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R denotes a ring (associative, with 1)

Mod-R is the category of right R-modules

LR is the usual language for (right) R-modules (0, +, −× r for r ∈ R)

∧
-atomic formulas in variables x have the form xA = b where A is a matrix with

entries from R and b are parameters. This defines ∅ or a coset of the subgroup
defined by xA = 0.

If R is a field this is enough - since the theory of vector spaces has complete
elimination of quantifiers every definable set is a finite boolean combination of
solution sets to systems of linear equations - but over arbitrary rings we also need
projections of such solution sets that is, solution sets to pp (positive primitive)
formulas φ(x) - those of the form ∃y xyB = 0.
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If ψ(x) and φ(x) are pp formulas and if ψ → φ then we say that these form a
pp-pair. Then for every module M we have the quotient group φ(M)/ψ(M).
Note that the condition that this group have ≤ k elements is expressible by a
sentence of LR .

Theorem

(pp-elimination of quantifiers for modules) If η(x) is a formula in the language of
R-modules then there is a finite boolean combination χ(x) of pp formulas and a
sentence σ such that, modulo the theory of R-modules, η(x) ↔ χ(x) ∧ σ. The
sentence σ may be taken to be a finite boolean combination of sentences of the
form |φ(−)/ψ(−)| ≤ k.

Corollary

Every definable subset of a module M is a finite boolean combination of cosets of
pp-definable subgroups.

() May 25, 2010 3 / 13



If ψ(x) and φ(x) are pp formulas and if ψ → φ then we say that these form a
pp-pair. Then for every module M we have the quotient group φ(M)/ψ(M).
Note that the condition that this group have ≤ k elements is expressible by a
sentence of LR .

Theorem

(pp-elimination of quantifiers for modules) If η(x) is a formula in the language of
R-modules then there is a finite boolean combination χ(x) of pp formulas and a
sentence σ such that, modulo the theory of R-modules, η(x) ↔ χ(x) ∧ σ.

The
sentence σ may be taken to be a finite boolean combination of sentences of the
form |φ(−)/ψ(−)| ≤ k.

Corollary

Every definable subset of a module M is a finite boolean combination of cosets of
pp-definable subgroups.

() May 25, 2010 3 / 13



If ψ(x) and φ(x) are pp formulas and if ψ → φ then we say that these form a
pp-pair. Then for every module M we have the quotient group φ(M)/ψ(M).
Note that the condition that this group have ≤ k elements is expressible by a
sentence of LR .

Theorem

(pp-elimination of quantifiers for modules) If η(x) is a formula in the language of
R-modules then there is a finite boolean combination χ(x) of pp formulas and a
sentence σ such that, modulo the theory of R-modules, η(x) ↔ χ(x) ∧ σ. The
sentence σ may be taken to be a finite boolean combination of sentences of the
form |φ(−)/ψ(−)| ≤ k.

Corollary

Every definable subset of a module M is a finite boolean combination of cosets of
pp-definable subgroups.

() May 25, 2010 3 / 13



If ψ(x) and φ(x) are pp formulas and if ψ → φ then we say that these form a
pp-pair. Then for every module M we have the quotient group φ(M)/ψ(M).
Note that the condition that this group have ≤ k elements is expressible by a
sentence of LR .

Theorem

(pp-elimination of quantifiers for modules) If η(x) is a formula in the language of
R-modules then there is a finite boolean combination χ(x) of pp formulas and a
sentence σ such that, modulo the theory of R-modules, η(x) ↔ χ(x) ∧ σ. The
sentence σ may be taken to be a finite boolean combination of sentences of the
form |φ(−)/ψ(−)| ≤ k.

Corollary

Every definable subset of a module M is a finite boolean combination of cosets of
pp-definable subgroups.

() May 25, 2010 3 / 13



Corollary

The model theory of modules fits well with the algebra.

