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The aim of this thesis is to investigate definability in monoidal additive cate-
gories. Given a monoidal finitely accessible category C, satisfying certain assump-
tions, we prove that there exists an inclusion-reversing bijection between the fp-
hom-closed definable subcategories of C and the Serre tensor-ideals S C C*-mod.
We use this result to prove that the 2-category of skeletally small abelian cate-
gories with additive exact symmetric monoidal structures is anti-equivalent to the
2-category of fp-hom-closed definable additive categories satisfying an exactness
criterion. We define a Ziegler-type topology, Zg"™(C), whose closed subsets corre-
spond to the fp-hom-closed definable subcategories of C. We demonstrate that, in
general, Zg"™(C) is non-trivial, distinct from Zg(C) and the topology on Zg"™(C)
depends on the monoidal structure on C.

Under the additional assumption that C' is a rigid monoidal subcategory of
C, we show that a definable subcategory D C C is fp-hom-closed if and only if
it is a tensor-ideal. Furthermore, given A, a small preadditive category with an
additive symmetric rigid monoidal structure, we show that elementary duality
maps an fp-hom-closed definable subcategory D C Mod-A to a definable tensor-
ideal D* C A-Mod and vice versa.

Let T be a rigidly-compactly generated tensor triangulated category. We pro-
vide tensor-analogues of Krause’s Fundamental Correspondence between definable
subcategories, Serre subcategories, cohomological ideals and closed subsets of the
Ziegler topology, considering both T -tensor-closed definable subcategories and de-
finable tensor-ideals

. defrinable tensr ideds oad spashiag subcatzgavics, and o(e/.;q,
We explore connections between t—he—Z*eg—le-r—sp@&t.Lum_gf_T_anZ;‘Lhe_Balmex
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Finally, we define an internal tensor-duality on the definable subcategories of T
and describe the resulting lattice isomorphisms between our Ziegler-type topologies
and bijections between certain torsion-torsion-free triples in 7.




Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other

institute of learning.



Copyright

i.

ii.

iii.

1v.

The author of this thesis (including any appendices and/or schedules to
this thesis) owns certain copyright or related rights in it (the “Copyright”)
and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

Copies of this thesis, either in full or in extracts and whether in hard or elec-
tronic copy, may be made only in accordance with the Copyright, Designs
and Patents Act 1988 (as amended) and regulations issued under it or, where
appropriate, in accordance with licensing agreements which the University

has from time to time. This page must form part of any such copies made.

The ownership of certain Copyright, patents, designs, trade marks and other
intellectual property (the “Intellectual Property”) and any reproductions of
copyright works in the thesis, for example graphs and tables (“Reproduc-
tions”), which may be described in this thesis, may not be owned by the
author and may be owned by third parties. Such Intellectual Property and
Reproductions cannot and must not be made available for use without the
prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

Further information on the conditions under which disclosure, publication
and commercialisation of this thesis, the Copyright and any Intellectual
Property and/or Reproductions described in it may take place is avail-

able in the University IP Policy (see http://documents.manchester.ac.

7


http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420

uk/Doculnfo.aspx?DocID=24420), in any relevant Thesis restriction decla-
rations deposited in the University Library, The University Library’s regula-
tions (see http://www.library.manchester.ac.uk/about/regulations/)

and in The University’s policy on presentation of Theses


http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/

Acknowledgements

First and foremost I would like to thank my supervisor Prof. Mike Prest for all his
patience, wisdom and support. My PhD would not have been such a relaxed and
enjoyable experience without him. I would also like to thank Prof. Peter Symonds
for taking over as my official supervisor upon Mike’s retirement.

In addition, I would like to thank Mike’s other PhD students Rosie, Sam, Mike,
Harry, Isaac and Sunny, as well as my other office mates, Ray, Deacon, Gabriel,
Alex and Shi for interesting mathematical discussions, as well as Mahah, Sunny,
Ray, Clément, Dan and Brian for all the strictly non-mathematical discussions
and Zoom calls. I am also grateful to Louise Walker for the yoga sessions and the
University of Manchester Dance Society for all the dance classes.

Thanks go to my friends and family for your unconditional love and support,
in particular to Sam for all the pep talks and cups of tea.

Finally, I would like to thank the EPSRC and the University of Manchester for
funding my PhD.



Chapter 1
Introduction

This thesis is concerned with exploring interactions between definability and
monoidal structures. The thesis is divided into two parts. The first part (Chap-
ters [3] and []) is from the preprint [59] which is under review to be published and
concerns definable subcategories of monoidal finitely accessible categories. The
second part (Chapters , @, |f] and [8]) is based in the triangulated setting where we

consider definability in rigidly-compactly generated tensor triangulated categories.

Finitely accessible additive categories are big categories (in the sense that they
have a proper class of objects) which are generated by taking direct limits of a
skeletally small subcategory of so-called finitely presentable objects. A key ex-
ample of a finitely accessible category is the category of modules over some ring
(or ring with many objects), studied in infinite-dimensional representation theory.
One way to better understand the structure or complexity of a module category
is to understand its definable subcategories. Born out of research into the model
theory of modules, the definable subcategories of a finitely accessible category
with products, C, are those axiomatised by certain sentences called pp-pairs in
a many-sorted language, -Z(C), associated to the category C. Although C has
a proper class of objects, the definable subcategories of C form a set. Definable
subcategories are generated as such by certain objects called pure-injectives. The
isomorphism classes of indecomposable pure-injectives in C form a set which un-

derlies a topological space called the Ziegler spectrum. The Cantor-Bendixson
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rank of the Ziegler spectrum provides us with an invariant which sheds light on

the complexity of the module category.

Although the motivation behind definable subcategories was model theoretic,
they also have ‘nice’ algebraic properties. Indeed, a full subcategory of a finitely
accessible category with products, C, is definable if and only if it is closed under
direct products, direct limits and pure subobjects. In addition, equivalence classes
of pp-pairs in the language .#(C) form the objects of a category, Lg"", which is
equivalent to the functor category CP-mod of finitely presented additive functors
from the category of finitely presentable objects of C to the category of abelian

groups.

For a functor F in CP-mod, denote by ? : C — Ab the unique (up to isomor-
phism) extension of F' to C which commutes with direct limits. Given a definable
subcategory D C C, the full subcategory S C C-mod, consisting of all functors
F such that ?(X) = 0 for all X € D, is a Serre subcategory (e.g. see [48, The-
orem 12.4.1 and Corollary 12.4.2]). Consequently, CP-mod/S is a skeletally small
abelian category. Suppose D is equivalent to a definable subcategory of C’, with

associated Serre subcategory S’ C C’-mod. Then
C"-mod/S ~ C"P-mod /S’ ~ (D, Ab)'"™

where (D, Ab)1~ denotes the category of additive functors from D to the category
of abelian groups which commute with direct products and direct limits (49,
Theorem 12.10], [34, Theorem 7.2| for the case D = C). We say that a category D
is a definable category if there exists some finitely accessible category with products
C such that D is equivalent to a definable subcategory of C. In addition, we define
DEF to be the 2-category with definable categories as objects, 1-morphisms given
by additive functors which commute with direct products and direct limits and

2-morphisms given by natural transformations.

In  [51], Prest ~and  Rajani show  that the  assignment
D+ fun(D) := (D, Ab)''™ extends to an anti-equivalence between the 2-category
DEF and the 2-category ABEX with objects given by skeletally small abelian cat-

egories, 1-morphisms given by additive exact functors and 2-morphisms given by
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natural transformations.

Many key examples of finitely accessible categories studied in additive repre-
sentation theory have an additive symmetric monoidal structure; for example the
category of modules over a commutative ring or group algebra for a finite group.
Given an additive symmetric monoidal structure on a finitely accessible category
with products C, we can induce a monoidal structure on the associated functor
category CP-mod by Day convolution product (see [20] and Section [2.2). More
generally, if D C C is a definable subcategory and the associated Serre subcate-
gory S C C'-mod is a tensor-ideal with respect to the induced monoidal structure,
then the localisation C’-mod/S ~ fun(D) inherits a monoidal structure (see Defi-
nition .

Assume that C is a finitely accessible category with products and a closed
symmetric monoidal structure such that C™ is a closed monoidal subcategory.
In addition, suppose that D is a definable subcategory of C with associated Serre
subcategory S C C'P-mod. In Chapterwe show that S is a Serre tensor-ideal if and
only if D is fp-hom-closed, that is for all A € C' and all X € D, hom(A, X) € D,
where hom denotes the internal hom-functor (Theorem [3.3.6)). Using this result,
we define a 2-category DEF® with objects given by triples (D, C, ®) where (C,®)
is a monoidal finitely accessible category satisfying the assumptions given above
and D is an fp-hom-closed definable subcategory of C which satisfies an exactness
criterion. The 1-morphisms of DEF® are the additive functors I : D — D’ which
commute with direct products and direct limits and such that the induced functor
Iy : fun(D') — fun(D) (see [51, Theorem 2.3]) is monoidal and the 2-morphisms
are given by natural transformations. Let ABEX® denote the 2-category with
objects the skeletally small abelian categories equipped with an additive symmetric
monoidal structure which is exact in each variable, 1-morphisms being the additive
exact monoidal functors and 2-morphisms the natural transformations. Chapter
is dedicated to proving that the 2-categories ABEX® and DEF® are anti-equivalent.

