Particle size segregation in granular avalanches:
A brief review of recent progress

J.M.N.T. Gray

School of Mathematics and Manchester Centre for Nonlingardmics,
University of Manchester, Manchester, M13 9PL, United ISioig

Abstract. Hazardous natural flows such as snow avalanches, debris;flalhars and pyroclastic flows are part of a much
wider class of granular avalanches, that frequently oatimdustrial processes and in our kitchens! Granular achles are
very efficient at sorting particles by size, with the smabiees percolating down towards the base and squeezing thes lar
grains up towards the free-surface, to create inverselgegt layers. This paper provides a short introduction avidweof
recent theoretical advances in describing segregatiorreantking with relatively simple hyperbolic and paraboliodels.
The derivation from two phase mixture theory is briefly sumized and links are drawn to earlier models of Savage &
Lun and Dolgunin & Ukolov. The more complex parabolic versad the theory has a diffusive force that competes against
segregation and yields S-shaped steady-state concentmtfiles through the avalanche depth, that are able todepe
results obtained from particle dynamics simulations. Faflependent exact solutions can be constructed by usingdtee C
Hopf transformation to linearize the segregation-rengxguation and the nonlinear surface and basal boundaryticorsd

In the limit of no diffusion, the theory is hyperbolic and theins tend to separate out into completely segregatedsielye
graded layers. A series of elementary problems are usechtorggrate how concentration shocks, expansion fans, ingeak
waves and the large and small particles paths can be compxsetly using the model. The theory is able to capture the
key features of the size distribution observed in stratificaexperiments, and explains how a large particle ricimtfig
connected to an inversely graded avalanche in the intdri@.theory is simple enough to couple it to the bulk flow field to
investigatesegregation-mobilitfeedback effects that spontaneously generate self-chizingdeveed avalanches, which can
significantly enhance the total run-out distance of geojghysnass flows.
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INTRODUCTION

As a body of grains avalanches downslope it dilates, in diatehe particles to shear past one another, and the upper
layers of the flow move faster than the lower ones, as showreis¢hematic diagram in figure 1. The combination of
velocity shear and dilation, acts as a random fluctuatingedig], which allows the smaller particles to preferentiall
percolate down into gaps that open up beneath them undectioa af gravity, since they are more likely to fit into
the available space than the large grains. Once the smaligclps get underneath they exert a force that squeeze the
larger grains upwards. The combinationkaietic sievingandsqueeze expulsidt] causes the particles to segregate
into layers, which have greater concentrations of largéqdes near the free-surface and higher concentrationaes fi
near the base of the flow. In geology this is knowrnragrse gradind2] and is often associated with granular flows
[3]. The inverse grading of the particle size distributismbt necessarily preserved in avalanche deposits, whith ca
be very complex [4]. Indeed, even a relatively simple twoelnsional inversely graded flow with deposition yields a
deposit that imormally graded5] with the fines above the large particles.

Large particles that rise to the upper faster moving layéteeavalanche, tend to be transported to the flow front.
Here they are often overrun, but rise to the surface agaimbicfe size segregation. Thiscirculationallows bouldery
flow fronts to develop in hazardous geophysical mass flond) as debris-flows, pyroclastic flows and wet and dry
snow avalanches [6—9], which give rise to interestiegregation-mobilitfeedback effects [5]. Larger less mobile
particles at the flow front are shouldered to the side by theemwbile interior, to create static coarse grained lateral
leveed10] that channelize the flow and enhance the total run-atadce. Such segregation mobility feedback effects
are also responsible for fingering instabilities on chutds-[L3] and digitate lobate terminations [14].

Granular avalanches frequently occur in much smaller qmaleesses, such as rotating tumblers, where different
modes of deposition create a rich variety of patterns, tlioly Catherine wheels [15], leafs [16] and petals [17, 18].
Similar deposition mechanisms are responsible for the dtion of stratification and segregation patterns in heaps
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FIGURE 1. A sketch of an avalanche flowing down a plane inclined at aeafido the horizontal. Th& axis points down the
chute, thez axis is normal to the plane and thi@xis goes into the page. The particle size distribution aediownslope velocity
profile are illustrated schematically. Large particlegitémrise to the faster moving surface layers, and are trategpto the flow
front, where they can be recirculated.

and silos [5, 15, 19, 20]. Size segregation is therefore n§icterable practical importance to the pharmaceuticé, bu
chemical, mining and food industries. Sometimes it is ussfich as in the mineral processing industry, but often it
is a source of inconsistency and poor quality and the aimdes tb minimize its effect. This paper provides a brief
review of recent progress in modelling the particle sizeegation process in a bi-disperse avalanche using a rellativ
simple approach.

DERIVATION OF THE SEGREGATION-REMIXING EQUATION

The segregation-remixing equation can be derived [16, 2[ifr@m binary or ternary mixture theory. Here we follow
Gray and Chugunov [16]'s derivation, which assumes thattheure is composed darge andsmall particles and
that the interstitial pore space is subsumed into the volfsawtions,¢' and¢®, of large and small particles per unit
mixture volume. This implicity assumes that the solids wodfraction is approximately constant within the avalanche
which is a reasonable first approximation. By definition tbime fractionsg®, ¢ € [0,1] and they sum to unity

o +e°=1 1)