- Specifically, because pp formulas are preserved by homomorphisms, the ordinary
algebraic category of modules (rather than that with elementary embeddings as
the maps) is a good context for the model theory of modules.

A powerful general theory has been built and it has found many applications;
usually the applications are specific to a certain flavour of representation theory
and require considerable algebraic input.
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Some components of the general theory

A module N is pure-injective (=algebraically compact) if it is saturated for
pp-types. Let pinjR be the set of isomorphism classes of
(direct-sum-)indecomposable pure-injective modules.

1. Ziegler spectrum: this is a topological space, with pinjR for its set of points
and with a basis of open sets being the collection of sets of the form
(φ/ψ) = {N ∈ pinjR : |φ(N)/ψ(N)| > 1} with ψ ≤ φ a pp-pair. This is a
(quasi)compact space which sees a lot of the model theory of R-modules.

2. The lattice of (equivalence classes of) pp formulas, especially dimensions
defined on this modular lattice: For example m-dimension is defined by
inductively collapsing intervals of finite length (and generally goes hand-in-hand
with the Cantor-Bendixson analysis of the Ziegler spectrum). The resulting
dimension gives a rich refinement of the gap between superstable and stable in the
context of modules (all modules are stable).

3. Elementary duality: This connects, at various levels, the model theory of
right and left modules over a given ring. For instance the lattice of pp formulas
for right R-modules is anti-isomorphic to that for left R-modules.
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Some specific applications

1. Representation theory of finite-dimensional algebras:

The dimension,
m-dimension (=Krull-Gabriel dimension), mentioned above measures the
complexity of the representation theory of algebras which are finite-dimensional
over a field (more generally, of artin algebras). There are general results (for tame
hereditary algebras the value of this dimension is 2, (Geigle, Geisler, Prest, Ringel)
for algebras of finite representation type it is 0, it cannot be 1 for such algebras
(Herzog, Krause), there are partial results for string algebras (Burke, Prest,
Harland, Puninski, Schröer), and there are many open questions.

The description of the Ziegler spectrum over such rings is a natural extension of
classifying the finite-dimensional representations. Over ‘tame’ algebras there is a
chance of doing this but, even then, it is a hard problem.

2. Generalised Weyl Algebras and quantum groups: Typically these have
‘wild’ representation theory and there are (e.g. undecidability) results which
reflect this (Prest, Puninski). There are also Herzog’s results on the model theory
of pseudo-finite-dimensional representations of sl2(k).
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3. Reconstructing the structure sheaf: from categories of representations and
associated triangulated categories

for affine and projective varieties and more
general schemes (Garkusha, Prest)

4. Structure theory for modules over serial rings: good descriptions of the
model theory (Eklof, Herzog, Puninski) and the resolution of various conjectures
on direct-sum decomposition of modules over such rings (Puninski).
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Extension to other contexts

“Everything (in the model theory of modules) works” much more generally:

in categories of additive functors/presheaves;

in locally finitely presented Grothendieck categories, including many categories of
sheaves;

in categories of comodules over coalgebras;

in compactly generated triangulated categories (via their functor categories);

in finitely accessible additive categories;
...

() May 25, 2010 8 / 13



Extension to other contexts

“Everything (in the model theory of modules) works” much more generally:

in categories of additive functors/presheaves;

in locally finitely presented Grothendieck categories, including many categories of
sheaves;

in categories of comodules over coalgebras;

in compactly generated triangulated categories (via their functor categories);

in finitely accessible additive categories;
...

() May 25, 2010 8 / 13



Extension to other contexts

“Everything (in the model theory of modules) works” much more generally:

in categories of additive functors/presheaves;

in locally finitely presented Grothendieck categories, including many categories of
sheaves;

in categories of comodules over coalgebras;

in compactly generated triangulated categories (via their functor categories);

in finitely accessible additive categories;
...

