduced system of equations is intimately cou-
pled and the numerical algorithm uses an initial esti-
mate at each thickness increment to start an iterative
procedure in which the calculated solution is refined
until the accuracy meets some prescribed criterion.
Taylor series are used to construct a solution to (4.1)—
(4.8) valid for small z and A, which is then used to
initialise the variables and derivatives that are needed
to start the numerical algorithm from the level 34.
The iterative procedure is improved by first changing
the equation structure. In most forcing scenarios we
would expect the variation in the surface density p, to
be quite slow, perhaps taking place over a number of
years. It is therefore advantageous to eliminate the den-
sity p(z,h) in favour of the reference density p,(z,4)
by (4.4), and express the pressure Equation (4.3) as

op
o =lp; + (1=p)fip)] (4.9)
Thus, given a good estimate of p; and a representation
of f(p) constructed from the observed pit measure-
ments at site EH 60 #29 (Kojima, 1964} described in

Sectton 3, the pressure can be computed using a fourth
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order Runge-Kutta scheme. The density is then
obtained from the algebraic relation

p=p,+(1—=p)fip) (4.10)

The surface velocity v(h,h) can then be obtained by
integrating (4.1) through the snow depth % and apply-
ing the zero velocity condition at z=0. Next, using the
relation y(h) =v(h,h) +q(h) from (4.8), it follows
that

(W =p,(h { h—h@d}—1
Y(h) = p,(h) gy p.(R) J'ah b4
(6]

which allows 7y to be estimated in terms of externally
prescribed functions p, and ¢, and the density p for
which we already have an estimate. Finally, the velocity
is estimated by

(4.11)

yzap
v(zh)=——|—d7 4.12
(2h) pl’ah (4.12)

and the real time 7 is determined by (4.6). With these
fields, (4.2) subject to the surface conditions (4.8) can
be numerically integrated to determine a new reference
density p.(z,h) to perform the cycle again. Subse-
quently, at the end of successive cycles, the change in
each variable at each z is tested until the maximum
difference was less than 10 ~® in magnitude. The results
can then be mapped back into space and time variables

(z,0).

5. Illustrations

In all the simulations presented no snow is present
initially and the pack is built up over a 12 year period.
The depth which the snow reaches after this period,
and the evolution of the density structure within the
pack, are both dependent on the density p,, at which the
snow is deposited and the rate of snow accumulation
g, which are functions of time. Five basic forcing sce-
narios are considered here:

(i) pr=0.425,
q=1
(i1) P, =0.375+(0.475-0.375) t/12,
q=1
(iii) pn=0475+(0.375-0.475) ¢/12,
g=1
(iv) pr,=0.425,
q=05+(1.5-0.5) /12
(v) pr =0.425,
q=15+(05-15) ¢/12 (5.1)

The simplest is case (i), in which both g and p, are
constant during the entire evolution history of the pack.
Case (ii) keeps the rate of accumulation constant but
changes the surface density from 0.375 to 0.475 line-
arly in time over a twelve year period, while case (iii)
performs the same simulation with the opposite sense
to the density variation. Cases (iv) and (v) keep the
surface density constant and vary the accumulation rate
instead, from 0.5 to 1.5 and from 1.5 t0 0.5 respectively,
with a linear variation in time over the same 12 year
period.

The reduced theory described in Section 3, in which
the deposition density p, is held constant, applies in
cases (i), (iv) and (v), and the density profiles plotted
as a function of depth should, therefore, be time invar-
iant. The solid line plotted in Figs. 4 and 5 shows the
density, p, as a function of depth, s =h — z, for case (i)
at time =6 and r= 12 respectively. Not only do the
two curves coincide exactly over the common interval,
confirming the time invariance, but they also coincide
with the density profile at site EH 60 #29 (Fig. 1) that
was used to construct f(p), demonstrating the accuracy
of the numerical algorithm. The density profiles for
cases (i1) (dashed line) and (iii) (dotted line) are also
illustrated in Figs. 4 and 5, and demonstrate that a lower
density gradient is indicative of an increase in the dep-
osition density p,, and larger gradients correspond to a
reduction in p,. Indeed, the dashed line in Fig. 4 fits
very closely to the anomalous density profile at site NV
59 II, mentioned in Section 3, which could, therefore,
be explained by an increase in deposition density in the
recent past. Note that the density profiles are not very
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Fig. 4. Non-dimensional density profiles with depth at 7 = 6 predicted
for cases (i) (bold line), (ii) (dashed line) and (iii) (dotted line).
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Fig. 5. Non-dimensional density profiles with depth at =12 pre-
dicted for cases (i) (bold line), (ii) (dashed line) and (iii) (dotted
line).

sensitive to variations
density pj,.

Fig. 6 is a contour plot of the density p(z,?) for case
(i), each contour interval is equally spaced, starting at
p=0.425 at the surface indicated by the dashed line.
Each of the contour lines are parallel to the surface,

in the mean deposition

which is also true in cases (iv) and (v) (not illus-
trated), indicating that the density profile with depth is
time invariant. The corresponding velocity contours are
shown in Fig. 7. The velocity at any given point is
dependent on the local density change and the velocity
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Fig. 6. Contours of density 5 in space-time (£,1) forcase (i). At the
dotted line, which defines the snow surface height variation with time
above the fixed lower boundary at z =0, the density 5=0.425.
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Fig. 7. Contours of velocity & in space-time (z‘,f) for case (i). The
dotted line defines the snow surface height variation with time above
the fixed lower boundary at z=0.
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of the layer immediately below it. Thus, close to the
time axis where the velocity is specified by the basal
boundary condition to be identically zero, the velocity
magnitudes are small, and the velocity increases mon-
otonically to a maximum at the surface. The deeper the
snow pack the larger the surface velocity magnitude
becomes, tending to a finite limit as the density in the
lower layers approaches the fully compacted ice den-
sity. The velocity contours for (ii) and (iii) are both
very similar in shape to case (i), but the velocity mag-
nitudes are slightly greater in case (ii) and slightly less
in case (iii) reflecting the greater capacity for compac-
tion when denser snow accumulates on top of lighter
snow, and vice versa. It follows, necessarily, that the
depth of snow is greatest when least compaction occurs
within the pack. This is born out by the results; case
(ii1) has the highest free surface, then case (i) and case
(i1) have successively lower free surfaces.