Suppose we have a triple (D, C,®) where D C C is an fp-hom-closed definable
subcategory and C is a finitely accessible category with products and an addi-
tive symmetric monoidal structure such that C' forms a monoidal subcategory.
(D,C,®) is an object of DEF® if and only if the definable subcategory D satisfies
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an exactness criterion. If D C C is an fp-hom-closed definable subcategory, then D
and Ex(fun(D), Ab) are equivalent in DEF. The exactness criterion is necessary to
ensure that Ex(fun(D), Ab) C fun(D)-Mod is also fp-hom-closed (Theorem [3.4.2)
and Proposition . In practice, many fp-hom-closed definable subcategories
do not satisfy the exactness criterion. Indeed, the exactness criterion for D implies
that the monoidal structure on fun(D) is exact (Theorem [3.3.10), when in general
this monoidal structure is only right exact.

In Chapter [ we discuss the relationship between definability and monoidal
structures for fixed C. We define a coarser version of the Ziegler spectrum, denoted
by Zg"™(C), on the set of (isomorphism classes of) indecomposable pure-injectives
in C called the fp-hom-closed Ziegler topology (Section . Zg™™(C) is defined
such that there exists a lattice isomorphism between the lattice of closed subsets
of Zg"™(C) and the lattice of fp-hom-closed definable subcategories of C. For
C = R-Mod, where R is a commutative ring, we provide an example showing
that in general Zg"™(C) is non-trivial and Zg"™(C) can be different to Zg(C). In
addition, we demonstrate that Zg"™(C) depends on the monoidal structure on C,
using two examples from [50), Section 13].

We also consider what can be said under the additional assumption that C* is
a rigid monoidal subcategory of C (Section . A monoidal category is said to be
rigid if every object has a dual object. For example if C = kG-Mod where G is a
finite group and the tensor product is given by ®;, then C'* = kG-mod is a rigid
monoidal category, where the dual of a module M is given by Homy (M, k). In this
setting, a definable subcategory is fp-hom-closed if and only if it is a tensor-ideal
(Corollary [4.3.1).

Given a skeletally small preadditive category A, one can define the language
for right A-modules, -Z4 and the language for left A-modules, 4. Elemen-
tary duality of pp formulas maps a pp formula ¢ in the language Z4 to a pp
formula D¢ in the language 4.Z and vice versa. Elementary duality extends to
pp-pairs and therefore can also be viewed as a duality between the functor cat-
egories (mod-A, Ab) and (A-mod, Ab)P. Elementary duality of pp-pairs, or
equivalently finitely presented functors, gives rise to an elementary duality of de-

finable subcategories. In Section[£.4] we show that if A has an additive, symmetric,
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rigid monoidal structure, then elementary duality yields a bijection between the
fp-hom-closed definable subcategories of Mod-.A and the definable tensor-ideals of
A-Mod.

The second part of this thesis is concerned with definability in rigidly-compactly
generated tensor triangulated categories. In representation theory, triangulated
categories are used to better understand the structure of important abelian cate-
gories. For example the derived category of a module category is the appropriate
setting for homological algebra and the stable module category of a group algebra
allows us to factor out the well-understood projective modules and focus on the
non-projectives. The complexity of the stable module category indicates how far
the module category is from being semisimple. In these key examples (provided
we consider modules over a commutative ring) the triangulated category has a
rigidly-compactly generated tensor triangulated structure.

As in the finitely accessible case, we can define a language, £ (7)), and use
pp-pairs in this language to define the definable subcategories of a compactly gen-
erated triangulated category 7. What’s more the set of (isomorphism classes of)
indecomposable pure-injective objects in 7 form the underlying set of a topol-
ogy, Zgr, called the Ziegler spectrum of 7. These analogous definitions in the
triangulated setting make sense and interact much like their finitely accessible
counterparts. The reason behind these similarities is a strong connection between
T and a definable subcategory of the finitely accessible category Mod-T* of right
T modules, namely the definable subcategory Abs-T¢ of absolutely pure right
T“modules. Indeed, the restricted Yoneda functor H : 7 — Mod-T°¢, given by
X — Hx = (—, X)|7e, induces a homeomorphism between Zg, and Zg(Abs-7°)
(and in particular an isomorphism between the lattice of definable subcategories
of T and the lattice of definable subcategories of Abs-T¢) [0, Theorem 1.10]. Fur-
thermore the language for 7 is the language for right 7°-modules and every X € T
becomes an .Z (T )-structure in the same way that Hx can be viewed as a structure
for the language of right 7°modules.

In 2002, Krause described a fundamental correspondence, [36], between defin-
able subcategories, coherent functors, cohomological ideals and closed subsets of

the Ziegler spectrum in the setting of compactly-generated triangulated categories
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(see Theorem . Here, any coherent functor can be realised as the assignment
X — ¢(X) for a pp formula ¢ in the language -Z(7) and any pp formula ¢ defines
a coherent functor in this way [27, Lemma 4.3]. The correspondence between de-
finable subcategories, coherent functors and closed subsets of the Ziegler spectrum
echoes a result in the finitely accessible setting. The link to cohomological ideals
in the triangulated case is a consequence of the following. Every pp formula in
Z(T) is equivalent to a division formula, ¢, defined to be Jyp x4 = ypf for some
morphism f: A — B in 7¢ [27, Proposition 3.1]. The meaning of equivalent here
will be made precise in Section [2.5. The cohomological ideal J corresponding to a
definable subcategory D is given by all the morphisms f in 7 such that ¢;(X) =0
for all X € D.

In Chapter[6], we define a new Ziegler-type topology which we call the 7-tensor-
closed Ziegler topology and provide a tensor-analogue of Krause’s Fundamental
Correspondence. Let T be a rigidly-compactly generated tensor triangulated cat-
egory. In Theorem [5.1.§/ and Proposition we establish a inclusion-preserving

bijective correspondence between the
(i) T-tensor-closed definable subcategories D C T, which are the same as the
(ii) T *-tensor-closed definable subcategories D C T and the
(iii) closed subsets of the T-tensor-closed Ziegler topology € C Zg%

and an inclusion-preserving bijective correspondence between the

(iv) Serre tensor-ideals S C Coh(7),
(v) Serre tensor-ideals C C mod-7° and the

(vi) T*tensor-closed cohomological ideals J C morph(7°).

Furthermore, we show that (i)-(iii) correspond via inclusion-reversing bijections to
(iv)-(vi). For undefined notation and terminology see Section [5.1]
Later work by Krause, ([37]), provides a restriction of the Fundamental Corre-

spondence to the case where the definable subcategory, D, is triangulated. Here



16 CHAPTER 1. INTRODUCTION

we define a Ziegler-type tapology called the tensor-ideal Ziegler topology and give

a tensor-analogue of this restriction. For T a rigidly-compactly generated tensor

triangulated category, we prove in Theorem [5.2.14] arrd—Proposition {622 that

the above tensor-analogue of Krause’s Fundamental Correspondence restricts to a

bijective correspondence between the
(i) definable tensor-ideals D C T,
i)_closed-st ] o] oy 6-E 7,
(iii) smashing tensor-ideals B C T,
(iv) perfect Serre tensor-ideals C C mod-7¢ and the
(v) T*tensor-closed exact ideals J C morph(7°).

For undefined notation and terminology see Section [5.2}

In Chapter [6] we explore various topological spaces which can be associated to a
rigidly-compactly generated tensor triangulated category 7. In Section [6.1] we de-
fine fixe different Ziegler-type topologies (including the two previously mentioned),
namely the positive shift-closed Ziegler topology, Zg?, the negative shift-closed
Ziegler topology Zg?—_, the shift-closed Ziegler topology Zg72—, the T-tensor-closed
Ziegler topology Zg%’i and-the tensor-ideal Ziegler topology Zg‘}?A. Let O(X) de-

note the lattice of open subsets of the topological space X. We have the following

relationships between the lattices of open subsets
O(Zg7 ) NO(Zg7 ) = O(Zg¥)

and
©%e72) C 0(Zg?) C 0(Zg7) € O(Zgy).