() May 25, 2010 8 / 13



Extension to other contexts

“Everything (in the model theory of modules) works” much more generally:

in categories of additive functors/presheaves;

in locally finitely presented Grothendieck categories, including many categories of
sheaves;

in categories of comodules over coalgebras;

in compactly generated triangulated categories (via their functor categories);

in finitely accessible additive categories;
...

() May 25, 2010 8 / 13



Extension to other contexts

“Everything (in the model theory of modules) works” much more generally:

in categories of additive functors/presheaves;

in locally finitely presented Grothendieck categories, including many categories of
sheaves;

in categories of comodules over coalgebras;

in compactly generated triangulated categories (via their functor categories);

in finitely accessible additive categories;
...

() May 25, 2010 8 / 13



Extension to other contexts

“Everything (in the model theory of modules) works” much more generally:

in categories of additive functors/presheaves;

in locally finitely presented Grothendieck categories, including many categories of
sheaves;

in categories of comodules over coalgebras;

in compactly generated triangulated categories (via their functor categories);

in finitely accessible additive categories;
...

() May 25, 2010 8 / 13



A category C is finitely accessible if there is, up to isomorphism, just a set of
finitely presented objects of C and if every object of C is a direct limit of finitely
presented objects.

In such a category one sets up a, multi-sorted, language with a sort sA for each
isomorphism type of finitely presented object A and, for each arrow f : A → B
between finitely presented objects, a function symbol from sB to sA. Then each
object C ∈ C becomes a structure for this language with sA(C ) = C(A,C ) - the
set of “A-elements” of C , and C is an elementary class for this language.

Suppose also that C is preadditive. A definable subcategory D of C is the full
subcategory of C consisting of those objects which satisfy a given set of conditions
of the form |φ(−)/ψ(−)| = 1 where ψ ≤ φ is a pp-pair. Equivalently a
subcategory of C closed in C under elementary equivalence, direct products and
direct summands.

It turns out that the model theory of (the objects of) D is implicit in the structure
of D as a category.
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Definable categories

Given a definable category D, how do we recover the model theory of (the objects
of) D from the structure of D as a category?

Consider the case D = Mod-R. The functors M 7→ φ(M) would be enough to
recover the model theory (since these would give the complete structure of
definable subsets of every module). In fact we get something more - the category
of pp-imaginaries.

Define Leq+
R to be the category with, for objects, the sorts φ/ψ defined by

pp-pairs (in LR) and, for arrows from φ/ψ to φ ′/ψ ′, the pp-definable maps from
φ/ψ to φ ′/ψ ′. Then Leq+

R , the category of pp-imaginaries for R-modules, is a
small abelian category. So the question is how to reconstruct Leq+

R just from the
category Mod-R. In fact, Leq+

R is equivalent to the category of finitely presented
functors from finitely presented modules to the category Ab of abelian groups
and also is equivalent to the opposite of the free abelian category on R (Freyd,
Adelman) but neither of those descriptions applies to general definable categories
(which need not be locally finitely presented).

() May 25, 2010 10 / 13



Definable categories

Given a definable category D, how do we recover the model theory of (the objects
of) D from the structure of D as a category?

Consider the case D = Mod-R.

The functors M 7→ φ(M) would be enough to
recover the model theory (since these would give the complete structure of
definable subsets of every module). In fact we get something more - the category
of pp-imaginaries.

Define Leq+
R to be the category with, for objects, the sorts φ/ψ defined by

pp-pairs (in LR) and, for arrows from φ/ψ to φ ′/ψ ′, the pp-definable maps from
φ/ψ to φ ′/ψ ′. Then Leq+

R , the category of pp-imaginaries for R-modules, is a
small abelian category. So the question is how to reconstruct Leq+

R just from the
category Mod-R. In fact, Leq+

R is equivalent to the category of finitely presented
functors from finitely presented modules to the category Ab of abelian groups
and also is equivalent to the opposite of the free abelian category on R (Freyd,
Adelman) but neither of those descriptions applies to general definable categories
(which need not be locally finitely presented).

