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Abstract. Hazardous natural flows such as snow avalanches, debris-flows, lahars and pyroclastic flows are part of a much
wider class of granular avalanches, that frequently occur in industrial processes and in our kitchens! Granular avalanches are
very efficient at sorting particles by size, with the smallerones percolating down towards the base and squeezing the larger
grains up towards the free-surface, to create inversely-graded layers. This paper provides a short introduction and review of
recent theoretical advances in describing segregation andremixing with relatively simple hyperbolic and parabolic models.
The derivation from two phase mixture theory is briefly summarized and links are drawn to earlier models of Savage &
Lun and Dolgunin & Ukolov. The more complex parabolic version of the theory has a diffusive force that competes against
segregation and yields S-shaped steady-state concentration profiles through the avalanche depth, that are able to reproduce
results obtained from particle dynamics simulations. Time-dependent exact solutions can be constructed by using the Cole-
Hopf transformation to linearize the segregation-remixing equation and the nonlinear surface and basal boundary conditions.
In the limit of no diffusion, the theory is hyperbolic and thegrains tend to separate out into completely segregated inversely
graded layers. A series of elementary problems are used to demonstrate how concentration shocks, expansion fans, breaking
waves and the large and small particles paths can be computedexactly using the model. The theory is able to capture the
key features of the size distribution observed in stratification experiments, and explains how a large particle rich front is
connected to an inversely graded avalanche in the interior.The theory is simple enough to couple it to the bulk flow field to
investigatesegregation-mobilityfeedback effects that spontaneously generate self-channelizing leveed avalanches, which can
significantly enhance the total run-out distance of geophysical mass flows.
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INTRODUCTION

As a body of grains avalanches downslope it dilates, in orderfor the particles to shear past one another, and the upper
layers of the flow move faster than the lower ones, as shown in the schematic diagram in figure 1. The combination of
velocity shear and dilation, acts as a random fluctuating sieve [1], which allows the smaller particles to preferentially
percolate down into gaps that open up beneath them under the action of gravity, since they are more likely to fit into
the available space than the large grains. Once the smaller particles get underneath they exert a force that squeeze the
larger grains upwards. The combination ofkinetic sievingandsqueeze expulsion[1] causes the particles to segregate
into layers, which have greater concentrations of large particles near the free-surface and higher concentrations of fines
near the base of the flow. In geology this is known asinverse grading[2] and is often associated with granular flows
[3]. The inverse grading of the particle size distribution is not necessarily preserved in avalanche deposits, which can
be very complex [4]. Indeed, even a relatively simple two-dimensional inversely graded flow with deposition yields a
deposit that isnormally graded[5] with the fines above the large particles.

Large particles that rise to the upper faster moving layers of the avalanche, tend to be transported to the flow front.
Here they are often overrun, but rise to the surface again by particle size segregation. Thisrecirculationallows bouldery
flow fronts to develop in hazardous geophysical mass flows, such as debris-flows, pyroclastic flows and wet and dry
snow avalanches [6–9], which give rise to interestingsegregation-mobilityfeedback effects [5]. Larger less mobile
particles at the flow front are shouldered to the side by the more mobile interior, to create static coarse grained lateral
levees[10] that channelize the flow and enhance the total run-out distance. Such segregation mobility feedback effects
are also responsible for fingering instabilities on chutes [11–13] and digitate lobate terminations [14].

Granular avalanches frequently occur in much smaller scaleprocesses, such as rotating tumblers, where different
modes of deposition create a rich variety of patterns, including Catherine wheels [15], leafs [16] and petals [17, 18].
Similar deposition mechanisms are responsible for the formation of stratification and segregation patterns in heaps
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FIGURE 1. A sketch of an avalanche flowing down a plane inclined at an angle ζ to the horizontal. Thex axis points down the
chute, thez axis is normal to the plane and they axis goes into the page. The particle size distribution and the downslope velocity
profile are illustrated schematically. Large particles tend to rise to the faster moving surface layers, and are transported to the flow
front, where they can be recirculated.

and silos [5, 15, 19, 20]. Size segregation is therefore of considerable practical importance to the pharmaceutical, bulk
chemical, mining and food industries. Sometimes it is useful, such as in the mineral processing industry, but often it
is a source of inconsistency and poor quality and the aim is then to minimize its effect. This paper provides a brief
review of recent progress in modelling the particle size segregation process in a bi-disperse avalanche using a relatively
simple approach.

DERIVATION OF THE SEGREGATION-REMIXING EQUATION

The segregation-remixing equation can be derived [16, 21, 22] from binary or ternary mixture theory. Here we follow
Gray and Chugunov [16]’s derivation, which assumes that themixture is composed oflarge andsmallparticles and
that the interstitial pore space is subsumed into the volumefractions,φ l andφs, of large and small particles per unit
mixture volume. This implicity assumes that the solids volume fraction is approximately constant within the avalanche,
which is a reasonable first approximation. By definition the volume fractionsφs,φ l ∈ [0,1] and they sum to unity

φ l + φs = 1. (1)

Mixture theory defines overlapping partial densities,ρ µ , partial velocities,uµ , and partial pressures,pµ , for each of
the constituentsµ = l ,s per unit mixture volume. Each of the constituents satisfies individual mass and momentum
conservation laws [e.g. 23, 24]

∂ρ µ

∂ t
+ ∇ · (ρ µuµ) = 0, µ = l ,s, (2)

∂
∂ t

(ρ µuµ)+ ∇ · (ρ µuµ ⊗uµ) = −∇pµ + ρ µg+Bµ , µ = l ,s, (3)

where⊗ is the dyadic product,ρ µg is the gravitational force andBµ , is the force exerted on phaseµ by the other
constituent. The interaction forces in a binary mixture areequal and opposite to one another,Bl = −Bs, and cancel
out in the bulk mass and momentum balances, which are obtained by summing (2) and (3) over all constituents. It is
useful to define the bulk densityρ , bulk velocityu and bulk pressurep as

ρ = ρ l + ρs, ρu = ρ l ul + ρsus, p = pl + ps. (4)
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The partial and intrinsic densities are related by a linear volume fraction scaling [24], while the partial and intrinsic
velocity fields are identical