We show that the lattice of open subsets of the shift-closed Ziegler topology is
isomorphic to the lattice of open subsets of a quotient topology of the Ziegler

topology, but such an isomorphism does not exist for the 7-tensor-closed Ziegler

topology (Proposition [6.1.10| and Example [6.1.20)).
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In 2005, Balmer defined the spectrum of a small tensor triangulated category
IC, which here we call the Balmer spectrum of K and denote by Spc(KC) (see [8]).
Inspired by the prime spectrum of a commutative ring, Spc(K) has underlying set
given by the so-called prime tensor-ideals of K. In Section [6.2] we link the tensor-

spectrum of 7¢ by defining a lattice

ideal Ziegler topology of T to the B
en subsets of the Hochster dual of Spc(7°
Spe(TE) e open subsets of Zg?ﬁA. Furt ~we show that if the (tensor
& holds for 7, then O(Spc(7°¢)*) and O(Zg3™)

monomorphism from t

version of the) Telescope Conj

are isomorphic.

In Chapter |7}, we use a result from [27] and our rigidity assumption to define
an internal tensor-duality on the definable subcategories of 7. In Theorem
we prove that internal tensor-duality induces a lattice automorphism on O(Zg;)

which gives an isomorphism @(Zg72—+) >~ O(Zg; ), restricts to an automorphism
on O(Zg3) = 0(Zg>" ) NO(Zg> ) and fixes O(Zg%).

In [4], the authors establish a 1-1 correspondence between the compactly-
generated TTF triples in D(Mod-R) and the compactly-generated TTF triples
in D(R-Mod) for any ring R |4, Theorem 3.1]. Notice that a compactly-generated
TTF triple (U, V, W) in either of these categories has definable middle spot V. In
the case that R is commutative, it can easily be seen that the 1-1 correspondence of
[4, Theorem 3.1] is induced by the internal tensor-duality defined in Chapter [7} In
Chapter 8] we generalise this result to algebraic rigidly-compactly generated tensor
triangulated categories. More generally, we show that, given an algebraic rigidly-
compactly generated tensor triangulated category 7, internal tensor-duality in-
duces a bijective correspondence between the suspended TTF triples (U, V, W)
such that V is definable and the cosuspended TTF triples (U’, V', W') with V'
definable (Theorem . This bijection restricts to a bijective correspondence
between compactly generated suspended T'TF triples and compactly generated co-
suspended TTF triples (Proposition and restrict to an automorphism on
the class of all stable TTF triples (U, V, W) such that V is definable.
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When 7 = D(Mod-R) where R is a commutative ring, the above correspon-
dence between suspended and cosuspended TTF triples yields an injective map
{ Silting objects S in D(Mod-R) } Pure—injective cosilting objects }
with S+>0 definable, up to equivalence in D(Mod-R), up to equivalence

The restriction of the above to the compactly generated case results in the injective

map

{ Silting objects of finite type

Cosilting objects of finite type }
in D(Mod-R), up to equivalence

} “ 1 in D(R-Mod), up to equivalence
from [4, Theorem 3.3|, which the authors use to describe a silting-cosilting duality
on bounded silting and cosilting complexes.

In Section we consider the case 7 = D(R-Mod) where R is a coherent
commutative ring of weak global dimension at most one such that every finitely
presented R-module has finite projective dimension. In this setting 7 comes
equipped with the standard t-structure which allows us to use homological algebra
to make comparisons between definability in 7 and its Grothendieck monoidal
heart, Mod-R. In Proposition we show that the nth cohomology of a T-
tensor-closed definable subcategory is fp-hom-closed. Let D be a definable sub-
category of T = D(R-Mod) with internal tensor-dual DV. In Theorem we
show that, for each n € Z, H"(D) and H"(D") are elementary dual definable

subcategories.



Chapter 2
Background

In this chapter we provide some background material which will be useful through-
out the rest of the thesis. Sections [2.2] and [2.4] from this chapter are largely

based on material from [59)].

2.1 Conventions and Notation

We assume basic knowledge of additive category theory. All our categories are
preadditive and have small hom-sets, all functors are additive and all subcate-
gories are closed under isomorphism. Given preadditive categories A and B, we
will denote by (A, B) the functor category of all additive functors from A to B.
The functor category (A, Ab) will be denoted by .A-Mod and the subcategory of
all finitely presented objects with be denoted by A-mod := (A-Mod)®. Similarly,
we denote by Mod-A and mod-A the categories (A°P, Ab) and (A°, Ab)® respec-
tively. For a preadditive category 4 we denote by €' (X,Y) the abelian group of
all morphisms in ¢ from X to Y. When ¢ = A-Mod or Mod-A we may denote
the hom-set by Hom 4(X,Y) and when the category is clear from context we will
simply write (X,Y).

Many of the category theoretic results in this thesis are established up to equiv-
alence of categories. We treat isomorphic objects as the same and blur the line

between isomorphism and equality. On occasion we may identify a category with

19
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its skeleton. In addition, we often define an object up to isomorphism as a limit or
colimit. Since our main application is representation theory, in which isomorphic
modules are thought of as the same, these conventions are appropriate. We will
use = to denote isomorphism (usually between objects of a category) and ~ to
denote equivalence. We will say there is a duality between categories o7 and A if
there is an equivalence @7 ~ A. If \: o/ — A is left adjoint to p : B — &/, we
use the notation A — p.

Given a category ¢, we will write X € € to assert that X is an object of
the category . We will write f € morph(%’) to mean ‘f is a morphism in €.
Similarly if X is a subcategory of € we will write X C %. We use this set
theoretic language irrespective of whether ¢ has a proper class of objects or not.
Unless mentioned otherwise, all subcategories will be full subcategories and we
may identify a class of objects with the full subcategory it determines. Given a
2-category €, we will write €°P to denote the category in which 1-morphisms are
reversed but 2-morphisms are not reversed. Given an appropriate category € and a
set of objects X C €, we write <X >def to denote the smallest definable subcategory
containing A and <X >S to denote the smallest Serre subcategory containing X'. If
X only has one object, say X, we will write <X>*

We also assume basic knowledge of monoidal categories. Every monoidal cate-
gory is monoidally equivalent to a strict monoidal category [41), Section XI, Subsec-
tion 3, Theorem 1]. Therefore we are safe to suppress all unitors and associators,
treating them as identities. All our monoidal structures are additive and sym-
metric, and we denote the tensor-product functor by ® and the tensor unit by 1.
Where a monoidal category is closed, we denote the internal hom-functor by hom.

Basic knowledge about triangulated categories is also assumed. Here, unless
stated otherwise, we denote the shift functor by ¥. We refer to distinguished
triangles and exact triangles interchangeably. We say that a functor F': K — T
between triangulated categories K and 7 is a triangulated functor or is exact if
F maps exact triangles to exact triangles. The natural isomorphism F'o) = o F'

will usually remain implicit. Let us introduce the following definition.

Definition 2.1.1. Let € be a category and f : X — Y be a morphism in 4. A

morphism [’ : Y — Z is said to be a weak cokernel or pseudocokernel of f
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if f"o f =0 and given any morphism ¢ : Y — Y’ which satisfies g o f = 0, there
exists some ¢’ : Z — Y’ such that g = ¢’ o f'.

A morphism f”: W — X is said to be a weak kernel or pseudokernel of f
if fo f”=0 and given any morphism h : X’ — X which satisfies f o h = 0, there
exists some h' : X' — W such that h = f” o h/.

We frequently use the following property which follows easily from the axioms

of a triangulated category.

Lemma 2.1.2. Suppose T is a triangulated category and X vz 5vx s
an exact triangle in T. Then f is a weak kernel of f' and f' is a weak cokernel of
f.

For T a rigidly-compactly generated tensor triangulated category, we distin-
guish between T-tensor-closed definable subcategories, that is definable subcat-
egories which are closed under tensoring with any X € 7 and definable tensor-
ideals, which are also triangulated. For a full subcategory X C T, we denote by
<X >def® and <X >def®A the smallest T -tensor-closed definable subcategory contain-
ing X and the smallest definable tensor-ideal containing X respectively. We also
use the notation <I >C0hom

for some subclass I C morph(7°) where T is a compactly generated triangulated

to denote the smallest cohomological ideal containing [/

category. Given a topological space X we denote by O(X) the frame of open
subsets of X.
We also assume some very basic knowledge of the model theory of modules

including the use of first order many-sorted languages.

2.2 Day convolution product

Given a small preadditive category, ¢, with a monoidal structure, we will use Day

convolution product to induce a monoidal structure on %-Mod.

Theorem 2.2.1. [20, Theorem 3.3 and Theorem 3.6] Given a complete and cocom-
plete closed symmetric monoidal category V', and a small (symmetric) monoidal
V -enriched category €, the category of V -enriched functors from € to V', V[€, V],

is a monoidal category admitting a (symmetric) closed monoidal structure.
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Throughout our V' (as above) will be the category of abelian groups, Ab. Given
a symmetric monoidal structure (®, 1) on a small preadditive category A, we may
refer to the Day convolution product on the functor category A-Mod := (A, Ab)
as the ‘induced monoidal structure’ or ‘induced tensor product’ and denote the
tensor product functor by ®. By Theorem the induced monoidal structure
on A-Mod is closed, that is, for every X € A-Mod, X ® — : A-Mod — A-Mod has
a right adjoint functor which we will denote by hom(X, —) : A-Mod — A-Mod
and call the internal hom-functor.