Mixture theory defines overlapping partial densitig¥, partial velocitiesuy#, and partial pressurep”, for each of
the constituentgl = |, s per unit mixture volume. Each of the constituents satisfieévidual mass and momentum
conservation laws [e.g. 23, 24]

opH
%+D,(p“uu>:07 p=1s, (2
%(p“U“)+D-(p“U“®U“)=—Dp“+p“g+B“7 p=ls, (3)

where® is the dyadic producipHg is the gravitational force anB*, is the force exerted on phageby the other
constituent. The interaction forces in a binary mixture egeal and opposite to one anothr= —BS, and cancel
out in the bulk mass and momentum balances, which are obtAyneumming (2) and (3) over all constituents. It is
useful to define the bulk densipy, bulk velocityu and bulk pressurp as

p=p'+p% pu=p'u+p%, p=p+p° (4)
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The partial and intrinsic densities are related by a linednmwe fraction scaling [24], while the partial and intriosi
velocity fields are identical
p = gHpt, U =ut, ®)

where the superscript denotes an intrinsic variable. A coordinate sys@®ryzis defined, with the«-axis pointing
down a chute inclined at an angJeto the horizontal, thg-axis across the chute and thexis as the upward pointing
normal as shown in figure 1. The constituent velocityand the bulk velocity have componenta#, v¥,wH) and
(u,v,w) in each of these directions, respectively. The large andl gragicles are assumed to have the same constant
intrinsic density,0'* = p%, and (1), (4) and (5) therefore imply that the bulk dengitjs also equal to the same
constant value. It follows from the bulk mass balance thatihlk velocity field is incompressible

Ju oJv ow
R il 6

ox + ay + 0z ©)
This is one of the key assumptions that is made in nearly aliglar avalanche models [7, 25-37]. The other important
assumption for compatibility with existing models, is tktiad bulk pressurg is lithostatic through the avalanche depth

p=py(h—2)cos, @)

which is true, provided the acceleration terms are nedidibthe normal component of the bulk momentum balance.

During percolation the small grains can not support as miditheooverburden pressure and the larger grains have
to support proportionately more of the load. The drivingc®for particle size segregation are therefore perturbatio
to the lithostatic pressure distribution [16, 21, 22]. &@&t of relating the partial pressure to the bulk pressureguesi
linear volume fraction dependent scaling, as in standardurg theory, Gray and Thornton [21] introduced a linear
scaling

pu:f“pv IJ:|,S, (8)
with a factorfH that could deviate away from*. The functionsf# satisfy three constraints:-

(i f+fs=1,
(i) f5=1 when ¢°=1, (9)
(i) f'=1 when ¢ =1,

which ensure that the partial pressures sum to the bulk yme¢4), and that when either of the constituents are in
a pure phase they carry all of the load. Although there areymanctions that satisfy these constraints the simplest
non-trivial functions are

fl= @ +bp’g,  °=¢°—bg’d, (10)

whereb is the magnitude of the perturbation. To balance the pregsnturbations in the normal momentum balance
equations (3), Gray and Thornton [21] and Thornton et al} ifl#oduced an interaction dré@f' with a simple linear
velocity dependent drag

BH = pOfH — pHc(uH —u) — pdOgH, pu=l1,s (11)

with drag coefficient. Gray and Chugunov [16] introduced a further gradient ddpatremixing force that drives the
grains of phase! towards areas of lower concentration. The strength of tb#&esive forces ispd. The interaction
drag (11) automatically satisfies the constraint tBat- BS = 0, and when it is substituted into the constituent
momentum balances the first term combines with the partedqure gradientJ(fHp) to leave— f#Op. Assuming
that the acceleration terms are negligible, the normal @orapt of the constituent momentum balances reduces to

PHwH = @Hw (1 — @H)(g/c)cost — (d/c)dgH /92, p=I,s (12)

Substituting for the pressure fluctuation functions (10j dividing through by the volume fractiop” implies that
the normal velocities of the large and small particles are

_ S 4 |
0
_ _an — D2
W o= w—qg Ddz(ln(ps), (14)
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where the maximum percolation velocity of the gragrend the diffusivityD are
q=(b/c)gcos{, D=d/c. (15)

Within the avalanche the segregation velociti€s- u are assumed to be of the same order of magnitude as the bulk
normal velocityw, which is a lot less than the bulk down and cross slope védscilt follows that to leading order the
down and cross slope constituent velocities are equal toliblk counterparts

uH=u, vi=v, u=Is (16)
Substituting (13), (14) and (16) into the small particle mbalance (2) yields the segregation-remixing equation

‘;—"t’s+%(¢su)+;—y(fpsv)+§(cpsvv)—aiz(qa)s(p')— 2 <D6—¢S>~ (17)

z 0z\ 0z
The first four terms simply advect the local concentratiothwvtiie bulk flow, the fifth is responsible for segregation
and the sixth diffuses the small particles. The segregatomxing equation (17) is parabolic f@r > 0 and reduces
to a hyperbolic equation whdb = 0. The reduced model is termed thgperbolic segregation theoyr segregation
theoryfor short. The segregation flux has the interesting propéay it shuts off when the concentration of small
particles equals zero or unity, g8 automatically stays in the rang@ 1].

In the absence of diffusion, equations (13)—(14) show thedrge particles rise up until there are no more small
particles, while small particles percolate downwardsliiméire are no more coarse grains. This tends to drive thagrai
into completely separatedversely graded layerith all the large particles on top of the fines [1]. The hypmid
segregation equation is related to the theory of sedimientf28, 39] and is also very closely related to Savage and
Lun [1]'s kinetic sieving and squeeze expulsion model. Tihk to Savage and Lun [1] is not immediately apparent,
as they formulated their theory in terms of the layer numieesity ratio,7, and the particle diameter ratig, instead
of volume fractions. However, by substituting the defimisg' = 1/(1+ no®) and¢® = no®/(1+ no?) into their
equations (6.4) and (6.3) we can see that the net percola¢ilmtities have the same leading order concentration
dependence as (13) and (14). Savage and Lun [1]'s informatitropy approach yields considerably more structure
for the segregation rate, but there is no dependence ontgravie mixture approach does not provide as much
structure forg, but it does have an explicit dependence on gravity in (18jclvsets a direction for segregation and
reflects the gravity driven nature of the kinetic sievingga®s. Thornton et al. [22] used ternary mixture theory to
derive (17) in the presence of an interstitial fluid. Thisahehad an extra relative density difference fagboin g,
which was able to explain the reduced segregation rateguidlparticle mixtures and the absence of segregation with
a density matched fluid, observed in the experiments of Medlaand Savage [40].