ρ µ = φ µ ρ µ∗, uµ = uµ∗, (5)

where the superscript∗ denotes an intrinsic variable. A coordinate systemOxyzis defined, with thex-axis pointing
down a chute inclined at an angleζ to the horizontal, they-axis across the chute and thez-axis as the upward pointing
normal as shown in figure 1. The constituent velocityuµ and the bulk velocityu have components(uµ ,vµ ,wµ) and
(u,v,w) in each of these directions, respectively. The large and small particles are assumed to have the same constant
intrinsic density,ρ l∗ = ρs∗, and (1), (4) and (5) therefore imply that the bulk densityρ is also equal to the same
constant value. It follows from the bulk mass balance that the bulk velocity field is incompressible

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0. (6)

This is one of the key assumptions that is made in nearly all granular avalanche models [7, 25–37]. The other important
assumption for compatibility with existing models, is thatthe bulk pressurep is lithostatic through the avalanche depth

p = ρg(h−z)cosζ , (7)

which is true, provided the acceleration terms are negligible in the normal component of the bulk momentum balance.
During percolation the small grains can not support as much of the overburden pressure and the larger grains have

to support proportionately more of the load. The driving force for particle size segregation are therefore perturbations
to the lithostatic pressure distribution [16, 21, 22]. Instead of relating the partial pressure to the bulk pressure using a
linear volume fraction dependent scaling, as in standard mixture theory, Gray and Thornton [21] introduced a linear
scaling

pµ = f µ p, µ = l ,s, (8)

with a factor f µ that could deviate away fromφ µ . The functionsf µ satisfy three constraints:-

(i) f l + f s = 1,
(ii) f s = 1 when φs = 1,
(iii) f l = 1 when φ l = 1,







(9)

which ensure that the partial pressures sum to the bulk pressure (4), and that when either of the constituents are in
a pure phase they carry all of the load. Although there are many functions that satisfy these constraints the simplest
non-trivial functions are

f l = φ l +bφsφ l , f s = φs−bφsφ l , (10)

whereb is the magnitude of the perturbation. To balance the pressure perturbations in the normal momentum balance
equations (3), Gray and Thornton [21] and Thornton et al. [22] introduced an interaction dragBµ with a simple linear
velocity dependent drag

Bµ = p∇ f µ −ρ µc(uµ −u)−ρd∇φ µ, µ = l ,s, (11)

with drag coefficientc. Gray and Chugunov [16] introduced a further gradient dependent remixing force that drives the
grains of phaseµ towards areas of lower concentration. The strength of thesediffusive forces isρd. The interaction
drag (11) automatically satisfies the constraint thatBl + Bs = 0, and when it is substituted into the constituent
momentum balances the first term combines with the partial pressure gradient−∇( f µ p) to leave− f µ∇p. Assuming
that the acceleration terms are negligible, the normal component of the constituent momentum balances reduces to

φ µ wµ = φ µ w+( f µ −φ µ)(g/c)cosζ − (d/c)∂φ µ/∂z, µ = l ,s. (12)

Substituting for the pressure fluctuation functions (10) and dividing through by the volume fractionφ µ implies that
the normal velocities of the large and small particles are

wl = w+qφs−D
∂
∂z

(lnφ l ), (13)

ws = w−qφ l −D
∂
∂z

(lnφs), (14)
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where the maximum percolation velocity of the grainsq and the diffusivityD are

q = (b/c)gcosζ , D = d/c. (15)

Within the avalanche the segregation velocitiesuµ −u are assumed to be of the same order of magnitude as the bulk
normal velocityw, which is a lot less than the bulk down and cross slope velocities. It follows that to leading order the
down and cross slope constituent velocities are equal to their bulk counterparts

uµ = u, vµ = v, µ = l ,s. (16)

Substituting (13), (14) and (16) into the small particle mass balance (2) yields the segregation-remixing equation

∂φs

∂ t
+

∂
∂x

(φsu)+
∂
∂y

(φsv)+
∂
∂z

(φsw)− ∂
∂z

(qφsφ l ) =
∂
∂z

(

D
∂φs

∂z

)

. (17)

The first four terms simply advect the local concentration with the bulk flow, the fifth is responsible for segregation
and the sixth diffuses the small particles. The segregation-remixing equation (17) is parabolic forD > 0 and reduces
to a hyperbolic equation whenD = 0. The reduced model is termed thehyperbolic segregation theoryor segregation
theory for short. The segregation flux has the interesting propertythat it shuts off when the concentration of small
particles equals zero or unity, soφs automatically stays in the range[0,1].

In the absence of diffusion, equations (13)–(14) show that the large particles rise up until there are no more small
particles, while small particles percolate downwards until there are no more coarse grains. This tends to drive the grains
into completely separatedinversely graded layerswith all the large particles on top of the fines [1]. The hyperbolic
segregation equation is related to the theory of sedimentation [38, 39] and is also very closely related to Savage and
Lun [1]’s kinetic sieving and squeeze expulsion model. The link to Savage and Lun [1] is not immediately apparent,
as they formulated their theory in terms of the layer number density ratio,η , and the particle diameter ratio,σ , instead
of volume fractions. However, by substituting the definitionsφ l = 1/(1+ ησ3) andφs = ησ3/(1+ ησ3) into their
equations (6.4) and (6.3) we can see that the net percolationvelocities have the same leading order concentration
dependence as (13) and (14). Savage and Lun [1]’s information entropy approach yields considerably more structure
for the segregation rate, but there is no dependence on gravity. The mixture approach does not provide as much
structure forq, but it does have an explicit dependence on gravity in (15), which sets a direction for segregation and
reflects the gravity driven nature of the kinetic sieving process. Thornton et al. [22] used ternary mixture theory to
derive (17) in the presence of an interstitial fluid. This theory had an extra relative density difference factorρ̂ in q,
which was able to explain the reduced segregation rates in liquid particle mixtures and the absence of segregation with
a density matched fluid, observed in the experiments of Vallance and Savage [40].