Since for each F' € A-Mod, F®— is a left adjoint, it is right exact and commutes
with direct limits. Furthermore, by definition of Day convolution product, given
representable functors (A, —) and (B, —) in \A-Mod, we have (A4, —) ® (B,—) =
(A® B, —). Thus, by right exactness, if F' € A-mod has presentation (B, —) o),
(A,—) - F — 0, with f : A — B a morphism in A, then (C,—) ® F has
presentation (C' ® B, —) s, CRA-)—=(C,—)@F —=0.

Notation 2.2.2. Given an additive (skeletally) small category A every finitely pre-
sented module F' € A-mod has a presentation of the form (B, —) Y, (A,—-)
F — 0, with f : A — B in A. We will denote such a functor by Fy.

In the above notation we have (C, —) ® Iy = Fogs. More generally, Fy ® F,

fits into the following commutative diagram with exact rows and columns.

(feV,-)
(BV,—) (A V,-) Fre (V,-) 0
(B®g>_> (A@g,—) Ff®<g7_>
(f®U7_)
(B U, -) (AU, —-) FroU—-)—— 0
(.fa_)®Fg
(B,—)® F, (A,-)® F, F;®F, 0
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Therefore Fy ® Fy = Flou.agg), Where f : A — B and g : U — V and
(fRUA®Rg) AU - (BRU)® (A® V) is the canonical map.

Thus, Day convolution product restricts to a monoidal structure on the cate-
gory of finitely presented additive functors .A-mod, which we may also refer to as
the ‘induced monoidal structure’ or ‘induced tensor product’. This is exactly the
tensor product given in [50, Section 13.3] with A = R-mod. Here we avoid the
notation (R-mod)-mod in favour of (R-mod, Ab)™.

2.3 Rigid monoidal categories

In this section we will outline the definition of a rigid monoidal category.

Definition 2.3.1. Let 4 be a symmetric monoidal category. CV € € is dual to
C € € if there exists morphisms ¢ : 1 — CV ® C and ¢ : C @ CV — 1 such that
(CY®ec)o(ne®@CY) =idev and (ec @ C) o (C @ ne) = ide.

An object C in a closed symmetric monoidal category % is said to be rigid if

it has a dual. The category % is said to be rigid if every object of € is rigid.
The following are important consequences of the existence of dual objects.

Proposition 2.3.2. (e.g. [24, Proposition 1.10.9]) Let € be a symmetric monoidal
category and suppose C' € € is rigid. Then CV @ — is both left and right adjoint
to C® —.

Corollary 2.3.3. Let € be a closed symmetric monoidal category and suppose CV

is dual to C' in €. There exists a natural isomorphism hom(C, —) = CV @ —.

Corollary 2.3.4. Let A be an abelian category with a closed symmetric monoidal

structure and suppose C € A is rigid. Then C ® —: A — A is ezact.

Definition 2.3.5. Let € be a rigid symmetric monoidal category. Given any
morphism, f : A — B in &, there exists a dual morphism, fY : BY — AV in €,

given by the composition

BY MO8 AV o Ag BY ABICEL AV o B BY A%, gV
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2.4 Purity in finitely accessible categories

The results in this section will be stated without proof and we direct the reader to
[48], [49] and [51] for more details. Throughout the section, we use [48] and [49)
as convenient secondary sources.

Let us recall the definition of a finitely accessible category.

Definition 2.4.1. A category C is said to be finitely accessible, if it has direct
limits and there exists a set, ¢, of finitely presentable objects of C such that for
every X € C, we can write X as a direct limit of copies of objects of ¢. That is,
X = liﬂie 1X; where [ is some directed indexing set and each X; € 4. Note that
in this case, the full subcategory of finitely presentable objects of C, denoted by
C'®, is skeletally small and we can take & to consist of a representative of each
isomorphism class of C. For the purposes of this thesis we will take ‘finitely
accessible’ to mean additive and finitely accessible.

A category C is locally finitely presented if it is finitely accessible, complete

and cocomplete.

Example 2.4.2. The category A-Mod for any ring or skeletally small preadditive
category A is a locally finitely presented category. The skeletally small subcate-
gory of finitely presentable objects is the subcategory of finitely presented modules,
A-mod.

Next we define the language for modules over a small preadditive category A.

Definition 2.4.3. Given a (skeletally) small preadditive category A, we define
the language for right (respectively left) .A-modules, to be the multi-sorted
language with a sort for each (isomorphism class of) object of A, a constant symbol
04 and a binary function symbol + 4 of sort A for each object A € A and a unary
function symbol, f of sort B — A (respectively A — B), for every morphism
f:A— Bin A. We denote this language by £, (respectively 4.%).

Notation 2.4.4. When writing formulas in a many-sorted language .Z, we use

subscripts to indicate the sort of any variable, so x4 is a variable of sort A.



2.4. PURITY IN FINITELY ACCESSIBLE CATEGORIES 25

A right (respectively left) A-module, F' : (A)°® — Ab (respectively F' : A —
ADb), becomes a structure in the language for right (respectively left) .A-modules,
where the universe is the multi-sorted set (F'(A))aca, +4 and 04 give the abelian
group structure of F'(A) and for each f : A — B in A, the interpretation of the
function symbol f: B — A (respectively f: A — B) is given by F(f).

A pp formula in any language has the form

Elylu < Yl /\ Qj(xh cy Ty Y1, ‘“7yl)
j=1

where the 6;s are atomic formulas in the language. Given pp formulas ¢ and
in the language .24 (respectively 4.¢) with the same number of free variables, we
say that ¢ < ¢ if for all F' € Mod-A (respectively F' € A-Mod), ¥(F) C ¢(F).
< defines a partial order on the pp formulas and if ¢ < ¢ we say that ¢/ is a
pp-pair. Since ¢(F') and ¢(F') are always additive abelian groups we can form the
quotient group ¢(F') /¢ (F). Thus, since morphisms preserve pp formulas, the pp-
pair ¢/t gives rise to a functor Mod-A4 — Ab (respectively A-Mod — Ab). We
say that two pp-pairs ¢/1 and ¢’ /¢ in £, (respectively 4.%¢) are equivalent on
Mod-A (respectively equivalent on A-Mod) if for all F* € Mod-A (respectively
F € A-Mod), ¢(F)/¢Y(F) = ¢'(F)/¢'(F). So pp-pairs are equivalent on Mod-A
(respectively A-Mod) if and only if they give rise to the same functor. We can
identify a pp formula ¢ with the pp-pair ¢/T = 0 where T matches the free variables
of ¢. Two pp formulas are equivalent if so are their associated pp-pairs.

Let L™ (respectively 4IL°9%) denote the category of pp-pairs in the language
for right (respectively left) A-modules. That is, the category with objects given
by pp-pairs and morphisms given by pp-definable maps between A-modules (see
[48, Section 3.2.2]). Here, a pp formula p(Z,7) is said to be a pp-definable map
from ¢ /1 to ¢' /¢ if for all FF € Mod-A (respectively F' € A-Mod), p(F) is the
graph of a group homomorphism from ¢(F)/¢(F) to ¢'(F)/y'(F). Notice that
equivalent pp-pairs are isomorphic as objects of Li?+ (respectively 4IL¢4T). We

have the following theorem.
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Theorem 2.4.5. [{8, Theorem 10.2.30] The category (mod-A, Ab)® is equivalent
to the category Lff+ of pp-pairs in the language for right A-modules. Similarly,
the category (A-mod, Ab)™ is equivalent to the category 4IL°4T of pp-pairs in the
language for left A-modules.

Therefore, Day convolution product induces a tensor product of (equivalence

classes of) pp-pairs by asserting that the equivalence in Theorem is monoidal.

One can define an elementary duality of pp formulas syntactically as follows.

A pp formula ¢ in the language .Z4 will have the form

l n m
Elpr - YBm, /\ ZfZJ(:UAz) + ng’j(yBk) = OC']"
k=1

j=1 i=1

where f;; : C; — A; and gi; : C; — By, are morphisms in A which give rise to
unary function symbols of the opposite arity. In the language for right A-modules,

it is convention for the unary function symbols to act on the right. Thus we rewrite

¢ as
I n m
EIyB17 -+ YBy, /\ Z xAifij + Z Y9k = OCj
k=1

j=1 i=1

57 (7.7) (g) _3,

where F'is the n x [ matrix with (¢, j)th entry f;; and G is the m x [ matrix with

or for short

(k,j)th entry gi;. The elementary dual of ¢ is the pp formula D¢ in the language

~ I, F\ (=x _
dz =0,

n l m

Jzcys - 20y ((/\ Ta; + Zfz’j(zcj) = 04,) A (/\ gri(zc,) = 0p,))-

i=1 j=1 k=1

4-Z given by

or more specifically
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Given a pp formula ¥ in 4.2 of the form

3 (F @) (Z) =0,

we define the elementary dual pp formula D1, in the language -Z4 to be

3z (z,2) (; g) =0.