The segregation-remixing equation (17) is closely relateBurgers’ equation [41], and smoothes out the sharp
concentration jumps that develop in the hyperbolic theDotgunin and Ukolov [42] were the first to write down this
form of the equation, by ingeniously spotting that the sggtien flux must shut off whep® = 0,1, but there was no
formal derivation. Khakhar et al. [43] went on to use equalib7) to study the equilibrium segregation of particles
of different densities, but the same size, and obtained gooeement with experimental measurements in rotating
drums. More recently, Gray and Chugunov [16] showed thadstestate solutions were in good agreement with
particle dynamics simulations of chute flows of large andlbpaaticles of Khakhar et al. [44], which is reproduced in
the bottom panel of figure 2. Both experiments and particteadyics simulations [45, 46] are likely to be very useful
in determining the functional dependencecpédndD on other parameters, such as the shear rate, the partiele-si
ratio and the overburden pressure. An example of this isipeoVby Hajra and Khakhar [47] who used rotating drum
experiments to infer that even small size differences difecgnt to cause segregation, but once the size ratio resache
a critical value the driving force for segregation satusatemay also be possible to push bi-disperse kinetic tlegori
[48-50] into the dense regime and find a link between the tvoagrhes.

NON-DIMENSIONALIZATION, BOUNDARY AND JUMP CONDITIONS

Avalanches are shallow, with their typical thicknd$sbeing much less than their length The incompressibility
condition (6) implies that, if typical down slope velocgiare of magnitudd, then typical normal velocities are of
magnitudeHU /L. The variables are non-dimensionalized to reflect thedmgsa

(x,y,2) =L(X,V,€2), (u,v,w)=U(G,V,eW), t=(L/U, (18)
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where the tilde denotes a non-dimensional variable. Sukiaty these into (17) and dropping the tildes and the
superscrips implies that the non-dimensional segregation-remixinggdion is

Jdo 0 0 7} 0 0 1740
Db o (s (o)~ 5 (Se1-0) = 5. (0.5 (19)
where the non-dimensional segregation and diffusivexgmginumbers are
_a _ bt
S‘ - HUa and Dr - HZU ) (20)

respectively. Provided there is no erosion or depositioere is no flux or large or small particles at the surface and
basal boundaries of the avalanche. This can be expressieé bypilinear boundary condition

7]
S9(1-9)+D 22 =0, (21)

which insulates the avalanche from the exterior. In the Hypléec theory shocks may also develop on a propagating
surface of discontinuity across which a jump condition [Biljst be satisfied

[p(u-n—vn)] =[Se(1-@k-n], (22)

where the jump brackdtf]] = f* — f~ is the difference off evaluated on the forward “+” and rearward “-” side of
the surfacek is the unit vector normal to the chutejs the unit normal to the surface amglis it's normal speed. A
Lax entropy condition implies that the shock will be stalblarid only if the shock is inversely graded [52].

TIME-DEPENDENT SOLUTIONS OF THE SEGREGATION-REMIXING EQU ATION

Gray and Chugunov [16] constructed a general time-depesdértion in a flow of unit depth with no down or cross
slope gradients in concentration

u=u(z), v=v(z, w=0, Jd@/ox=0, Jd@/dy=0, O<z<l (23)

In this case the segregation-remixing equation (19) resltae

dp 0 0%
ﬁ—a—z(srﬁo(l_(P))—Drﬁa (24)
which is subject to the surface and basal boundary condi(@h) and the initial condition
t=0: 9=q(2, (25)

which must be independent afandy. The reduced segregation-remixing equation can be mapipectig on to
Burgers equation, which can in turn be linearized by usieglble-Hopf transformation [53, 54]. Gray and Chugunov
[16] used this sequence of transformations to linearizé b segregation-remixing equation (24) and the nonlinear
boundary conditions (21). The resulting diffusion problaras then solved by using Fourier series. The general
solution takes the form L oy d

_ (1 _chow
=2 %) 20
where the segregation-remixing length scaje= D,/S. Considerable simplification is achieved by splitting the
solutionw into a steady-state and time dependent part

W= s+ @, (27)

where
sinh(z/(2z))  sinh((z—1)/(22)) (28)
sinN(1/(2z))  sinh(1/(2z)) '

ws= X(1)
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FIGURE 2. The upper and middle panels show two contour plots of theudieol of the the small particle concentration through
the depth of the avalanche f& = 1 andD, = 0.25. In the top panel the avalanche is initially homogengousiked with an
initial concentrationgy = 0.55 and in the middle panel the small grains are initially gmabthe large ones and are separated by a
sharp interface at; = 0.45. For these parameters the same steady-state develdpl,isvehown in the bottom panel as a profile
of the small particle concentratiapwith depth. The dots are the equivalent steady state caatiemis derived from the particle
dynamics simulations of Khakhar et al. [44] for comparison.

W = ni%exp(— (% + nznzz(%) %) sin(nmz). (29)
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The functiony is defined as

)((z)zexp(—/oZ Z(I;Z;ldz‘), and )((1):exp(—/01 2(gz;1dz‘>, (30)

which are both dependent on the initial concentration @afilz) and the segregation-remixing lengih Att =0
equation (29) reduces to a Fourier Sine seriesdfoand the coefficientd\, can be determined by integration in
the usual way. The coefficie®, can be split into two parts, = B, — Cn, whereBy, is given by an integral of the
transformed initial conditions((z), andC, is dependent on an integral of the steady-state solutioit follows that
to construct a specific solution it is necessary to compute

8nrz3

1+4n?m?z3

1
Bn:Z/O X(2)sin(nmz) dz  C,= (1—(—1)”)((1)), (31)
where the integral fo€, has already been evaluated by substituting the steadyssihttion (28).