The segregation-remixing equation (17) is closely relatedto Burgers’ equation [41], and smoothes out the sharp
concentration jumps that develop in the hyperbolic theory.Dolgunin and Ukolov [42] were the first to write down this
form of the equation, by ingeniously spotting that the segregation flux must shut off whenφs = 0,1, but there was no
formal derivation. Khakhar et al. [43] went on to use equation (17) to study the equilibrium segregation of particles
of different densities, but the same size, and obtained goodagreement with experimental measurements in rotating
drums. More recently, Gray and Chugunov [16] showed that steady-state solutions were in good agreement with
particle dynamics simulations of chute flows of large and small particles of Khakhar et al. [44], which is reproduced in
the bottom panel of figure 2. Both experiments and particle dynamics simulations [45, 46] are likely to be very useful
in determining the functional dependence ofq andD on other parameters, such as the shear rate, the particle-size
ratio and the overburden pressure. An example of this is provided by Hajra and Khakhar [47] who used rotating drum
experiments to infer that even small size differences are sufficient to cause segregation, but once the size ratio reaches
a critical value the driving force for segregation saturates. It may also be possible to push bi-disperse kinetic theories
[48–50] into the dense regime and find a link between the two approaches.

NON-DIMENSIONALIZATION, BOUNDARY AND JUMP CONDITIONS

Avalanches are shallow, with their typical thicknessH being much less than their lengthL. The incompressibility
condition (6) implies that, if typical down slope velocities are of magnitudeU , then typical normal velocities are of
magnitudeHU/L. The variables are non-dimensionalized to reflect these scalings

(x,y,z) = L(x̃, ỹ,ε z̃), (u,v,w) = U(ũ, ṽ,εw̃), t = (L/U)t̃, (18)
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where the tilde denotes a non-dimensional variable. Substituting these into (17) and dropping the tildes and the
superscripts implies that the non-dimensional segregation-remixing equation is

∂φ
∂ t

+
∂
∂x

(φu)+
∂
∂y

(φv)+
∂
∂z

(φw)− ∂
∂z

(

Srφ(1−φ)
)

=
∂
∂z

(

Dr
∂φ
∂z

)

, (19)

where the non-dimensional segregation and diffusive-remixing numbers are

Sr =
qL
HU

, and Dr =
DL

H2U
, (20)

respectively. Provided there is no erosion or deposition, there is no flux or large or small particles at the surface and
basal boundaries of the avalanche. This can be expressed by the nonlinear boundary condition

Srφ(1−φ)+Dr
∂φ
∂z

= 0, (21)

which insulates the avalanche from the exterior. In the hyperbolic theory shocks may also develop on a propagating
surface of discontinuity across which a jump condition [51]must be satisfied

[[φ(u ·n−vn)]] = [[Srφ(1−φ)k ·n]], (22)

where the jump bracket[[ f ]] = f + − f− is the difference off evaluated on the forward “+” and rearward “-” side of
the surface,k is the unit vector normal to the chute,n is the unit normal to the surface andvn is it’s normal speed. A
Lax entropy condition implies that the shock will be stable if and only if the shock is inversely graded [52].

TIME-DEPENDENT SOLUTIONS OF THE SEGREGATION-REMIXING EQU ATION

Gray and Chugunov [16] constructed a general time-dependent solution in a flow of unit depth with no down or cross
slope gradients in concentration

u = u(z), v = v(z), w = 0, ∂φ/∂x = 0, ∂φ/∂y = 0, O < z< 1. (23)

In this case the segregation-remixing equation (19) reduces to

∂φ
∂ t

− ∂
∂z

(

Srφ(1−φ)
)

= Dr
∂ 2φ
∂z2 , (24)

which is subject to the surface and basal boundary conditions (21) and the initial condition

t = 0 : φ = φi(z), (25)

which must be independent ofx and y. The reduced segregation-remixing equation can be mapped directly on to
Burgers equation, which can in turn be linearized by using the Cole-Hopf transformation [53, 54]. Gray and Chugunov
[16] used this sequence of transformations to linearize both the segregation-remixing equation (24) and the nonlinear
boundary conditions (21). The resulting diffusion problemwas then solved by using Fourier series. The general
solution takes the form

φ =
1
2

(

1− 2z0

ω
∂ω
∂z

)

, (26)

where the segregation-remixing length scalez0 = Dr/Sr . Considerable simplification is achieved by splitting the
solutionω into a steady-state and time dependent part

ω = ωs+ ωt , (27)

where

ωs = χ(1)
sinh(z/(2z0))

sinh(1/(2z0))
− sinh((z−1)/(2z0))

sinh(1/(2z0))
, (28)
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FIGURE 2. The upper and middle panels show two contour plots of the evolution of the the small particle concentration through
the depth of the avalanche forSr = 1 andDr = 0.25. In the top panel the avalanche is initially homogeneously mixed with an
initial concentrationφ0 = 0.55 and in the middle panel the small grains are initially on top of the large ones and are separated by a
sharp interface atzr = 0.45. For these parameters the same steady-state develops, which is shown in the bottom panel as a profile
of the small particle concentrationφ with depth. The dots are the equivalent steady state concentrations derived from the particle
dynamics simulations of Khakhar et al. [44] for comparison.

ωt =
∞

∑
n=1

Anexp

(

−
(

1
4

+n2π2z2
0

)

Srt
z0

)

sin(nπz) . (29)
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The functionχ is defined as

χ(z) = exp

(

−
∫ z

0

2φi −1
2z0

dz′
)

, and χ(1) = exp

(

−
∫ 1

0

2φi −1
2z0

dz′
)

, (30)

which are both dependent on the initial concentration profile φi(z) and the segregation-remixing lengthz0. At t = 0
equation (29) reduces to a Fourier Sine series forωt and the coefficientsAn can be determined by integration in
the usual way. The coefficientAn can be split into two parts,An = Bn −Cn, whereBn is given by an integral of the
transformed initial conditions,χ(z), andCn is dependent on an integral of the steady-state solutionωs. It follows that
to construct a specific solution it is necessary to compute

Bn = 2
∫ 1

0
χ(z)sin(nπz) dz, Cn =

8nπz2
0

1+4n2π2z2
0

(

1− (−1)nχ(1)
)

, (31)

where the integral forCn has already been evaluated by substituting the steady-state solution (28).
Two different initial conditions are shown in figure 2. In thetop panel the grains are initially homogeneously mixed

with concentrationφ0 = 0.55. As time progresses the small particles percolate down towards the base of the avalanche
and the large particles are pushed upwards until a balance establishes itself with the diffusive effects of remixing. For
large time the concentration profile therefore approaches an inversely graded steady state, which is shown in the bottom
panel of figure 2. The grey circles are points derived from thesteady-state particle dynamics simulations of Khakhar
et al. [44], which the theory fits well forSr = 1 andDr = 0.25, giving a segregation-remixing lengthz0 = Dr/Sr = 0.25.
The middle panel shows the solution for an unstably stratified initial distribution, with all the small particles above
the large ones, separated by a discontinuity at heightzr = 0.45. The initial discontinuity is rapidly smoothed out by
diffusion, before percolation and squeeze expulsion take over as the dominant means of transport. The small particles
percolate down from the top and collect at the base, while thelarge ones rise from the base to the surface, until the
same steady-state distribution as the top and bottom panelsis established.