It is straight forward to check that ¢ and DD¢ are equivalent on Mod-A (in
particular isomorphic as objects of Li{“), 1 and DD are equivalent on A-Mod
(in particular isomorphic as objects of 4L.°9") and for pp formulas ¢ and ¢ for
both left and right A-modules, ¢y < ¢ if and only if D¢ < D3, that is D maps

pp-pairs to pp-pairs. Furthermore we have the following.

Theorem 2.4.6. [29, Theorem 2.9] [48, Theorem 3.2.12] Elementary duality in-

duces a duality between the categories Lifﬁ and 4IL°9T.

Recall from Theorem m that we have equivalences (mod-A, Ab)® ~ L5*
and (A-mod, Ab)® ~ 4IL°d*. Therefore elementary duality of pp formulas induces
a duality on the functor categories (mod-A, Ab)" and (A-mod, Ab)P.

Let A be a skeletally small preadditive category. We define the tensor product

of A-modules, a generalisation of tensor product over a ring.

Definition 2.4.7. (see for example [49, Section 3]) The tensor product of A-
modules is given by a functor — ® 4 — : Mod-A x A-Mod — Ab determined

on objects (up to isomorphism) by the following two assertions. For every M €
Mod-A,

(i) M ®4 (A, —)= M(A) for every A € A,
(il) M ®4 — is right exact.
The functor is defined on morphisms in the obvious way.

We can now define elementary duality of the functor categories as follows.
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Theorem 2.4.8. (see [49, Theorem 4.5]) Elementary duality induces a duality of
categories (—)? : ((mod-A, Ab)P)°P — (A-mod, Ab)® given on objects by mapping
F = F; : mod-A — Ab, where f : A — B in mod-A, to F¢: A-mod — Ab
where FAL) = (F,— ®4 L) for every left A-module L. In particular, F® has
copresentation

0= Fl o Ae— 245 Bo, —.

Next we introduce definable subcategories.

Definition 2.4.9. Let A be a skeletally small preadditive category. A full sub-
category D C Mod-A (respectively D C A-Mod) is said to be a definable sub-

category if it has form
D ={X: a(X)/Ua(X) =0 VA € A}

where {¢y/1x}ren is a set of pp-pairs in the language £, (respectively 4.2).

Notation 2.4.10. Let C be a finitely accessible category. For F' € C-mod, denote
by ? : C — Ab the unique extension of F' to C which commutes with direct limits
([T, page 4-5], also see [48] Proposition 10.2.41]).

By the equivalences in Theorem [2.4.5] D C Mod-A is definable if and only if
there is a collection of finitely presented functors S C (mod-.A, Ab)® such that
X € D if and only if ?(X) =0 forall ' €8S.

Definition 2.4.11. Let &/ be an abelian category. A full subcategory S C &7 is
said to be a Serre subcategory, if for every short exact sequence 0 - A — B —
C—0in o/, A, C €S ifand only if B €S.

If D C Mod-A is definable then the set S = {F € (mod-A, Ab)P : ?(X) =
0, VX € D} is a Serre subcategory (and similarly for the left .A-module case).

Indeed, we have the following result.

Theorem 2.4.12. [/9, Theorem 8.1] Let A be a skeletally small preadditive cate-

gory. Then there exist bijections between:

(i) the Serre subcategories S C (mod-A, Ab)®,
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(ii) the Serre subcategories S C (A-mod, Ab)P,
(111) the definable subcategories D C Mod-A and
(iv) the definable subcategories D C A-Mod.

Here the bijection between (i) and (ii) is due to elementary duality, and the
bijection between (i) and (iii) is given by D — {F € (mod-A, Ab)® : ?(X) =
0, VX € D} and S — {X € Mod-A : ?(X) =0, VF € S}. The bijection between
(i1) and (iv) is the same as the bijection between (i) and (iii) with mod-A and
Mod-A replaced by A-mod and A-Mod respectively.

Notation 2.4.13. Given a Serre subcategory S C (mod-A, Ab)® we will denote
the elementary dual Serre subcategory by S? that is ¢ = {F¢ : F € S} C
(A-mod, Ab)™.
Similarly, given a definable subcategory D C Mod-.A we will denote the elemen-
tary dual definable subcategory, associated to S? by annihilation, by D¢ C .A-Mod.
We will also use this (—)? notation for the inverse map. That is, if S C
(A-mod, Ab)'P is a Serre subcategory S¢ C (mod-A, Ab)® is the dual Serre sub-

category and similarly for definable subcategories.

In order to give an important example of elementary duality, we introduce the

following definitions.

Definition 2.4.14. Let C be a finitely accessible category. A monomorphism
m: X — Y in C is said to be a pure monomorphism if for every f: A — B in
C' and for all morphisms h : A — X and ' : B — Y such that o f = moh
there exist some k : B — X such that ko f = h.

f

A B
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Remark 2.4.15. 1f C is locally finitely presented (that is finitely accessible, complete
and cocomplete), pure monomorphisms can be characterised as those monomor-

phism m : X — Y which fit into an exact sequence
0=-X5Y5HZ-0
such that for every A € C,
0= (A, X) A% 4 vy @24 7y 0
is exact in Ab (see [49, Theorem 5.2]).

Definition 2.4.16. Let A be a skeletally small preadditive category. A right
A-module, M, is said to be flat if M ® 4 — : A-Mod — Ab is exact.

Let C be a finitely accessible category. An object M € C is said to be abso-
lutely pure if every monomorphism M — N with domain M is a pure monomor-
phism. An object M € C is said to be fp-injective if for every monomorphism
f A — B with finitely presented cokernel, and every morphism &k : A — M, there
exists a morphism [ : B — M such that k =1[o f.

Proposition 2.4.17. [/9, Proposition 5.6] Let C be a locally finitely presented
abelian category. Then an object M € C is absolutely pure if and only if it is
fp-injective.

Definition 2.4.18. Let C be a finitely accessible category. An object A € C is
said to be finitely generated if (A, —) preserves direct limits of monomorphisms.
An object A € C™ is said to be coherent if every finitely generated subobject of
A is finitely presented. We say that the category C is locally coherent if the full
subcategory of coherent objects, denoted C", is skeletally small and every object

X € C can be written as a direct limit of a directed system of objects from C".

Example 2.4.19. [/9, Example 8.2] Suppose A-Mod is locally coherent (for ex-
ample A = C® where C is a finitely accessible category with products (see [{9,
Theorem 6.1])). Let Flat-A C Mod-A denote the full subcategory of flat right
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A-modules. Similarly, let A-Abs C A-Mod denote the full subcategory of abso-
lutely pure left A-modules. Then Flat-A and A-Abs are elementary dual definable

subcategories.

Now let C be a finitely accessible category with products. We define the canon-
ical language for C, denoted .Z(C), to be the language of right C*-modules. We
identify objects of C with structures of the language via the restricted Yoneda func-
tor. That is, given X € C, we can define a structure in the canonical language for
C, with universe (C(C’, X))Cecfp,
structure on the hom-set and for each f : A — B in C'?, the interpretation in X of
the function symbol f of arity B — A given by —o f = (f, X) : (B, X) — (A, X).

With this interpretation in mind, rather than writing the term f(xp) where f is

the 4+ and 0 in each sort giving the abelian group

the function symbol of arity B — A, we will write xg o f or just zpf.

The languages .Z(C) and % are the same and therefore, the pp formulas and
pp-pairs are the same. However we are most interested in the .Z(C)-structures
induced by the objects X € C, that is the structures corresponding to the rep-
resentable functors (—, X)|cwm. Recall that pp-pairs ¢/v and ¢'/¢ in the lan-
guage Lo are equivalent on Mod-C™® if ¢(F) /¢ (F) = ¢'(F)/¢/(F) for all functors
F € Mod-C®. For pp-pairs in the language .#(C), we assert that ¢/v¢ and ¢' /v

are equivalent on C if

O(X)/Y(X) = ¢'(X)/P'(X)

for all X € C. Here the Z(C)-structure X is equal to the Zpr-structure (—, X)|ctw.
So if two pp-pairs are equivalent on Mod-C® then they are certainly equivalent on
C.

Since C is closed under finite direct products, every pp formula in .Z(C) is
equivalent on C to a pp formula with one free variable. More specifically we have

the following result.

Proposition 2.4.20. (see e.g. [49, Section 18]) Let C be a finitely accessible
category with arbitrary products. Fvery pp formula in the canonical language for

C is equivalent on C to a pp-formula of the form
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Jys (raf = yng)

where f : C' — A and g : C — B are morphisms in C'.