Two different initial conditions are shown in figure 2. In ttog panel the grains are initially homogeneously mixed
with concentrationg = 0.55. As time progresses the small particles percolate dowartts the base of the avalanche
and the large particles are pushed upwards until a balatalisbes itself with the diffusive effects of remixing.i-o
large time the concentration profile therefore approach@s@rsely graded steady state, which is shown in the bottom
panel of figure 2. The grey circles are points derived fromstieady-state particle dynamics simulations of Khakhar
etal. [44], which the theory fits well fd&& = 1 andD, = 0.25, giving a segregation-remixing lengih= D, /S = 0.25.

The middle panel shows the solution for an unstably strdtifiitial distribution, with all the small particles above
the large ones, separated by a discontinuity at hedgght0.45. The initial discontinuity is rapidly smoothed out by
diffusion, before percolation and squeeze expulsion take as the dominant means of transport. The small particles
percolate down from the top and collect at the base, whildaige ones rise from the base to the surface, until the
same steady-state distribution as the top and bottom peredsablished.

STEADY STATE SOLUTIONS TO THE SEGREGATION EQUATION

In the last section we showed that segregation-remixingrthes able to reproduce steady state one-dimensional
profiles produced by particle dynamics simulations, whesidls considerable weight to this approach. The chute flow
experiments of Savage and Lun [1] suggest that when stratgliified layers develop the diffusive termin (19) can be
neglected. It is therefore of interest to study the hypecs#gregation equation, which allows complicated physica
problems to be treated in a simple way and gives consideiabight into the nature of segregation in granular
avalanches. In a steady uniform avalanche of unit depth

u=u(z)>0, v=0, w=0, in 0<z<1l x>0, (32)

the steady hyperbolic segregation equation (19) and their@dindition (21) reduce to

7} 7}
~(ou)— = (Se1-9)) =0, (33)
o(l—@)=0, at z=0,1 (34)
This can be written as a first order quasi-linear equationdpaieding out the derivatives
29 99 _
UW-I-S((Z(D—].)E =0, (35)

and solved by the method of characteristics. The small ggartioncentration is equal to a constgntalong the
characteristic curve given by

dz
u& =S(2¢, —1). (36)
Solutions for general velocity fields can be constructeddfinihg a depth-integrated velocity coordinate
z
w:/u@mz 37)
0
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that increases monotonically with By virtue of the scalings (18), we may assume without losgesferality that at
the free surfacg/(1) = 1. The mapping (37) transforms (36) into a linear equation

dy
R ) (38)

which can be integrated, subject to the initial conditicat tthe characteristic starts @4 , /), to give a straight line
U=y +S2op —1)(X—Xx). (39)

The position in physical space can be calculated by invgtte transformation (37) onagz) is prescribed. The
beauty of the depth-integrated velocity coordinates is tina solutions constructed with it are valid for all velgcit
fields provided the inverse mapping is well defined. In thiggrawe will consider linear velocity profiles

u=a+2(1-a)zz 0<a<1, (40)

which include plug flow ¢ = 1), simple sheard = 0) and shear with basal slip, for intermediate values ofhe
integral (37) implies that the depth-integrated velocitpiinate

Y=az+(1-a)Z, (41)
which is quadratic and can be inverted to give

v, a=1,

2= —a+ya2+4(1-a)y (42)
2(1-a) ’ '

Homogeneous inflow

Gray and Thornton [21] considered the case in which thera isffow atx = 0 at which the particles enter in a
homogeneously mixed state with concentration

0= @, at x=0, O<z<1l (43)

Through most of the avalanche the inflow concentratipis simply swept into the domain by the characteristics, and
the small particles percolate downwards by kinetic sievdand the large grains are squeezed upwards. At the base,
however, the no flux condition (34) implies that there are rarerlarge particles to rise up, and instead the small
particles separate out across a concentration shock. bmif@m flow field (32) the jump condition (22) reduces to

dz
|:[(PU&+ So(l- ¢)ﬂ =0, (44)
provided the shock is stationamy = 0. Dividing both sides byj¢] yields

dz L
U&—S(‘P +o —1), (45)

wheregp™ andg~ are the values of the concentration on the forward and redrsides of the discontinuity. Using the
mapping (37) this reduces to

— =S(¢"+9 -1). (46)

The position of the bottom shock, which separates the firea the homogeneous mixture, can be computed from
(46) by substitutingp™ = @ and @™ = 1 and integrating, subject to the boundary condition that 0 atx = 0, to
give

Lpbottom: Sr(R)X- (47)
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FIGURE 3. The steady-state segregation solution for a homogenetiow iof concentratiorg = 0.55 atx= 0 in a unit thickness
avalanche with a linear shear profile through its deptk=(0.5) and the non-dimensional segregation nungret 1. The top panel
shows the shocks as thick solid lines and the characterigtichin lines. The middle panel indicates the concentratidth the
white area composed of all large particles, the dark greg afall fines and the light grey region being at the inflow caricion.
The bottom panel shows the large particle paths with thiid dimles and the small particle paths with thin dot-dashdine

The basal layer of small particles therefore becomes pssiyey thicker with increasing downstream distance. A
similar thing happens at the top of the avalanche, where tli@dary condition (34) implies that there are no more
small particles to percolate downwards, and the large gis@parate out into a pure phase across a shock. Substituting
¢" =0andg = @ into (46) and integrating subject to the boundary conditioa 1 atx = 0, implies that the top
shock

Yrop=1-S(1—@)x (48)
The top layer of large particles also becomes thicker withdasingk, and the top and bottom shocks meet to form a
triple-point atxiple = 1/S, Yripie = . Downstream okyiple a third shock is formed that separates a pure layer of
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large particles from a pure layer of fines below. Substitutiri = 0 andg~ = 1 into (46) and integrating implies that
the shock separating the inversely graded layers is ataornstight

Uinverse= @, for x> Xyiple- (49)

The solution therefore consists of three shocks that sepeggions of homogeneously mixed material (light grey)
adjacent to the inflow, from small particles (dark grey) neexthe base and large particles (white) at the surface of
the avalanche, as illustrated in the middle panel of figuréh® top panel shows how each shock (thick line) has
characteristics (thin lines) intersecting from both sjdesich is required by the entropy condition. This problerthis
hyperbolic counterpart of the time-dependent segregaéorixing problem shown in the top panel of figure 2. The
key differences are that {replaces along the lower axis, (ii) there are sharp shocks insteadsof@oth transition to

a diffuse steady-state and (iii) the inversely graded lajéarrge particles at the surface is thinner than would dgvel

in the equivalent time-dependent problem, because therbigher mass flux near the surface.