() May 25, 2010 10 / 13



Definable categories

Given a definable category D, how do we recover the model theory of (the objects
of) D from the structure of D as a category?

Consider the case D = Mod-R. The functors M 7→ φ(M) would be enough to
recover the model theory (since these would give the complete structure of
definable subsets of every module).

In fact we get something more - the category
of pp-imaginaries.

Define Leq+
R to be the category with, for objects, the sorts φ/ψ defined by

pp-pairs (in LR) and, for arrows from φ/ψ to φ ′/ψ ′, the pp-definable maps from
φ/ψ to φ ′/ψ ′. Then Leq+

R , the category of pp-imaginaries for R-modules, is a
small abelian category. So the question is how to reconstruct Leq+

R just from the
category Mod-R. In fact, Leq+

R is equivalent to the category of finitely presented
functors from finitely presented modules to the category Ab of abelian groups
and also is equivalent to the opposite of the free abelian category on R (Freyd,
Adelman) but neither of those descriptions applies to general definable categories
(which need not be locally finitely presented).

() May 25, 2010 10 / 13



Definable categories

Given a definable category D, how do we recover the model theory of (the objects
of) D from the structure of D as a category?

Consider the case D = Mod-R. The functors M 7→ φ(M) would be enough to
recover the model theory (since these would give the complete structure of
definable subsets of every module). In fact we get something more - the category
of pp-imaginaries.

Define Leq+
R to be the category with, for objects, the sorts φ/ψ defined by

pp-pairs (in LR) and, for arrows from φ/ψ to φ ′/ψ ′, the pp-definable maps from
φ/ψ to φ ′/ψ ′. Then Leq+

R , the category of pp-imaginaries for R-modules, is a
small abelian category. So the question is how to reconstruct Leq+

R just from the
category Mod-R. In fact, Leq+

R is equivalent to the category of finitely presented
functors from finitely presented modules to the category Ab of abelian groups
and also is equivalent to the opposite of the free abelian category on R (Freyd,
Adelman) but neither of those descriptions applies to general definable categories
(which need not be locally finitely presented).

() May 25, 2010 10 / 13



Definable categories

Given a definable category D, how do we recover the model theory of (the objects
of) D from the structure of D as a category?

Consider the case D = Mod-R. The functors M 7→ φ(M) would be enough to
recover the model theory (since these would give the complete structure of
definable subsets of every module). In fact we get something more - the category
of pp-imaginaries.

Define Leq+
R to be the category with, for objects, the sorts φ/ψ defined by

pp-pairs (in LR) and,

for arrows from φ/ψ to φ ′/ψ ′, the pp-definable maps from
φ/ψ to φ ′/ψ ′. Then Leq+

R , the category of pp-imaginaries for R-modules, is a
small abelian category. So the question is how to reconstruct Leq+

R just from the
category Mod-R. In fact, Leq+

R is equivalent to the category of finitely presented
functors from finitely presented modules to the category Ab of abelian groups
and also is equivalent to the opposite of the free abelian category on R (Freyd,
Adelman) but neither of those descriptions applies to general definable categories
(which need not be locally finitely presented).

() May 25, 2010 10 / 13



Definable categories

Given a definable category D, how do we recover the model theory of (the objects
of) D from the structure of D as a category?

Consider the case D = Mod-R. The functors M 7→ φ(M) would be enough to
recover the model theory (since these would give the complete structure of
definable subsets of every module). In fact we get something more - the category
of pp-imaginaries.

Define Leq+
R to be the category with, for objects, the sorts φ/ψ defined by

pp-pairs (in LR) and, for arrows from φ/ψ to φ ′/ψ ′, the pp-definable maps from
φ/ψ to φ ′/ψ ′.

Then Leq+
R , the category of pp-imaginaries for R-modules, is a

small abelian category. So the question is how to reconstruct Leq+
R just from the

category Mod-R. In fact, Leq+
R is equivalent to the category of finitely presented

functors from finitely presented modules to the category Ab of abelian groups
and also is equivalent to the opposite of the free abelian category on R (Freyd,
Adelman) but neither of those descriptions applies to general definable categories
(which need not be locally finitely presented).