We define the category L(C)®I* of pp-pairs in the canonical language for C to
have objects given by pp-pairs and morphisms given by pp-definable maps but
this time we say that a pp formula p(Z,7) is said to be a pp-definable map from
/Y to ¢ [y’ if for all X € C, p(X) is the graph of a group homomorphism from
o(X)/Y(X) to ¢ (X) /¢ (X). Notice that if two pp-pairs are equivalent on C, then

they are isomorphic as objects of IL(C)®?* but may not be isomorphic as objects

in L5
By Theorem m, the category ILZ(}: of pp-pairs in the language for right C-

modules is equivalent to (mod-C', Ab). We will show that the category L(C)®*
is equivalent to a Serre localisation of (mod-C®, Ab)®.
Now we give the definition of a definable subcategory of a finitely accessible

category with products.

Definition 2.4.21. Let C be a finitely accessible category with products. A full
subcategory D C C is said to be definable if it is closed in C under products, direct
limits and pure subobjects. A definable category is a definable subcategory of

some finitely accessible category with products.

Remark 2.4.22. We will see below (see Proposition [2.4.27| and the commentary
there after) that every definable category is equivalent to a definable subcategory

of a module category, Mod-A, for some small preadditive category A.

We can use the definable subcategories of a finitely accessible category with

product to define a topology called the Ziegler spectrum.

Definition 2.4.23. We say that an object E' € C is pure-injective if it is injective
over pure monomorphisms, that is for every pure monomorphism m : X — Y in C

and any morphism k : X — E there exists some h : Y — E such that kK = hom.

In fact, each finitely accessible category with products has, up to isomorphism,

a set of indecomposable pure-injective objects (see [60, Corollary 4.2(1)]) and each
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definable subcategory is generated as such by its indecomposable pure-injectives.

They form the underlying set of a topological space called the Ziegler spectrum.

Definition 2.4.24. We define the Ziegler spectrum of C, denoted Zg(C), to
have underlying set given by the set of isomorphism classes of indecomposable

pure-injectives in C, denoted pinj., and closed subsets given by
{[X] € pinj : X € D}

where [X] denotes the isomorphism class of the indecomposable pure-injective X

and D runs through the definable subcategories of C.

Proposition 2.4.25. ([60, Theorem 4.9], also see [{9, Theorem 14.1]) Let C be a
finitely accessible category with products. The closed subsets described above define

a topology on pinje.

Next we show that the definable subcategories of C can be defined in the same

way as the definable subcategories of a module category.

Proposition 2.4.26. (see [49, Theorem 19.4]) A full subcategory D C C is a
definable subcategory if and only if it has form

D= {X : ¢(X)/tr(X) =0 VA € A}

where {dr/Vr}aen 15 a set of pp-pairs in the canonical language, Z(C).

Indeed, the following result tells us that a finitely accessible category with

products C is equivalent to a definable subcategory of a module category.

Proposition 2.4.27. [/9, Theorem 3.4(2) and Theorem 6.1(b)(v)] Let C be a
finitely accessible category with products. Then C ~ Flat-C®, and Flat-C' C
Mod-C™ is a definable subcategory, where Flat-C C Mod-C® denotes the full
subcategory of flat right C'*-modules.

Thus the definable subcategories of C can be viewed as definable subcategories
of Mod-C'. Let Spe C (mod—Cfp,Ab)fp denote the Serre subcategory consist-
ing of all functors F' such that ?(X ) = 0 for all X € Flat-C'. Therefore if
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D C Flat-C C Mod-C™ is a definable subcategory, then the associated Serre
subcategory S C (mod-C™, Ab)™ (as in Theorem [2.4.12)) must contain Sgy,; since
any F € Spia annihilates all flat right CP-modules and so definitely annihilates
all modules in D. Consequently, we have a one-to-one correspondence between
the definable subcategories of C and the Serre subcategories of the localisation
(mod-C™, Ab)P /Sp,;. Next we show that the localisation (mod-C®, Ab)P /Spy,; is

equivalent to CP-mod.

Lemma 2.4.28. (see [{9, Corollary 3.5]) Let A be a finitely accessible abelian
category. Then A is locally coherent if and only if A® is abelian.

Lemma 2.4.29. [/, Theorem 11.1.44] Let A be a locally coherent abelian category
(for example when A = C-Mod where C is a finitely accessible category with
products (see [49, Theorem 6.1])). Then for any pp-pair ¢/ in the language
L(A) there exists some A’ € C® such that for every absolutely pure object M € C,

G(M) /(M) = (A, M).

Remark 2.4.30. We have seen that any pp-pair ¢/¢ in Z(C) gives rise to a
finitely presented functor Fy & (C*-mod, Ab)?. Suppose that F ¥ has presen-
tation (B, —) Y, (A, =) — Fy — 0 where f: A — B is a morphism in C'P-mod.
As C'P-Mod is locally coherent and abelian, C'P-mod is abelian by Lemma .
We can take the A’ from Lemma to be the kernel of f. Indeed, suppose we
have exact sequence 0 — A’ M AL B , then the abelian group homomorphism
(A, M)/(f, M) — (A", M) given by h+ (f, M) — hoker(f) is one-to-one as ker(f)
is a monomorphism and onto as M is absolutely pure and therefore fp-injective by

Proposition [2.4.17] so every morphism A" — M factors through ker(f).

Lemma 2.4.31. There exists an equivalence of categories (mod-C'?, Ab)® /Sy, ~

C-mod.

Proof. By Theorem and properties of Serre localisation, elementary duality

induces an equivalence

(mod-C™, Ab)® /Spyq ~ ((CP-mod, Ab)® /St )P
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By Example , Sd.. = Saps C (C™P-mod, Ab)P consists of all the functors
which annihilate all absolutely pure left C'P-modules. Thus two functors F' and
G are isomorphic in (CP-mod, Ab)™ /Sy, if and only if the restriction of F and
8 to absolutely pure modules are isomorphic. Therefore by Lemma and
Remark , F; + ker(f) € CP-mod and A — (A, —) € (CP-mod, Ab)® /S aps

induce an equivalence ((CP-mod, Ab)®/S,ps)°P ~ CP-mod as required. [

Theorem 2.4.32. [/9, Theorem 22.1] The category IL(C)*™ of pp-pairs in the

canonical language for C is equivalent to the category CP-mod.

In Theorem [2.4.33] below we summarise the connections between definable sub-
categories of C, Serre subcategories of CP-mod and closed subsets of the Ziegler

spectrum.

Theorem 2.4.33. (see [4Y, Theorem 14.2]) Let C be an additive finitely accessible

category with products. There exist natural bijections between:
(i) the definable subcategories D of C,
(i1) the closed subsets € of the Ziegler spectrum Zg(C),

(iii) the Serre subcategories S of CP-mod.

The bijection between (i) and (iii) is given by D — {F € CP-mod : ?(X) =
0, VX € D} andS— {X €C: ?(X) =0, VF € S} and the bijection between (i)
and (ii) is given by D +— D N pinje and € — <<€>def.

Below we give key properties of the 2-category anti-equivalence between ABEX
and DEF. See [51] for full details.

Definition 2.4.34. Let DEF denote the 2-category with objects given by definable
categories, 1-morphisms given by additive functors which preserve direct products
and direct limits and 2-morphisms given by natural transformations.

Let ABEX denote the 2-category with objects given by skeletally small abelian
categories, 1-morphisms given by additive exact functors and 2-morphisms given

by natural transformations.
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Remark 2.4.35. Recall that the objects in a definable subcategory D of a finitely
accessible category C correspond to a class of .Z(C)-structures which are axioma-
tised by some collection of pp-pairs. The 1-morphisms in DEF are given by model
theoretic interpretation functors. An additive functor I : D — D’ which commutes

with direct products and direct limits gives rise to a model theoretic interpretation
of I(D) in D (e.g. see [48, Corollary 18.2.19]).

Theorem 2.4.36. [51, Theorem 2.3] There exists a 2-category anti-equivalence
between ABEX and DEF given on objects by o/ — Ex(o/, Ab) and D +— fun(D) :=
(D, Ab)'™™ | where Ex(4/, Ab) is the category of exact functors from </ to the
category of abelian groups and (D, Ab)1'™ is the category of additive functors from
D to the category of abelian groups which commute with direct products and direct

limits.

On morphisms the equivalence works in both directions by mapping an appro-
priate functor, say F', to precomposition by F, —o F', and on 2-morphisms it works

in the obvious way.

Theorem 2.4.37. (see [49, Theorem 12.10], [34, Theorem 7.2/ for the case D = C)
Given a definable subcategory D of a finitely accessible category C with products,
fun(D) := (D, Ab)T™ ~ C'-mod/S where S C C®-mod is the Serre subcategory

corresponding to D (as in Theorem .