Particle paths of the large and small grains

One of the major benefits of using the hyperbolic model is ithiat possible to exactly reconstruct the large and
small particle paths. They satisfy the equations

dxH dz
g I M —
at ur, at wH u=1s (50)
with the non-dimensional forms of the constituent velest{13), (14) and (16) are given by
U=u wW=w+Sp uv=u W=w-S{1-0). (51)
Using the chain rule and the depth-integrated velocity dimate transformation
dy' dys
W*S("a W**Sr(]-*@- (52)

For the homogeneously mixed inflow problem discussed attbeesmall particles enter &t= 0 at a heightg;;¢, and
percolate downwards along the path

QUS - wgnter* S(l - %)Xa (53)
until they hit the bottom shock a,,ss= Wi/ S @and then move parallel to the base
l.US - (‘bwgntera X> )éross (54)

through a region of pure fines. Conversely large particlésrery at heighil,u(Lnter are pushed upwards, by squeeze
expulsion, along the path

' = Yentert S@X, (55)
until they reach the top shock &= (1— Whner) /S after which they move downslope at height
lll' =1- (1* %)(1* wlenter>a X> chross (56)

through a region of purely large grains. The particle patesilustrated in the bottom panel of figure 3 using solid
lines for the large particle paths and dot-dash lines foffithess. From this we see that the top shock is also a small
particle path, while the bottom shock is also a large parpelth. This can also be proved by observing that the shock
condition (46) degenerates to the particle path equati2swiheng™ is equal to zero or unity.

Unstably stratified inflow

Thornton et al. [22] investigated the case on an unstaldyiied inflow in which all the small particles are fed into
the chute above the large particles
1 <z<1,

0 0<z<z.
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FIGURE 4. The steady-state segregation solution for in flow at0, where a layer of small particles enters on top of a layer of
coarse grains. The interface between the two layers liehaightz = 0.5724. The avalanche is assumed to be of unit thickness
with a linear shear profile through its depth £ 0.5) and the non-dimensional segregation nunthes 1. The top panel shows
the shocks as thick solid lines and the characteristicsia$ities. The middle panel indicates the concentratiorh #ie white area
composed of all large particles, the dark grey area of alkfiaad the fan shown with contours of 0.1 unit intervals. Toigdm
panel shows the large particle paths with thin solid lines e small particle paths with thin dot-dash lines. Thelisely graded
steady-state shock height is the same as in figure 3.

One possible solution that satisfies the shock conditioh (¢8imply to continue the discontinuity at heightdown
the chute. However, this is not admissible, because it doesatisfy the Lax entropy condition [52], which requires
that the grains must be inversely graded across the shatkalha rarefaction fan is formed, which is centre@at, ).
In depth averaged velocity coordinates (37) this corredpémthe positiori0, ¢ ), and the characteristic equation (39)
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then implies that the concentration within the fan is givgn b

1 —
(pzé(l—i—%), Y — | < SX, (58)
which is shown in the top panel of figure 4. The lowest chargstie that emanates from the fan has concentration
¢ = 0. It intersects with the base of the flowxat= (/S and represents the first small particle to percolate down
to the base of the flow. As in the homogeneous problem, there fkix of large particles across the basal boundary,
and so the small grains separate out into a pure phase accosgentration shock that emanates frog 0). The
shock height can be found by integrating the linear ordimiferential equation that is obtained by substituting the
fan concentration (58) and the small particle concentnatito the shock condition (46). This implies that the basal
shock

Woottom= Yr + SX—2¢/S YrX. (59)

Similarly, the first large particle reaches the surfacesat (1— () /S and the large particles then begin to separate
out into a pure phase across a concentration shock that éesanam(xs,1). Solving the shock condition (46) with
the expansion fan (58) on one side and large particles ontlies, yields an equation for the top shock

Yrop = Yr — SX+ 2v/S(1— )X (60)

The top and bottom shocks meet at the triple point

1
Xriple = g(\/@"’ vl_Lpr)zv wtriple:l_Lpr; (61)

and a third shock is formed that separates the inverselyegragers of large and small particles. The shock condition
(46) implies that this is parallel to the base of the flow aghei

Uinverse= Wkriple, X 2 Xriple; (62)

which now satisfies the Lax entropy condition [52]. The exgian fan and the three shocks are shown in figure 4.
The top panel shows the characteristics, which intersebereside of the shocks, and the centre panel shows
the concentration using a grey scale. This solution shows do unstably stratified inflow readjusts into a stable
configuration. Small particles that enter near the surfddheavalanche, move straight downslope until they reach
the expansion fan. Here they percolate downwards, unti ¢thess the bottom shock and enter into a pure phase of
small particles again implying that they move straight dslwpe again, but at a much lower level than they started. The
small particle paths are shown as dot-dash lines in thetogitmel of figure 4. Conversely large particles entering near
the bottom of the flow, move straight downslope until theycrethe expansion fan. They are then squeezed upwards
until they reach the top shock, after which they move stradgiwnslope again, but at a much higher position than
where they started. The detailed formulae of the partictepean be found in Thornton et al. [22].

BREAKING SIZE SEGREGATION WAVES

Gray et al. [55] and Shearer et al. [52] have gone on to coctsuily time and spatially dependent two-dimensional
solutions to the segregation equation. These solution® shat inversely graded shocks can develop which have
monotonically decreasing sections. As these are traregpaldwnstream the velocity shear causes the interface to
steepen and it eventually breaks, as small particles agreath@ver the top of large grains. Thornton and Gray [56]
used shock capturing numerical simulations to show thagetimeaking waves precess like a spinning rugby ball
and move downstream at approximately constant speed. ifieedeépendent behaviour of these lens-like features is
extremely complicated [57], but eventually they settle ddawards a steady travelling wave.