STEADY STATE SOLUTIONS TO THE SEGREGATION EQUATION

In the last section we showed that segregation-remixing theory is able to reproduce steady state one-dimensional
profiles produced by particle dynamics simulations, which lends considerable weight to this approach. The chute flow
experiments of Savage and Lun [1] suggest that when stronglystratified layers develop the diffusive term in (19) can be
neglected. It is therefore of interest to study the hyperbolic segregation equation, which allows complicated physical
problems to be treated in a simple way and gives considerableinsight into the nature of segregation in granular
avalanches. In a steady uniform avalanche of unit depth

u = u(z) ≥ 0, v = 0, w = 0, in 0 < z< 1, x > 0, (32)

the steady hyperbolic segregation equation (19) and the no flux condition (21) reduce to

∂
∂x

(φu)− ∂
∂z

(

Srφ(1−φ)
)

= 0, (33)

φ(1−φ) = 0, at z= 0,1. (34)

This can be written as a first order quasi-linear equation by expanding out the derivatives

u
∂φ
∂x

+Sr(2φ −1)
∂φ
∂z

= 0, (35)

and solved by the method of characteristics. The small particle concentration is equal to a constantφλ along the
characteristic curve given by

u
dz
dx

= Sr(2φλ −1). (36)

Solutions for general velocity fields can be constructed by defining a depth-integrated velocity coordinate

ψ =

∫ z

0
u(z′)dz′, (37)
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that increases monotonically withz. By virtue of the scalings (18), we may assume without loss ofgenerality that at
the free surfaceψ(1) = 1. The mapping (37) transforms (36) into a linear equation

dψ
dx

= Sr(2φλ −1), (38)

which can be integrated, subject to the initial condition that the characteristic starts at(xλ ,ψλ ), to give a straight line

ψ = ψλ +Sr(2φλ −1)(x−xλ). (39)

The position in physical space can be calculated by inverting the transformation (37) onceu(z) is prescribed. The
beauty of the depth-integrated velocity coordinates is that the solutions constructed with it are valid for all velocity
fields provided the inverse mapping is well defined. In this paper, we will consider linear velocity profiles

u = α +2(1−α)z, 0≤ α ≤ 1, (40)

which include plug flow (α = 1), simple shear (α = 0) and shear with basal slip, for intermediate values ofα. The
integral (37) implies that the depth-integrated velocity coordinate

ψ = αz+(1−α)z2, (41)

which is quadratic and can be inverted to give

z=











ψ , α = 1,

−α +
√

α2 +4(1−α)ψ
2(1−α)

, α 6= 1.
(42)

Homogeneous inflow

Gray and Thornton [21] considered the case in which there is an inflow at x = 0 at which the particles enter in a
homogeneously mixed state with concentration

φ = φ0, at x = 0, 0 < z< 1. (43)

Through most of the avalanche the inflow concentrationφ0 is simply swept into the domain by the characteristics, and
the small particles percolate downwards by kinetic sievingand the large grains are squeezed upwards. At the base,
however, the no flux condition (34) implies that there are no more large particles to rise up, and instead the small
particles separate out across a concentration shock. In theuniform flow field (32) the jump condition (22) reduces to

[[

φu
dz
dx

+Srφ(1−φ)

]]

= 0, (44)

provided the shock is stationary,vn = 0. Dividing both sides by[[φ ]] yields

u
dz
dx

= Sr(φ+ + φ−−1), (45)

whereφ+ andφ− are the values of the concentration on the forward and rearward sides of the discontinuity. Using the
mapping (37) this reduces to

dψ
dx

= Sr(φ+ + φ−−1). (46)

The position of the bottom shock, which separates the fines from the homogeneous mixture, can be computed from
(46) by substitutingφ− = φ0 andφ+ = 1 and integrating, subject to the boundary condition thatψ = 0 at x = 0, to
give

ψbottom= Srφ0x. (47)
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FIGURE 3. The steady-state segregation solution for a homogeneous inflow of concentrationφ0 = 0.55 atx= 0 in a unit thickness
avalanche with a linear shear profile through its depth (α = 0.5) and the non-dimensional segregation numberSr= 1. The top panel
shows the shocks as thick solid lines and the characteristics as thin lines. The middle panel indicates the concentration, with the
white area composed of all large particles, the dark grey area of all fines and the light grey region being at the inflow concentration.
The bottom panel shows the large particle paths with thin solid lines and the small particle paths with thin dot-dash lines.

The basal layer of small particles therefore becomes progressively thicker with increasing downstream distance. A
similar thing happens at the top of the avalanche, where the boundary condition (34) implies that there are no more
small particles to percolate downwards, and the large grains separate out into a pure phase across a shock. Substituting
φ+ = 0 andφ− = φ0 into (46) and integrating subject to the boundary conditionψ = 1 atx = 0, implies that the top
shock

ψtop = 1−Sr(1−φ0)x. (48)

The top layer of large particles also becomes thicker with increasingx, and the top and bottom shocks meet to form a
triple-point atxtriple = 1/Sr , ψtriple = φ0. Downstream ofxtriple a third shock is formed that separates a pure layer of
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large particles from a pure layer of fines below. Substituting φ+ = 0 andφ− = 1 into (46) and integrating implies that
the shock separating the inversely graded layers is at constant height

ψinverse= φ0, for x≥ xtriple. (49)

The solution therefore consists of three shocks that separate regions of homogeneously mixed material (light grey)
adjacent to the inflow, from small particles (dark grey) nextto the base and large particles (white) at the surface of
the avalanche, as illustrated in the middle panel of figure 3.The top panel shows how each shock (thick line) has
characteristics (thin lines) intersecting from both sides, which is required by the entropy condition. This problem isthe
hyperbolic counterpart of the time-dependent segregationremixing problem shown in the top panel of figure 2. The
key differences are that (i)x replacest along the lower axis, (ii) there are sharp shocks instead of asmooth transition to
a diffuse steady-state and (iii) the inversely graded layerof large particles at the surface is thinner than would develop
in the equivalent time-dependent problem, because there isa higher mass flux near the surface.