Given a finitely presented functor F' € C™-mod, the restriction to D of its
extension along direct limits, (?)|p : D — Ab, commutes with direct products
and direct limits and therefore is an object of fun(D). Let S C CP-mod be the Serre
subcategory corresponding to D and recall that CP-mod/S is given by formally
inverting the morphisms in ¥s = {a € morph(C™) : ker(«), coker(a) € S}. Since
every morphism in g is an isomorphism when evaluated at any D € D, by the
universal property of the localisation, the functor (j)b : CP-mod — fun(D)
factors via the localisation C*P-mod/S. The equivalence in Theorem is given

by the exact functor (j)|p : C'P-mod/S — fun(D) induced by this factorisation.
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2.5 Purity in compactly generated triangulated

categories

Definition 2.5.1. Let 7 be a triangulated category with small coproducts. An
object C' € T is said to be compact if the canonical morphism [[,.,(C, X;) —
(C,11,e; Xi) is an isomorphism for every set {X; : ¢ € I} of objects of T.

A triangulated category T with small coproducts is said to be compactly gen-
erated if 7¢, the full subcategory of compact objects, is skeletally small and for
every X € T, (T¢ X) = 0 implies X = 0.

Fix a compactly generated triangulated category 7 and denote the full sub-
category of compact objects by T°.

The restricted Yoneda functor H : 7 — Mod-7¢ maps X € T to Hx :=
T(—, X)|7e. Note that H is not a faithful functor and we call the morphisms f :
X — Y in T such that Hy : T(—, X)|re = T(—,Y)|7¢ is zero, phantom maps.

If we complete a phantom map f to an exact triangle in 7, say

then f’ has the following property. For any & : A — Y such that A € T¢, if
f'ok =0 then k = 0. That is, f" acts like a monomorphism but only when pre-
composing with morphisms with source in 7¢. We say that f’ is a pure monomor-
phism. Note that f' : Y — Z is a pure monomorphism if and only if Hp is a
monomorphism. Indeed, given an exact triangle
vy Lz D wx Zoyy,

with f" a pure monomorphism, for every C' € T7¢ 0 — (C,Y) ©rn, (C,Z) &,
(C,¥X) — 0 is exact in Ab. Such an exact triangle is called a pure-exact
triangle.

If every pure-exact triangle

vy Loz 0 vwx Hyosy,
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splits, then Y € T is called pure-injective. We denote the full subcategory
of indecomposable pure-injectives of 7 by pinj,. This is a skeletally small cate-
gory (e.g. see [27, p.3]) and we also use the notation pinj, to denote the set of
isomorphism classes of objects of pinj;.

The restricted Yoneda functor, H : T — Mod-T ¢ restricts to an identification
between the pure-injective objects of 7 and the injective objects of Mod-7° (see
for example [27, p.3]). Furthermore, if Y € 7T is pure-injective and X € T is
arbitrary, then H induces an isomorphism 7 (X,Y) = Mod-T“(Hx, Hy) (e.g. [12
Remark 2.6]).

Next we define the canonical language for 7 and give some results about pp

formulas in this language.

Definition 2.5.2. The canonical language for T, denoted .Z(T), has a sort
for each isomorphism class of compact objects, a binary function symbol ++ of
arity C' x C' — (' and a constant symbol Oc for each sort C' € T7¢ and a unary
function symbol f of arity B — A for each morphism f: A — B in T°.

Each X € T then becomes a .Z (T )-structure with (C, X) as the underlying set
of arity C' € T¢, the interpretations of +¢ and O¢ giving the additive abelian group
structure on (C, X) and the interpretation of the unary function symbol f : B — A
associated to the morphism f : A — B in T¢, given by pre-composition with f,
that is —o f = (f, X) : (B, X) — (4, X).

We say that two pp formulas, 1) and ¢, are equivalent on 7T if for all X € T,
P(X) = ¢(X). The following result means we can restrict to working with ‘division

formulas’.

Proposition 2.5.3. ([27, Proposition 3.1]) Every pp formula in the language
ZL(T) is equivalent to a pp formula of the form Jyp x4 = ypf for some mor-
phism f: A — B in T€.

Let us denote the pp formula Jygp x4 = ypf by ¢;. Therefore, to each mor-

phism in 7° we can associate a pp formula ¢;.

Proposition 2.5.4. Pp formulas ¢; and ¢y where f: A — B and f': A - B’
are equivalent if and only if there exist morphisms k : B — B’ and |l : B' — B
such that f =1o f' and f' =ko f.
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Proof. Suppose ¢ and ¢ are equivalent. Then ¢(B) = ¢ (B), so f € ¢ps(B) =
¢f(B). Therefore, there exists [ : B’ — B such that f = [ o f’. Similarly,
f' € ¢4(B’) so there exists some k : B — B’ such that f' = ko f.

Conversely, if f =1lo f' and f' = ko f, then g : A — X is in ¢;(X) implies
g=¢g of Buttheng=golof soge ¢p(X). Similarly, if g € ¢4 (X) then
g € ¢p(X). So ¢y and ¢ are equivalent. [J

As in the finitely accessible case, to each pp formula ¢ in .Z(7), we can asso-
ciate a functor Fy : T — Ab given on objects by Fy(X) = ¢(X).

Definition 2.5.5. A functor F' : 7 — Ab is said to be coherent if it is an
additive functor for which there exists A, B € T such that F' has presentation

T(B,—)—=>T(A,—-)—=F —0.

Denote by Coh(T) the category of coherent functors.

Notation 2.5.6. In future, we will suppress the notation 7 (—,—) in favour of
(—,—). For a morphism f : A — B in 7¢ we denote the coherent functor
F : T — Ab with presentation (B, ) "% (4,—) — F — 0 by F;. Simi-
larly we denote the finitely presented functor G : (7¢)°® — Ab with presentation
(- A) S B =G oby Gy

Proposition 2.5.7. [27, Lemma 4.3] Suppose ¢ is a pp formula in the language
Z(T). The functor Fy : T — Ab given by X — ¢(X) is a coherent functor
and for any coherent functor F', there exists a pp formula ¢, such that F' = F, in

Coh(T) .

Indeed given the division formula ¢; where A 5 B4 ¢ SA s an exact

triangle in 7, F;, has presentation

(C,—) 225 (B, =) = F,, > 0.

That is, Fy, = Fy (see Notation [2.5.6). Equivalent pp formulas give rise to the

same coherent functor.
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Note that a coherent functor F, € Coh(7) is isomorphic to the cokernel of
(c,—) N (B,—) and to the cokernel of (C’, —) AN (B’,—) if and only if
there exist morphisms B — B, B’ —+ B, C — C’ and C'" — C such that the

following diagrams commute.

5 -2 ¢ 5 2. ¢
B —— B —— .
g g

In this case, there exist morphisms of exact triangles in both directions between
ALBL o sxAamd A L B Lo ovA Therefore, Fy;, = Fy, if and
only if there exist morphisms k: B — B, [: B —- B, m: A— A andn: A — A

such that the following diagrams commute in 7°.

f f

A B A

B

m k n [

A B’

/ B, A, !
f f

In this case we will say that the pp formulas ¢; and ¢y are isomorphic.

These pp formulas may not be equivalent, indeed their free variables may be of
different sorts. However, for each X € 7T, the solution sets ¢;(X) and ¢ (X)
are isomorphic as abelian groups and give rise to naturally isomorphic coherent
functors.

Next we introduce the definable subcategories of a compactly generated trian-

gulated category.

Definition 2.5.8. A full subcategory D C 7T is said to be definable if it has form
D={XeT :F(X)=0Viel},
where {F; : i € I} is a family of coherent functors.

By Proposition we could also define definable subcategories in terms of
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pp formulas. Indeed, for every definable subcategory D, there exists a collection
of pp formulas, {¢y : A\ € A} such that X € D if and only if the sentences
VZx(px(Zx) <> Tn = 0) hold in the Z(T)-structure X for all A € A. Here for
simplicity we have simply written T, to denote the free variables in ¢, without
specifying sorts.

Next we provide Krause’s Fundamental Correspondence. First we need two

more definitions.

Definition 2.5.9. We say that an ideal, J, of morphisms in 7°¢ is a cohomo-
logical ideal, if there exists a cohomological functor F' : 7¢ — Ab such that

J = {f € morph(T*) : F(f) = 0}.

Definition 2.5.10. Let pinj; denote the set of isomorphism classes of indecom-
posable pure-injectives in 7. We define a topology on pinj; called the Ziegler
spectrum of 7. Say that ¢ C pinj; is a closed subset of the Ziegler spectrum of
7T if and only if 4" = D Npinj; for some definable subcategory D C 7. We denote
the Ziegler spectrum by Zg.

Theorem 2.5.11. [36, Fundamental Correspondence] There is a bijective corre-

spondence between:

(i) the definable subcategories of T,
(i1) the Serre subcategories of Coh(T) ,
(11i) the cohomological ideals of T¢,

(iv) the closed subsets of Zg .