An exact solution for the breaking wave [56] can be cons&ditly transforming equation (19) into a frame

& =X—Uend, (63)

which moves downslope at spead,s The steady-state segregation equation in the moving fiathen

2 (- tend) - 2 (S01-9)) =0, (64
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which has the same form as (33) with a redefined velocity fl2&fining a depth-integrated velocity coordinate

z
W@ = [ u?) - vendl? (65)
the method of characteristics again implies that the canagon is equal tag, along the straight line
Y= +S2p —1)(E—&)), (66)
emanating fron{¢, , ¢, ) in mapped coordinates. The shock condition (22) transféoms
d
d—(é]ZSr((PJ”—i—(p_—l). (67)

Equations (66) and (67) are the direct equivalents to egus{i39) and (46) in the fixed domain.

Consider a unit depth avalanche that is inversely gradetbpe ®f a breaking wave and has a region of purely large
particles downstream of it. The inversely graded shockssimed to lie at a heigtnerse@as shown in figure 5. The
breaking size segregation wave has the property that there net flux of small particles across the wave. This can
be expressed by the integral

Zinverse
L ou—uenddz=o0. (68)
Using the linear velocity field defined in (40) this implieathhe speed of the lens is equal to
Uens= O + (1 — a)Znverse (69)

The depth-integrated velocity coordinate (65) then besme
Y= (1-0)AZ— Znverse); (70)

which is zero az= 0 andz= znverse and attains a MiNIMUMYiens= — 3 (1 — )22, orseat NEIGhZens= Zinverse/ 2. This
height is special, because it is also the height at whictetlseno net velocity relative to the lens, iLl€Zens) = Uiens
The heightzens is shown as a dotted line in the top panel of figure 5. Partigles/ezens move downslope faster
than the breaking wave, while grains belawss move downslope slower then the lens and are overtaken hytiel
moving frame, particles therefore move from left to righted the dotted line and from right to left below it.

The solution starts by assuming that there is an expansimrcémtred on the no mean flow ling = Yens at an
arbitrary downstream positiofy, within which the concentration is

1 Y — Yhens

a0 =3 (15— g)
The fan is shown in the top panel of figure 5 emanating from (&irThe characteristics fop € [1/2,1] propagate
upwards above the no mean flow line, andghe 1 characteristic reaches the inversely graded shock ataigse
wheny =0 at point B, which lies afg = a — Yiens/ S - Here there are no more small particles to percolate dowdsvar
and the large grains separate out into a pure phase acrossent@tion shock. Substituting the fan concentratiof (71
and the large particle concentration into the shock comnl{f6 7) and integrating, subject to the condition that theekh
starts at &g, 0) in mapped coordinates, implies that the top shock

(»Utop = '-.Ulens_ Sr(f - EA) + 2\/ _QUIens\/ Sr(f - EA), (72)

where the constany/—iens is real. The shock satisfies the Lax entropy condition bexdhie concentration is
inversely graded across it, and propagates down until @hvesthe no mean flow lingg = iens at point C. This is
the furthest downstream distance of the lens and has poégie- 4 — 4Wiens/ S - The shock (72) could be continued
down into the lower domain, but because the flow changestiairethis would imply that a pure region of large
particles would lie beneath a region of mixed particles.sT¢onfiguration is not inversely graded and the shock is
therefore not admissible by the Lax entropy condition [38%tead a lower expansion fan forms, that is centred at
(&éc, Yens), and within which the concentration is

(71)

Y — Uhens ) . (73)

1
hottom = > (1— m
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FIGURE 5. A breaking size segregation wave connects an upstreanselyegraded avalanche from a downstream region of
purely large grains. The height of the inversely gradediatez,erse= 0.7, there is a linear velocity profile through the avalanche
depth witha = 0.5 andS = 0.35. In the top panel expansion fans are centred at points ALam the shocks are shown with thick
solid lines. The thin lines are characteristics, which ¢feadirection at the no mean flow line, which is marked by a doitee.

In the middle panel the concentration is shown using a ceorgcale with 0.1 unit intervals. Darker regions correspandreater
concentrations of fines and the the white region is compogtdge particles. In the bottom panel the particle pathssamvn in

the moving frame . Large particle paths are shown with solid lines and smatige paths with dot-dash lines.

This matches up with the upper expansion fan (71) centrediat B, since the concentration is equal to 1/2 in both
cases on the no mean flow life= Yens The characteristics emanating from point C lie in the rapge[0,1/2]

and curve downwards and backwards in the moving frame. Ttermost,p = 0, characteristic hits the base of the
avalanche aty = 0 at pointD, which has positiorfp = éc + Yens/S - Here there are no more large particles to
be squeezed upwards and the small particles thereforeasemart across a concentration shock. Solving the shock
condition (67), with small particles on one side and the espan fan (73) on the other, and, subject to the boundary
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condition that the shock starts frofép, 0), implies that the bottom shock

‘-I-’bottom: ‘-/-’Iens— Sr(fc - E) + 2\/ —Lplens\/ S((EC - E) (74)

This reaches the zero mean flow ling= Wiens at& = éc + 4Wiens/ S = &a, which is the same as poiAt The Lax
entropy condition [52] predicts that a continuation of the/¢r shock is not admissible and it is instead replaced by
an expansion fan centred @a, Yens), justifying the original assumption (71). The solution mancomplete and is
illustrated using a contour scale in the central panel ofréidal It consists of two shocks, (72) and (74), and two
expansion fans, (71) and (73), that are arranged in a ‘liges’structure that propagates downstream with spggd
given by (69). These breaking size segregation waves areyamportant feature of granular avalanches, because
they allow particles to circulate in the flow. Thornton anda$sf56] have used equations (50) to reconstruct the large
and small particle paths, which are illustrated in the butfranel of figure 5. Large particles below the no mean flow
line are caught up by the lens, rise up through it and exitfaster moving regions of the flow. While small particles
that are above the no mean flow line catch up with the lensppeecdownwards and exit into a basal layer that is
moving slower than the lens. In the example in figure 5 all thalsparticles are recirculated. While large particles
belowzens are recirculated betweern s andzerse and large particles abovgyerseSimply move downstream faster
than the breaking wave.