Particle paths of the large and small grains

One of the major benefits of using the hyperbolic model is thatit is possible to exactly reconstruct the large and
small particle paths. They satisfy the equations

dxµ

dt
= uµ ,

dzµ

dt
= wµ , µ = l ,s (50)

with the non-dimensional forms of the constituent velocities (13), (14) and (16) are given by

ul = u, wl = w+Srφ , us = u, ws = w−Sr(1−φ). (51)

Using the chain rule and the depth-integrated velocity coordinate transformation

dψ l

dx
= Srφ ,

dψs

dx
= −Sr(1−φ). (52)

For the homogeneously mixed inflow problem discussed above,the small particles enter atx= 0 at a heightψs
enter and

percolate downwards along the path
ψs = ψs

enter−Sr(1−φ0)x, (53)

until they hit the bottom shock atxs
cross= ψs

enter/Sr and then move parallel to the base

ψs = φ0ψs
enter, x > xs

cross, (54)

through a region of pure fines. Conversely large particles entering at heightψ l
enter are pushed upwards, by squeeze

expulsion, along the path
ψ l = ψ l

enter+Srφ0x, (55)

until they reach the top shock atxl
cross= (1−ψ l

enter)/Sr , after which they move downslope at height

ψ l = 1− (1−φ0)(1−ψ l
enter), x > xl

cross, (56)

through a region of purely large grains. The particle paths are illustrated in the bottom panel of figure 3 using solid
lines for the large particle paths and dot-dash lines for thefines. From this we see that the top shock is also a small
particle path, while the bottom shock is also a large particle path. This can also be proved by observing that the shock
condition (46) degenerates to the particle path equations (52) whenφ+ is equal to zero or unity.

Unstably stratified inflow

Thornton et al. [22] investigated the case on an unstably stratified inflow in which all the small particles are fed into
the chute above the large particles

φ =

{

1 zr ≤ z≤ 1,
0 0≤ z< zr .

(57)

352

Downloaded 17 May 2011 to 130.88.16.162. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

0.2

0.4

0.6

0.8

1

z

z

z

x

FIGURE 4. The steady-state segregation solution for in flow atx = 0, where a layer of small particles enters on top of a layer of
coarse grains. The interface between the two layers lies at aheightzr = 0.5724. The avalanche is assumed to be of unit thickness
with a linear shear profile through its depth (α = 0.5) and the non-dimensional segregation numberSr = 1. The top panel shows
the shocks as thick solid lines and the characteristics as thin lines. The middle panel indicates the concentration, with the white area
composed of all large particles, the dark grey area of all fines, and the fan shown with contours of 0.1 unit intervals. The bottom
panel shows the large particle paths with thin solid lines and the small particle paths with thin dot-dash lines. The inversely graded
steady-state shock height is the same as in figure 3.

One possible solution that satisfies the shock condition (46), is simply to continue the discontinuity at heightzr down
the chute. However, this is not admissible, because it does not satisfy the Lax entropy condition [52], which requires
that the grains must be inversely graded across the shock. Instead a rarefaction fan is formed, which is centred at(0,zr).
In depth averaged velocity coordinates (37) this corresponds to the position(0,ψr), and the characteristic equation (39)
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then implies that the concentration within the fan is given by

φ =
1
2

(

1+
ψ −ψr

Srx

)

, |ψ −ψr | < Srx, (58)

which is shown in the top panel of figure 4. The lowest characteristic that emanates from the fan has concentration
φ = 0. It intersects with the base of the flow atxb = ψr/Sr and represents the first small particle to percolate down
to the base of the flow. As in the homogeneous problem, there isno flux of large particles across the basal boundary,
and so the small grains separate out into a pure phase across aconcentration shock that emanates from(xb,0). The
shock height can be found by integrating the linear ordinarydifferential equation that is obtained by substituting the
fan concentration (58) and the small particle concentration into the shock condition (46). This implies that the basal
shock

ψbottom= ψr +Srx−2
√

Srψrx. (59)

Similarly, the first large particle reaches the surface atxs = (1−ψr)/Sr and the large particles then begin to separate
out into a pure phase across a concentration shock that emanates from(xs,1). Solving the shock condition (46) with
the expansion fan (58) on one side and large particles on the other, yields an equation for the top shock

ψtop = ψr −Srx+2
√

Sr(1−ψr)x. (60)

The top and bottom shocks meet at the triple point

xtriple =
1
Sr

(√
ψr +

√

1−ψr
)2

, ψtriple = 1−ψr, (61)

and a third shock is formed that separates the inversely graded layers of large and small particles. The shock condition
(46) implies that this is parallel to the base of the flow at height

ψinverse= ψtriple, x≥ xtriple, (62)

which now satisfies the Lax entropy condition [52]. The expansion fan and the three shocks are shown in figure 4.
The top panel shows the characteristics, which intersect either side of the shocks, and the centre panel shows
the concentration using a grey scale. This solution shows how an unstably stratified inflow readjusts into a stable
configuration. Small particles that enter near the surface of the avalanche, move straight downslope until they reach
the expansion fan. Here they percolate downwards, until they cross the bottom shock and enter into a pure phase of
small particles again implying that they move straight downslope again, but at a much lower level than they started. The
small particle paths are shown as dot-dash lines in the bottom panel of figure 4. Conversely large particles entering near
the bottom of the flow, move straight downslope until they reach the expansion fan. They are then squeezed upwards
until they reach the top shock, after which they move straight downslope again, but at a much higher position than
where they started. The detailed formulae of the particle paths can be found in Thornton et al. [22].

BREAKING SIZE SEGREGATION WAVES

Gray et al. [55] and Shearer et al. [52] have gone on to construct fully time and spatially dependent two-dimensional
solutions to the segregation equation. These solutions show that inversely graded shocks can develop which have
monotonically decreasing sections. As these are transported downstream the velocity shear causes the interface to
steepen and it eventually breaks, as small particles are sheared over the top of large grains. Thornton and Gray [56]
used shock capturing numerical simulations to show that these breaking waves precess like a spinning rugby ball
and move downstream at approximately constant speed. The time-dependent behaviour of these lens-like features is
extremely complicated [57], but eventually they settle down towards a steady travelling wave.