() May 25, 2010 10 / 13



Definable categories

Given a definable category D, how do we recover the model theory of (the objects
of) D from the structure of D as a category?

Consider the case D = Mod-R. The functors M 7→ φ(M) would be enough to
recover the model theory (since these would give the complete structure of
definable subsets of every module). In fact we get something more - the category
of pp-imaginaries.

Define Leq+
R to be the category with, for objects, the sorts φ/ψ defined by

pp-pairs (in LR) and, for arrows from φ/ψ to φ ′/ψ ′, the pp-definable maps from
φ/ψ to φ ′/ψ ′. Then Leq+

R , the category of pp-imaginaries for R-modules, is a
small abelian category.

So the question is how to reconstruct Leq+
R just from the

category Mod-R. In fact, Leq+
R is equivalent to the category of finitely presented

functors from finitely presented modules to the category Ab of abelian groups
and also is equivalent to the opposite of the free abelian category on R (Freyd,
Adelman) but neither of those descriptions applies to general definable categories
(which need not be locally finitely presented).

() May 25, 2010 10 / 13



Definable categories

Given a definable category D, how do we recover the model theory of (the objects
of) D from the structure of D as a category?

Consider the case D = Mod-R. The functors M 7→ φ(M) would be enough to
recover the model theory (since these would give the complete structure of
definable subsets of every module). In fact we get something more - the category
of pp-imaginaries.

Define Leq+
R to be the category with, for objects, the sorts φ/ψ defined by

pp-pairs (in LR) and, for arrows from φ/ψ to φ ′/ψ ′, the pp-definable maps from
φ/ψ to φ ′/ψ ′. Then Leq+

R , the category of pp-imaginaries for R-modules, is a
small abelian category. So the question is how to reconstruct Leq+

R just from the
category Mod-R.

In fact, Leq+
R is equivalent to the category of finitely presented

functors from finitely presented modules to the category Ab of abelian groups
and also is equivalent to the opposite of the free abelian category on R (Freyd,
Adelman) but neither of those descriptions applies to general definable categories
(which need not be locally finitely presented).

() May 25, 2010 10 / 13



Definable categories

Given a definable category D, how do we recover the model theory of (the objects
of) D from the structure of D as a category?

Consider the case D = Mod-R. The functors M 7→ φ(M) would be enough to
recover the model theory (since these would give the complete structure of
definable subsets of every module). In fact we get something more - the category
of pp-imaginaries.

Define Leq+
R to be the category with, for objects, the sorts φ/ψ defined by

pp-pairs (in LR) and, for arrows from φ/ψ to φ ′/ψ ′, the pp-definable maps from
φ/ψ to φ ′/ψ ′. Then Leq+

R , the category of pp-imaginaries for R-modules, is a
small abelian category. So the question is how to reconstruct Leq+

R just from the
category Mod-R. In fact, Leq+

R is equivalent to the category of finitely presented
functors from finitely presented modules to the category Ab of abelian groups

and also is equivalent to the opposite of the free abelian category on R (Freyd,
Adelman) but neither of those descriptions applies to general definable categories
(which need not be locally finitely presented).

() May 25, 2010 10 / 13



Definable categories

Given a definable category D, how do we recover the model theory of (the objects
of) D from the structure of D as a category?

Consider the case D = Mod-R. The functors M 7→ φ(M) would be enough to
recover the model theory (since these would give the complete structure of
definable subsets of every module). In fact we get something more - the category
of pp-imaginaries.