PARTICLE SIZE SEGREGATION AT BOULDERY FLOW FRONTS

Gray and Ancey [5] observed that coarse particle rich flowmtisdform in small scale stratification experiments
[15, 19, 20, 58, 59] performed in a two-dimensional Heles@hall with a 3mm gap. A particularly interesting feature
of these flows was that the coarse rich front remained at dlooostant length [5], with those large grains that reached
it, being deposited to form a carpet of grains over which #st of the avalanche flowed. This can be seen in figure 5,
where the large particles that form the current avalanchkawe just been deposited by it, are highlighted in white.
The large rich flow front is connected to a small particle sgiot in the interior, with a layer of inversely graded large
particles on top, and a static carpet of deposited largengati the base. The stratification experiments of Gray and
Ancey [5] are very closely analogous to self-channeliziog/d, since large particles that reach the front are removed,
by basal deposition in two-dimensions and lateral trartdpdhree-dimensions, allowing the more mobile interior to
continue to propagate downslope.

Gray and Ancey [5]'s observations allowed them to constaid¢tavelling wave solution for the particle size
distribution at the flow front by switching to a frani&, z) moving downslope at the speed of the frapt Introducing
the transformation

E=X—Upt, T=t, (75)

the depth-integrated mass balance, the segregation eqa8) and the basal kinematic condition [see e.g. 5, 60], fo
a steady-state solution in the moving frame, become

o . _

ﬁ(h(u—uF)) = —d, (76)
:—E(rp(U—UF))vL%(@N—S«fp(l—rp)) - 0 (77)
(%—w)j—?—wb = d, (78)

whereh is the avalanche thicknedsjs the height of the basal deposit ashds the deposition rate. The basal velocity
componentsi, andw, are assumed to be zero, which implies tthat —ugdb/d¢&. Substituting this into (76) allows
the depth-averaged mass balance equation to be integsatgdct to the condition that the flow front is located at
¢ =0, to show that

U— Ur

UF '
In order to close the model Gray and Ancey [5] assumedtthies equal to a constant throughout the flow. It follows
the basal deposit heightis linearly related to the avalanche thicknédsy the parametek and the constant depth-
averaged velocity

b=Ah, where A= (79)

U= (1+A)ue. (80)
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Small particle sandwich

. ¥
- _r'

Coarse rich front

Stratified"deposit

FIGURE 6. A composite image of the stratification pattern experimaft§ray and Ancey [5] that highlights the grains that
are part of, or, have just been laid down by, the current achle. The flow front is almost entirely composed of large @/kiigar
particles (500-60@xm), but behind it the active region has a layer of small daok spheres (210-420m) that are sandwiched
between recently deposited large grains at the base ansétygraded large grains at the surface. The grains in #tie stratified
deposit that have been darkened, so that the large parigfesar dark grey in colour. A complete sequence of stillsbeafound

in Gray and Ancey [5] together with an animation of the flowhe bnline version of their paper.

Gray and Ancey [5] used the depth-averaged momentum batancempute an exact solution for the avalanche
thickness using Pouliquen and Forterre [61]'s basal &rictaw for rough beds. Hette=h(&) is given. The downslope
velocity is assumed to be linear with no slip at the base

—(z—b
U 2u<—h , b<z<b+h, 81)
0, 0<z<bh,

and the incompressibility condition (6) then implies tHa hormal velocity

0 0<z<h.
In two-dimensions the depth-integrated velocity coorténa

Z
w:/ u(&,7) - ur dZ, 83)
0

is equivalent to the stream-function, sirdg /dz=u—ug anddy/9& = —w. For the downslope velocity field defined
in (81) this implies that

W= (z—b)2—urz, b<z<b+h,
—UFZ, 0<z<h,

which is zero along the free-surfagze= b+ h and the inclined base= 0. Since the flow is steady, bulk particle
paths are equal to lines of constajt These are illustrated in the top panel of figure 7 using daliels for paths
that are deposited and dashed lines for those that areukat&d within the avalanche. The dotted line is the height
z,- = b+ugh/(2u) where the velocity is equal to the front velocity, i€z, ) = ug. Above the no mean flow line
the bulk flow is from left to right, and below it is from right teft. The line also marks a local minimum in the
stream-function coordinaig,. = —uzh/(40) — ugb.

(84)

olo
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The stream-function coordinates are very useful for sgltite segregation equation (77). Using incompressibility
the segregation equation can be written in the quasi-lifeear

0] o0
(u-ue)3g + (WS (20-1) 57 =0, (85)
and the method of characteristics then implies that the eination is equal to a constant valgg along the
characteristic curve= z(&) given by

dz
(u—uF)ﬁ—W:S((Z(p,\—l). (86)
Whenz = z(£) differentiating the stream-functiap with respect taf, using Leibniz’s rule [62] and the incompress-
ibility condition (6), yields the important identity

(U—Up)== —W. (87)

which linearizes the characteristic equation (86). S@\or the characteristic starting frofg, , s, ) therefore yields
a straight line

U= +S2p -1)(E-&), (88)

in streamfunction coordinates. The identity (87) can alBased to show that the large and small particle paths (50)
and the shock condition (22) also reduce to the familiar ®orm

dy' dys

d¢ d¢
respectively, even in the case of two-dimensional velofiglgs. It is useful to note that the equation for the large
particle path is identical to the equation for a shock caadiivheng™ = 1. While, the small particle path equation is
equivalent to the shock condition with~ = 0. Tracking large particles is therefore equivalent to isg\for a shock
with small particles on the forward side and tracking smaltigles is equivalent to solving for a shock with large
particles on the other side.