Since the compaction velocities are all approxi-
mately the same, the increase in density of any element
in the snow pack is also approximately the same in
cases (i), (ii) and (iii). This has an important effect
on the density distribution. In case (ii) the basal layers
of the snow pack are deposited with a reduced density,
and therefore for the same level of density increase as
case (i) will have a lower density throughout the snow

0.0 20 4.0 6.0 80 100 120
10.0 L : ! L L L 10.0

8.0

5 6.0

2.0

Fig. 8. Contours of density j in space—time (Z,7) for case (ii). The
dotted line defines the snow surface height variation with time above
the fixed lower boundary at z=20.

pack evolution. However, the surface layers in case (ii)
are deposited with progressively increasing deposit
density and will have an enhanced density for the same
level of compaction. The density contours in case (ii),
illustrated in Fig. 8, lie closer to the vertical than in
case (i), indicating that the density gradient with depth
has been reduced. This suggests that, for more dramatic
changes in the deposit density, layers of higher density
may overly less dense layers. A similar argument in
case (iii) leads to enhanced densities in the basal layers
and lower near surface densities, resulting in much
higher density gradients with depth, as illustrated in
Fig. 9. The reference density in scenarios (1), (iv) and
(v) is of little interest as it remains at the constant value,
0.425. However, in cases (ii) and (iti) the reference
density changes from 0.375 to 0.475 and vice versa
over the 12 year period. In these cases the reference
density acts as a passive tracer whose contours, illus-
trated for case (iii) in Fig. 10, trace out the particle
paths as compaction occurs.

Although variation of the accumulation rate g does
not have any effect on the density profile, it does have
a profound effect on the position of the free surface and
the velocity distribution within the pack. The velocity
contours for cases (iv) and (v) are illustrated in Figs.
11 and 12 respectively. In case (iv) the deposition
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Fig. 9. Contours of density j in spacetime (Z,) for case (iii). The
dotted line defines the snow surface height variation with time above
the fixed lower boundary at z=0.
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Fig. 10. Contours of reference density g, in space-time (Z,r) for case
(iit). The dotted line defines the snow surface height variation with
time above the fixed lower boundary at z= 0.
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Fig. 11. Contours of velocity 7 in space—time (z.7) for case (iv). The
dotted line defines the snow surface height variation with time above
the fixed lower boundary at z=0.

starts off slowly so that initially the depth of snow that
has been built up is less than in case (i) at the same
instant of time, and the interface velocity y and the
internal deformation velocities are also reduced. Above
" =6, the snow accumulates faster than in case (i) and
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10.0 | 1 | L |

8.0

—6.0

—4.0

—2.0

0.0

Fig. 12. Contours of velocity 7 in space—time (z,r) for case (v). The
dotted line defines the snow surface height variation with time above
the fixed lower boundary at z=0.

the velocities are correspondingly increased. This gives
the free surface a concave shape plotted against time
as shown in Fig. 11. In case (v) the opposite is true;
compaction velocities are enhanced up to =6 and are
then reduced in the later stages as the amount of accu-
mulation decreases, and a the graph of the free surface
position with time is convex. In all five scenarios the
pressure is hydrostatic, increasing with depth from the
p =0 boundary condition applied at the free surface.

6. Summary

A simple pressure—density constitutive relation has
been investigated which provides an alternative
approach, to the conventional linearly viscous relation,
and has a number of features to recommend it. Corre-
lating observed steady-state depth—density profiles to a
viscous law (Kojima, 1964), to infer a compactive
viscosity, requires that both the snow deposit density
and the accumulation rate are constant throughout the
entire development of the pack. Thus, the apparent
value of the compactive viscosity at a particular site
hinges on the interval between snow falls, which is not
strictly a material property. However, correlation of the
pressure—density function is entirely independent of the
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accumulation rate history and therefore allows consis-
tent applications to varying surface accumulation,
which is not necessarily the case with the viscous law.
The function f(p), which determines the response of
the pressure—density law, may be site specific as it is
independent of any thermal processes which take place.
More complicated dependencies that take account of
the temperature and the snow structure may allow a
universal pressure—density function to be determined
in future, but is beyond the scope of this paper.

With the proposed model each underlying layer den-
sifies instantaneously as new snow falls, but when there
is no accumulation the motion ceases; that is, the
delayed creep present with a viscous law does not
occur. This reflects layer profile observations (Mellor,
1975) in which snow densifies rapidly during accu-
mulation and vertical creep decays to a relatively insig-
nificant rate after the snow fall. If the accumulation
deposit density is constant the constitutive relation
yields Sorge’s law (1935; 1938) completely indepen-
dently of the accumulation rate. In this situation, there-
fore, the depth—density profile will be exactly the same
whether the accumulation is uniform in time or takes
place in a completely general manner, with intervals
between snow falls. Variations in the deposit density
are remembered throughout the life time of the pack,
and the associated depth—density profiles are much
more complicated.
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