An exact solution for the breaking wave [56] can be constructed by transforming equation (19) into a frame

ξ = x−ulenst, (63)

which moves downslope at speedulens. The steady-state segregation equation in the moving frameis then

∂
∂ξ

(

φ(u−ulens)
)

− ∂
∂z

(

Srφ(1−φ)
)

= 0, (64)
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which has the same form as (33) with a redefined velocity field.Defining a depth-integrated velocity coordinate

ψ(z) =
∫ z

0
u(z′)−ulensdz′, (65)

the method of characteristics again implies that the concentration is equal toφλ along the straight line

ψ = ψλ +Sr(2φλ −1)(ξ − ξλ ), (66)

emanating from(ξλ ,ψλ ) in mapped coordinates. The shock condition (22) transformsto

dψ
dξ

= Sr(φ+ + φ−−1). (67)

Equations (66) and (67) are the direct equivalents to equations (39) and (46) in the fixed domain.
Consider a unit depth avalanche that is inversely graded up slope of a breaking wave and has a region of purely large

particles downstream of it. The inversely graded shock is assumed to lie at a heightzinverseas shown in figure 5. The
breaking size segregation wave has the property that there is no net flux of small particles across the wave. This can
be expressed by the integral

∫ zinverse

0
φ(u−ulens)dz= 0. (68)

Using the linear velocity field defined in (40) this implies that the speed of the lens is equal to

ulens= α +(1−α)zinverse. (69)

The depth-integrated velocity coordinate (65) then becomes

ψ = (1−α)z(z−zinverse), (70)

which is zero atz= 0 andz= zinverse, and attains a minimum,ψlens=− 1
4(1−α)z2

inverseat heightzlens= zinverse/2. This
height is special, because it is also the height at which there is no net velocity relative to the lens, i.e.u(zlens) = ulens.
The heightzlens is shown as a dotted line in the top panel of figure 5. Particlesabovezlens move downslope faster
than the breaking wave, while grains belowzlens move downslope slower then the lens and are overtaken by it. In the
moving frame, particles therefore move from left to right above the dotted line and from right to left below it.

The solution starts by assuming that there is an expansion fan, centred on the no mean flow lineψ = ψlens at an
arbitrary downstream positionξA, within which the concentration is

φtop =
1
2

(

1+
ψ −ψlens

Sr(ξ − ξA)

)

. (71)

The fan is shown in the top panel of figure 5 emanating from point A. The characteristics forφ ∈ [1/2,1] propagate
upwards above the no mean flow line, and theφ = 1 characteristic reaches the inversely graded shock at height zinverse

whenψ = 0 at point B, which lies atξB = ξA−ψlens/Sr . Here there are no more small particles to percolate downwards
and the large grains separate out into a pure phase across a concentration shock. Substituting the fan concentration (71)
and the large particle concentration into the shock condition (67) and integrating, subject to the condition that the shock
starts at(ξB,0) in mapped coordinates, implies that the top shock

ψtop = ψlens−Sr(ξ − ξA)+2
√−ψlens

√

Sr(ξ − ξA), (72)

where the constant
√−ψlens is real. The shock satisfies the Lax entropy condition because the concentration is

inversely graded across it, and propagates down until it reaches the no mean flow lineψ = ψlens at point C. This is
the furthest downstream distance of the lens and has position ξC = ξA−4ψlens/Sr . The shock (72) could be continued
down into the lower domain, but because the flow changes direction this would imply that a pure region of large
particles would lie beneath a region of mixed particles. This configuration is not inversely graded and the shock is
therefore not admissible by the Lax entropy condition [52].Instead a lower expansion fan forms, that is centred at
(ξC,ψlens), and within which the concentration is

φbottom=
1
2

(

1− ψ −ψlens

Sr(ξC− ξ )

)

. (73)
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FIGURE 5. A breaking size segregation wave connects an upstream inversely graded avalanche from a downstream region of
purely large grains. The height of the inversely graded interfacezinverse= 0.7, there is a linear velocity profile through the avalanche
depth withα = 0.5 andSr = 0.35. In the top panel expansion fans are centred at points A andC and the shocks are shown with thick
solid lines. The thin lines are characteristics, which change direction at the no mean flow line, which is marked by a dotted line.
In the middle panel the concentration is shown using a contour scale with 0.1 unit intervals. Darker regions correspond to greater
concentrations of fines and the the white region is composed of large particles. In the bottom panel the particle paths areshown in
the moving frameξ . Large particle paths are shown with solid lines and small particle paths with dot-dash lines.

This matches up with the upper expansion fan (71) centred at point A, since the concentration is equal to 1/2 in both
cases on the no mean flow lineψ = ψlens. The characteristics emanating from point C lie in the rangeφ ∈ [0,1/2]
and curve downwards and backwards in the moving frame. The outermost,φ = 0, characteristic hits the base of the
avalanche atψ = 0 at pointD, which has positionξD = ξC + ψlens/Sr . Here there are no more large particles to
be squeezed upwards and the small particles therefore separate out across a concentration shock. Solving the shock
condition (67), with small particles on one side and the expansion fan (73) on the other, and, subject to the boundary
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condition that the shock starts from(ξD,0), implies that the bottom shock

ψbottom= ψlens−Sr(ξC− ξ )+2
√−ψlens

√

Sr(ξC− ξ ). (74)

This reaches the zero mean flow line,ψ = ψlens, at ξ = ξC + 4ψlens/Sr = ξA, which is the same as pointA. The Lax
entropy condition [52] predicts that a continuation of the lower shock is not admissible and it is instead replaced by
an expansion fan centred at(ξA,ψlens), justifying the original assumption (71). The solution is now complete and is
illustrated using a contour scale in the central panel of figure 5. It consists of two shocks, (72) and (74), and two
expansion fans, (71) and (73), that are arranged in a ‘lens’-like structure that propagates downstream with speedulens
given by (69). These breaking size segregation waves are a very important feature of granular avalanches, because
they allow particles to circulate in the flow. Thornton and Gray [56] have used equations (50) to reconstruct the large
and small particle paths, which are illustrated in the bottom panel of figure 5. Large particles below the no mean flow
line are caught up by the lens, rise up through it and exit intofaster moving regions of the flow. While small particles
that are above the no mean flow line catch up with the lens, percolate downwards and exit into a basal layer that is
moving slower than the lens. In the example in figure 5 all the small particles are recirculated. While large particles
belowzlens are recirculated betweenzlens andzinverse, and large particles abovezinversesimply move downstream faster
than the breaking wave.