Steady travelling wave solutions in a depositing flow fieldlyoexist if all the large particles that reach the flow
front are deposited. This necessarily implies that if theiglas are inversely graded in the interior of the avalanch
the interfacey. which lies along a bulk streamline, must lie in the regiontadge paths that are deposited, which
are denoted by solid lines in the top panel of figure 7. Assgntiirat this is the case, the solution is very similar to
the breaking wave solution of the previous section. Theanigxpansion fan centred at point A, which lies on the
no mean flow liney = (.. This expands into the upper domain of material moving towadhe flow front and the

concentration within the fan is 1 v
—
= = 1+ ’ 90
aon=3 (1 %) ©o
where(éa, Ya) is the position of point A in stream-function coordinateeTeadingp = 1 characteristic AB intersects
with the inversely graded laygr = (. at point B, which coordinate®s = éa+ (Y — Ya)/S - Since there are no more
small particles abovey_to percolate downwards, a shock BC is generated betweenpla@sion fan (90) on one side
and a pure phase of large particles on the other. Solvinguthe jcondition subject to the shock starting &, 1)

gives
Yop=Ya—S(§ —&n) + 2V PL — YavV S (& —éa). (91)

The upper shock BC starts @g, Y1 ) and propagates downwards, reaching the no-mean-flow lifée afic). Below
Y = Yy the continuation of the shock is unstable by the Lax entramgddion [52] and it breaks into a fan centred at

(éc, Ic) in which the concentration
1 Y—dc
otom=5 | 1 —=7—+5 | - 92
oot 2( S(Ec—f)) (92)

The lead@ = 0 characteristic CD intersects thg = (i particle path again at point D, which has coordinates
éo=&c— (YL —yc)/S . For steady states the breaking segregation wave rediesiéage particles on thf_ particle

dy

So, -S(1-9), Ez&(qﬁﬂpf—l), (89)
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N s rsss 7

FIGURE 7. The travelling wave solution for the bulk particle pathgftacconcentration (middle) and the large and small particle
paths (bottom) are shown for an avalanche flow front thatepagating downslope and depositing grains. The depostidiace

b is marked by a thick solid line and the dotted line is the nomigaw line z,.. Thin solid lines are used to indicate bulk flow
paths that are deposited, while dashed lines show thoss fethrecirculate within the avalanche fore= 0.3. In the middle panel

a breaking size segregation wave ABCD connects an upstregime that resembles a small particle sandwich, as in figuvéti®

a downstream region of purely large grains. There is a “ejebastant concentration in the centre of the lens, whichasked by

a dot-dash line. The concentration is shown using a grey sd#h 0.1 unit intervals. Regions of all large particles atete. In the
bottom panel the large particle paths are shown with satigsliand small particle paths with dot-dash lines. The ielgigraded
interface lies along the streamligge = —0.1931 andS = 1.

path. Part of the path DA also forms a shock across which tladl grarticles separate out, but since the equations for
this shock and particle path are identical (89), it is notassary to determine the location of the transition untédrat
The large particle path equation adjacent to the fan (92pessolved subject to the condition that it start$&t, i )
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to show that
Whottom= Yc — S (&c — &) + 2L — Yc/S (éc — &). (93)

This intersects with the no-mean-flow lige= . again at(&a, a) and breaks into an expansion [52] consistent
with our original assumption in equation (90). The smaltisde sandwich is therefore connected to the large patrticle
front by a breaking size segregation wave as in the middlelgdriigure 7. There is an interesting new feature in this
case. Sinc@a # U, there is an additional central “eye” of constant conceiuna
1 Yc—Ya

Pve=3 (1+ S (éc— fA)) 7 (4
that is bounded above and below by the dot-dash line in thigadgranel of figure 7. More importantly there is a unique
position for the breaking size segregation wave, which ectsithe upper and lower branches of ghebulk particle
path. If it is too far upstream, part of the lens interseatdthsal topography, which violates the assumptiongh#t0.
While if the lens is too far downstream, not all the large ioégt above the incomingy_ particle path are deposited.
The breaking wave must therefore be positioned so that [zagecles ony~ are recirculated at the front, while large
particles onyy" side are deposited. This amounts to the requirement thaptiiecirculating particle path is tangent
to the basal topography. Gray and Ancey [5] calculated thadst particle paths explicitly, and they are shown in the
bottom panel of figure 7. This shows that at steady state alitboming large particles are deposited, but some of
those that had previously reached the front are reciradjatbich has been observed in experiment [11, 12]. Most
of the small particles are recirculated within the flow, here are a few that are deposited. Rather intriguingly even
though the parent flow is inversely graded, the deposit thgenerated by this combination of flow and deposition is
normally graded with small particles on top or large. Thidiametrically opposite to the inversely graded distribati
that is obtained when the flow is brought to rest by a shock WkbEand raises many questions on the interpretation
of deposits that are often made by geologists.

DISCUSSION AND CONCLUSIONS

The segregation-remixing equation (19) provides a sinipli¢ effective way of modelling particle size segregation
in granular avalanches. At present little is known aboutdépendence of the paramet&sandD, on the particle
size ratio, shear-rate, slope angle and lithostatic presdut, both particle dynamics simulations [44] and cdrefu
experiments [5], provide important means of calibrating tiireory. It may also be possible to find a link with binary
kinetic theories [49, 50] as they push towards the dense #mwe. All the results that have been presented in this
paper are for a prescribed flow field, but, the theory is seffity simple to envisage coupled simulations in which the
evolving particle size distribution has a direct feedbackathe bulk flow field, which can be computed with existing
avalanche models [7, 25-37]. Suskgregation-mobilitjeedback effects are responsible for fingering instaeditn
bi-disperse mixtures of dry grains with different frict@imroperties [11-13], as well as petal formation in rottin
drums [18], and the spontaneous formation of leveed chamméloth wet and dry geophysical mass flows [6-9, 14].
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