Define Leq+
R to be the category with, for objects, the sorts φ/ψ defined by

pp-pairs (in LR) and, for arrows from φ/ψ to φ ′/ψ ′, the pp-definable maps from
φ/ψ to φ ′/ψ ′. Then Leq+

R , the category of pp-imaginaries for R-modules, is a
small abelian category. So the question is how to reconstruct Leq+

R just from the
category Mod-R. In fact, Leq+

R is equivalent to the category of finitely presented
functors from finitely presented modules to the category Ab of abelian groups
and also is equivalent to the opposite of the free abelian category on R (Freyd,
Adelman)

but neither of those descriptions applies to general definable categories
(which need not be locally finitely presented).

() May 25, 2010 10 / 13



Definable categories

Given a definable category D, how do we recover the model theory of (the objects
of) D from the structure of D as a category?

Consider the case D = Mod-R. The functors M 7→ φ(M) would be enough to
recover the model theory (since these would give the complete structure of
definable subsets of every module). In fact we get something more - the category
of pp-imaginaries.

Define Leq+
R to be the category with, for objects, the sorts φ/ψ defined by

pp-pairs (in LR) and, for arrows from φ/ψ to φ ′/ψ ′, the pp-definable maps from
φ/ψ to φ ′/ψ ′. Then Leq+

R , the category of pp-imaginaries for R-modules, is a
small abelian category. So the question is how to reconstruct Leq+

R just from the
category Mod-R. In fact, Leq+

R is equivalent to the category of finitely presented
functors from finitely presented modules to the category Ab of abelian groups
and also is equivalent to the opposite of the free abelian category on R (Freyd,
Adelman) but neither of those descriptions applies to general definable categories
(which need not be locally finitely presented).

() May 25, 2010 10 / 13



For a definable subcategory D of Mod-R the category, Leq+(D), of pp-imaginaries
of D is defined as for Mod-R - it has the same objects but now the arrows are the
maps which are pp-definable relative to the common theory of objects of D.

This
can be seen to be a localisation of Leq+

R , namely the quotient of Leq+
R by the

Serre subcategory consisting of those pp-sorts which are 0 on D. Every small
abelian category arises in this way.

The answer: Leq+(D) ' (D,Ab)
∏→ - the category of additive functors from D

to Ab which commute with direct products and direct limits.

Furthermore, D can be recovered from its category of imaginaries as
Ex(Leq+(D),Ab) - the category of exact additive functors from Leq+(D) to Ab
(the exact functor corresponding to D ∈ D is simply evaluation, of sorts and
definable maps, at D). (Herzog, Krause)
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The geometry of a definable category

The rep-Zariski spectrum of a definable category D is the set, pinj(D), of
(isomorphism classes of) indecomposable pure-injective objects in D equipped
with the topology which has, for a basis of open sets, the complements of the
compact open sets, (φ/ψ), of the Ziegler topology. That is,
[φ/ψ] = {N ∈ pinjR : |φ(N)/ψ(N)| = 1}.

To the basic open set [φ/ψ] we associate the quotient category Leq+(D)/〈φ/ψ〉
(which is the pp-imaginaries category for the definable subcategory of D
consisting of those objects D ∈ D with φ(D) = ψ(D)). In this way we get a
presheaf of small abelian categories over the rep-Zariski spectrum of D which
generalises the usual structure sheaf of an affine variety.
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Equivalences of 2-categories

Define ABEX to be the category whose objects are skeletally small abelian
categories and whose arrows are the exact functors between these (and whose
2-arrows are the natural transformations between such functors).

Define DEF to be the category whose objects are definable additive categories and
whose arrows are the additive functors which commute with direct products and
direct limits (equivalently the pp-interpretation functors) (and whose 2-arrows are
the natural transformations between such functors).

Then what was described above gives an anti-equivalence of ABEX and DEF
(and there is an (anti-)equivalent third 2-category, with objects the locally
coherent additive categories, and “geometric” morphisms between them - an
additive analogue of the category of coherent toposes and geometric morphisms).

M. Prest and R. Rajani, Structure sheaves of definable additive categories, J. Pure
Applied Algebra, 214 (2010), 1370-1383, and references therein.
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