PARTICLE SIZE SEGREGATION AT BOULDERY FLOW FRONTS

Gray and Ancey [5] observed that coarse particle rich flow fronts form in small scale stratification experiments
[15, 19, 20, 58, 59] performed in a two-dimensional Hele-Shaw cell with a 3mm gap. A particularly interesting feature
of these flows was that the coarse rich front remained at almost constant length [5], with those large grains that reached
it, being deposited to form a carpet of grains over which the rest of the avalanche flowed. This can be seen in figure 5,
where the large particles that form the current avalanche, or have just been deposited by it, are highlighted in white.
The large rich flow front is connected to a small particle sandwich in the interior, with a layer of inversely graded large
particles on top, and a static carpet of deposited large grains at the base. The stratification experiments of Gray and
Ancey [5] are very closely analogous to self-channelizing flows, since large particles that reach the front are removed,
by basal deposition in two-dimensions and lateral transport in three-dimensions, allowing the more mobile interior to
continue to propagate downslope.

Gray and Ancey [5]’s observations allowed them to constructa travelling wave solution for the particle size
distribution at the flow front by switching to a frame(ξ ,z) moving downslope at the speed of the frontuF . Introducing
the transformation

ξ = x−uFt, τ = t, (75)

the depth-integrated mass balance, the segregation equation (19) and the basal kinematic condition [see e.g. 5, 60], for
a steady-state solution in the moving frame, become

∂
∂ξ

(

h(ū−uF)
)

= −d, (76)

∂
∂ξ

(

φ(u−uF)
)

+
∂
∂z

(

φw−Srφ(1−φ)
)

= 0, (77)

(ub−uF)
∂b
∂ξ

−wb = d, (78)

whereh is the avalanche thickness,b is the height of the basal deposit andd is the deposition rate. The basal velocity
componentsub andwb are assumed to be zero, which implies thatd = −uF∂b/∂ξ . Substituting this into (76) allows
the depth-averaged mass balance equation to be integrated,subject to the condition that the flow front is located at
ξ = 0, to show that

b = λh, where λ =
ū−uF

uF
. (79)

In order to close the model Gray and Ancey [5] assumed that ¯u was equal to a constant throughout the flow. It follows
the basal deposit heightb is linearly related to the avalanche thicknessh by the parameterλ and the constant depth-
averaged velocity

ū = (1+ λ )uF . (80)
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Small particle sandwich

Coarse rich front

Stratified deposit

FIGURE 6. A composite image of the stratification pattern experimentsof Gray and Ancey [5] that highlights the grains that
are part of, or, have just been laid down by, the current avalanche. The flow front is almost entirely composed of large white sugar
particles (500–600µm), but behind it the active region has a layer of small dark iron spheres (210–420µm) that are sandwiched
between recently deposited large grains at the base and inversely graded large grains at the surface. The grains in the static stratified
deposit that have been darkened, so that the large particlesappear dark grey in colour. A complete sequence of stills canbe found
in Gray and Ancey [5] together with an animation of the flow in the online version of their paper.

Gray and Ancey [5] used the depth-averaged momentum balanceto compute an exact solution for the avalanche
thickness using Pouliquen and Forterre [61]’s basal friction law for rough beds. Hereh= h(ξ ) is given. The downslope
velocity is assumed to be linear with no slip at the base

u =







2ū

(

z−b
h

)

, b≤ z≤ b+h,

0, 0≤ z< b,
(81)

and the incompressibility condition (6) then implies that the normal velocity

w =







ū
h2

dh
dξ

(z2−b2), b≤ z≤ b+h,

0, 0≤ z< b.
(82)

In two-dimensions the depth-integrated velocity coordinate

ψ =
∫ z

0
u(ξ ,z′)−uF dz′, (83)

is equivalent to the stream-function, since∂ψ/∂z= u−uF and∂ψ/∂ξ =−w. For the downslope velocity field defined
in (81) this implies that

ψ =

{ ū
h
(z−b)2−uFz, b≤ z≤ b+h,

−uFz, 0≤ z< b,
(84)

which is zero along the free-surfacez = b+ h and the inclined basez = 0. Since the flow is steady, bulk particle
paths are equal to lines of constantψ . These are illustrated in the top panel of figure 7 using solidlines for paths
that are deposited and dashed lines for those that are recirculated within the avalanche. The dotted line is the height
zuF = b+ uFh/(2ū) where the velocity is equal to the front velocity, i.e.u(zuF ) = uF . Above the no mean flow line
the bulk flow is from left to right, and below it is from right toleft. The line also marks a local minimum in the
stream-function coordinateψuF = −u2

Fh/(4ū)−uFb.
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The stream-function coordinates are very useful for solving the segregation equation (77). Using incompressibility
the segregation equation can be written in the quasi-linearform

(u−uF)
∂φ
∂ξ

+
(

w+Sr(2φ −1)
)∂φ

∂z
= 0, (85)

and the method of characteristics then implies that the concentration is equal to a constant valueφλ along the
characteristic curvez= z(ξ ) given by

(u−uF)
dz
dξ

−w = Sr(2φλ −1). (86)

Whenz= z(ξ ) differentiating the stream-functionψ with respect toξ , using Leibniz’s rule [62] and the incompress-
ibility condition (6), yields the important identity

dψ
dξ

= (u−uF)
dz
dξ

−w. (87)

which linearizes the characteristic equation (86). Solving for the characteristic starting from(ξλ ,ψλ ) therefore yields
a straight line

ψ = ψλ +Sr(2φλ −1)(ξ − ξλ ), (88)

in streamfunction coordinates. The identity (87) can also be used to show that the large and small particle paths (50)
and the shock condition (22) also reduce to the familiar forms

dψ l

dξ
= Srφ ,

dψs

dξ
= −Sr(1−φ),

dψ
dξ

= Sr(φ+ + φ−−1), (89)

respectively, even in the case of two-dimensional velocityfields. It is useful to note that the equation for the large
particle path is identical to the equation for a shock condition whenφ+ = 1. While, the small particle path equation is
equivalent to the shock condition withφ+ = 0. Tracking large particles is therefore equivalent to solving for a shock
with small particles on the forward side and tracking small particles is equivalent to solving for a shock with large
particles on the other side.

Steady travelling wave solutions in a depositing flow field, only exist if all the large particles that reach the flow
front are deposited. This necessarily implies that if the particles are inversely graded in the interior of the avalanche,
the interface,ψL which lies along a bulk streamline, must lie in the region of those paths that are deposited, which
are denoted by solid lines in the top panel of figure 7. Assuming that this is the case, the solution is very similar to
the breaking wave solution of the previous section. There isan expansion fan centred at point A, which lies on the
no mean flow lineψ = ψuF . This expands into the upper domain of material moving towards the flow front and the
concentration within the fan is

φtop =
1
2

(

1+
ψ −ψA

Sr(ξ − ξA)

)

, (90)

where(ξA,ψA) is the position of point A in stream-function coordinates. The leadingφ = 1 characteristic AB intersects
with the inversely graded layerψ = ψL at point B, which coordinatesξB = ξA+(ψL−ψA)/Sr . Since there are no more
small particles aboveψL to percolate downwards, a shock BC is generated between the expansion fan (90) on one side
and a pure phase of large particles on the other. Solving the jump condition subject to the shock starting at(ξB,ψL)
gives

ψtop = ψA−Sr(ξ − ξA)+2
√

ψL −ψA

√

Sr(ξ − ξA). (91)

The upper shock BC starts at(ξB,ψL) and propagates downwards, reaching the no-mean-flow line at(ξC,ψC). Below
ψ = ψuF the continuation of the shock is unstable by the Lax entropy condition [52] and it breaks into a fan centred at
(ξ̂C, ψ̂C) in which the concentration

φbottom=
1
2

(

1− ψ −ψC

Sr(ξC− ξ )

)

. (92)

The leadφ = 0 characteristic CD intersects theψ = ψL particle path again at point D, which has coordinates
ξD = ξC−(ψL−ψC)/Sr . For steady states the breaking segregation wave recirculates large particles on theψL particle
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FIGURE 7. The travelling wave solution for the bulk particle paths (top), concentration (middle) and the large and small particle
paths (bottom) are shown for an avalanche flow front that is propagating downslope and depositing grains. The depositionsurface
b is marked by a thick solid line and the dotted line is the no mean flow line zuF . Thin solid lines are used to indicate bulk flow
paths that are deposited, while dashed lines show those paths that recirculate within the avalanche forλ = 0.3. In the middle panel
a breaking size segregation wave ABCD connects an upstream regime that resembles a small particle sandwich, as in figure 6, with
a downstream region of purely large grains. There is a “eye” of constant concentration in the centre of the lens, which is marked by
a dot-dash line. The concentration is shown using a grey scale with 0.1 unit intervals. Regions of all large particles arewhite. In the
bottom panel the large particle paths are shown with solid lines and small particle paths with dot-dash lines. The inversely graded
interface lies along the streamlineψL = −0.1931 andSr = 1.

path. Part of the path DA also forms a shock across which the small particles separate out, but since the equations for
this shock and particle path are identical (89), it is not necessary to determine the location of the transition until later.
The large particle path equation adjacent to the fan (92) canbe solved subject to the condition that it starts at(ξD,ψL)
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to show that
ψbottom= ψC−Sr(ξC− ξ )+2

√
ψL −ψC

√

Sr(ξC− ξ ). (93)

This intersects with the no-mean-flow lineψ = ψuF again at(ξA,ψA) and breaks into an expansion [52] consistent
with our original assumption in equation (90). The small particle sandwich is therefore connected to the large particle
front by a breaking size segregation wave as in the middle panel of figure 7. There is an interesting new feature in this
case. SinceψA 6= ψC, there is an additional central “eye” of constant concentration

φeye=
1
2

(

1+
ψC−ψA

Sr(ξC− ξA)

)

, (94)

that is bounded above and below by the dot-dash line in the central panel of figure 7. More importantly there is a unique
position for the breaking size segregation wave, which connects the upper and lower branches of theψL bulk particle
path. If it is too far upstream, part of the lens intersects the basal topography, which violates the assumption thatSr 6= 0.
While if the lens is too far downstream, not all the large particles above the incomingψL particle path are deposited.
The breaking wave must therefore be positioned so that largeparticles onψ−

L are recirculated at the front, while large
particles onψ+

L side are deposited. This amounts to the requirement that theψL recirculating particle path is tangent
to the basal topography. Gray and Ancey [5] calculated the steady particle paths explicitly, and they are shown in the
bottom panel of figure 7. This shows that at steady state all the incoming large particles are deposited, but some of
those that had previously reached the front are recirculated, which has been observed in experiment [11, 12]. Most
of the small particles are recirculated within the flow, but there are a few that are deposited. Rather intriguingly even
though the parent flow is inversely graded, the deposit that is generated by this combination of flow and deposition is
normally graded with small particles on top or large. This isdiametrically opposite to the inversely graded distribution
that is obtained when the flow is brought to rest by a shock wave[15] and raises many questions on the interpretation
of deposits that are often made by geologists.

DISCUSSION AND CONCLUSIONS

The segregation-remixing equation (19) provides a simple,but effective way of modelling particle size segregation
in granular avalanches. At present little is known about thedependence of the parametersSr andDr on the particle
size ratio, shear-rate, slope angle and lithostatic pressure, but, both particle dynamics simulations [44] and careful
experiments [5], provide important means of calibrating the theory. It may also be possible to find a link with binary
kinetic theories [49, 50] as they push towards the dense flow regime. All the results that have been presented in this
paper are for a prescribed flow field, but, the theory is sufficiently simple to envisage coupled simulations in which the
evolving particle size distribution has a direct feedback on to the bulk flow field, which can be computed with existing
avalanche models [7, 25–37]. Suchsegregation-mobilityfeedback effects are responsible for fingering instabilities in
bi-disperse mixtures of dry grains with different frictional properties [11–13], as well as petal formation in rotating
drums [18], and the spontaneous formation of leveed channels in both wet and dry geophysical mass flows [6–9, 14].
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