Here a definable subcategory, D, corresponds to the Serre subcategory, S, of
coherent functors which annihilate D, the closed subsets of Zg, are given by DN
pinj; and the cohomological ideal of 7° is given by J = {f € morph(7T°) :
(f,X) = 0VX € D}. Throughout the rest of this thesis, we will say that D, S,
and J as above correspond if they are associated as in Theorem [2.5.11

In the remainder of this subsection we will relate definability in 7 to defin-
ability in Mod-7°. Recall that a right 7°module M is absolutely pure if every
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monomorphism with domain M is a pure monomorphism and denote the full sub-
category of absolutely pure modules by Abs-7¢. In Mod-7* the absolutely pure

modules satisfy the following.

Proposition 2.5.12. [6, Proposition 1.8] Any functor F' € Mod-T* is absolutely
pure if and only if it is flat.

In particular, for every X € T, the image of the restricted Yoneda functor H x
is both absolutely pure and flat. Recall that when Mod-T7°¢ is locally coherent,
Abs-T¢ is definable (see Example 2.4.19). Denote by Zg(Abs-7¢) the intersection
pinjyog-7e N Abs-T°¢ with the subspace topology.

The following Theorem was proved in [6].

Theorem 2.5.13. [0, Theorem 1.10] The restricted Yoneda functor induces a
homeomorphism between Zg(T) and Zg(Abs-T°).

Corollary 2.5.14. The restricted Yoneda functor H : T — Mod-T¢ induces a
bijective correspondence between the definable subcategories of T and the definable

subcategories of Abs-T¢, the absolutely pure right T ¢-modules.

2.6 Rigidly-compactly generated tensor triangu-

lated categories

Definition 2.6.1. A triangulated category K is said to be tensor triangulated
(or a tt-category) if it has a symmetric monoidal structure (®,1) such that the

tensor product — ® — : K x K — K is triangulated in each variable.

Definition 2.6.2. If 7 is a tensor triangulated category which is compactly gen-
erated and the subcategory of compact objects T¢ forms a rigid monoidal sub-
category such that (—)¥ : (T¢)°? — T¢ is an exact functor, we say that T is a

rigidly-compactly generated tensor triangulated category.
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2.6.1 Tensor triangular geometry

We will give some brief background on tensor triangular geometry. Most of the
below holds in a more general setting, however here we focus on the Balmer spec-
trum of a skeletally small rigid monoidal category. See [5§] for a short survey

giving more details.

Definition 2.6.3. Suppose K is a skeletally small triangulated category. A sub-
category I C I is said to be:

(i) closed under extensions or extension-closed if for every exact triangle
X—=Y—=>7Z-2YX,itX, ZelthenY € 1.

(ii) shift-closed if X € [ if and only if ¥X € I, equivalently, I is closed under

both positive and negative powers of the shift functor 3.
(iii) triangulated if it is both closed under extensions and shift-closed.

(iv) thick, if it is triangulated and closed under direct summands.

Definition 2.6.4. Suppose K is a skeletally small rigid symmetric tensor triangu-
lated category. A thick subcategory I C K is said to be a thick tensor-ideal if for
every X € and Y € £, X ® Y € I. We denote the lattice of thick tensor-ideals
of K by Thick®(K). A thick tensor-ideal [ is said to be radical if for all X € K,
f X" =X®..0X el forsomen >1then X € I. A thick tensor-ideal P C K
is said to be prime if for all X, Y e K, if X®Y € Pthen X € Por Y € P. We

call these the prime tensor-ideals of K.

Remark 2.6.5. In the case that K is rigid, every tensor-ideal is radical, by for
example [58, Remark 1.8].

Note that since K is skeletally small, and all our subcategories are closed under
isomorphism, there is a set of prime tensor-ideals of K. Let Spc(K) denote the set
of prime tensor-ideals of K. We define a topology on Spc(K) which we call the
Balmer spectrum of I (as introduced in [§]). Given any collection of objects
X C K, we define a closed subset of Spc(K) to be

Z(X)={P €Spc(K): XNP=0}
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If X € K we call Z({X}) the support of X and denote it by supp(X). Note that

Z(X) = () supp(X) so the supports of objects in IC form a basis of closed sets.
Xex
Next we see that the Balmer spectrum satisfies a universal property.

Definition 2.6.6. Given a (small) tensor triangulated category (K, ®,1) a sup-
port data on K is a pair (X, o) where X is a topological space and ¢ assigns to
each A € IC a closed subset o(A) of X such that the following conditions hold:

(i) o(0) = 0 and o(1) = X
(i) o(A® B) = 0(A) Uo(B)
(iii) o(DA) = o(A)
(iv) o(A) C o(B)Uo(C) for all triangles A — B — C' — $A
(v) 0(A® B) = 0(A) Na(B).

Definition 2.6.7. Given a topological space X, a subset Y C X is said to be

specialization closed if Y = [J{y}, where {y} denotes the smallest closed
yey
subset of X containing y.

Theorem 2.6.8. ([8, Theorem 3.2 and Theorem 5.2/, [18, Proposition 6.1])
(Spc(K), supp(—)) is a support data and for any support data (X, o), there ex-
ists a unique continuous map f : X — Spc(K) such that o(A) = f~'(supp(A)) for

any A € K. Moreover, if X is a spectral space and there exists a bijection
. f specialization closed radical thick tensor-ideals
01 subsets of X b= of K 2

given by Y — {A e K:0(A) CY} and J — o(J) := Uacso(A), then f is a

homeomorphism. In this case we call (X, 0) a classifying support data.

Definition 2.6.9. Given a spectral topological space X the Thomason subsets

of X are of the form |JY; where each Y; is a closed subset of X with quasi-compact
i€l

open complement.
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By [58, Remark 1.29] the Thomason subsets of Spc(K) have form | J supp(X),
Xex
where & is some collection of objects of K. We denote by Thom(K) the collection

of Thomason subsets of Spc(K). Note that Thom(K) forms a lattice with join

given by union and binary meet given by intersection.

Definition 2.6.10. (see [22, Definition 0.1]) Given a spectral topological space X
we can define the Hochster dual of X, denoted X*. This is the topology on the
same set of points, X, with the closed sets generated by the quasi-compact open

sets in the original topology.

In [30], Hochster showed that X* is also spectral and (X*)* ~ X.

By (|58, Theorem 1.21]), Spc(K) is spectral for any skeletally small tensor
triangulated category K with a closed monoidal structure. The quasi-compact
opens in Spc(K) are those of the form U(X) = Spc(K)\supp(X) for X € K, (8
Proposition 2.14]). Therefore (Spc(K))* has closed sets of the form

() (Spe(K)\supp(X)),

Xex
where X’ is some class of objects of K.

Hence the open subsets of the Hochster dual of the Balmer spectrum of I are

those of the form [J supp(X), that is, exactly the Thomason subsets of Spc(K).
Xex

Theorem 2.6.11. (see [58, Theorem 1.30]) Let K be a rigid, skeletally small,

tensor triangulated category. There exists an isomorphism of lattices
o : Thick®(K) = Thom(K),

given by o : I — |J supp(X) with inverse 7 : Thom(K) = Thick®(K) given by
Xel

7:Vi=»{X e :supp(X)CV}.

2.6.2 Two examples

In this section we will give more details of the tensor triangulated structure in two

examples.
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2.6.2.1 The derived category of a module category

Suppose R is a commutative ring. Let us describe the rigidly-compactly generated

tensor triangulated structure on the unbounded derived category D(R-Mod).
D(R-Mod) is a localisation of the category of chain complexes Ch(R-Mod)

formed by formally inverting all quasi-isomorphisms. We will index a (co)chain

complex X* by
X* o x 2 x 1 yo & oy

The translation functor ¥ in D(R-Mod) maps X* to

-1 0 1 2
—d XO —d 1 —d 2 —d°

X°[]:..—» X! » X' —— X X% —

and will be denoted by [1]. That is the ith degree of X*[1] is X**'. For an R-
module, M, we will denote by M[—n| the chain complex (or corresponding object

of D(R-Mod)) given by M concentrated in the nth degree and zeros elsewhere.

Definition 2.6.12. Given a chain morphism f : X* — Y* we define the mapping

i 4y
=

cone of f to be the complex

[_dg( : }
fo &yt

%

where the ith degree is X! @ Y.

cone(f):.. = X°@y! X'oY? X2oYt— ..

The distinguished triangles in D(R-Mod) are those isomorphic to a triangle of
the form
x Ly - cone(f) — X°*[1].

The compact objects of D(R-Mod) are given by the perfect complexes
Dref(R-Mod) = K°(R-proj) that is the complexes isomorphic in D(R-Mod) to
bounded complexes of finitely generated projective objects.

The tensor product on D(R-Mod) is given by the left derived tensor product

— ®% — and the tensor-unit is given by R[0]. The internal hom-functor is given



2.6. RIGIDLY-COMPACTLY GENERATED TT-CATEGORIES 47

by the right derived hom RHom(—, —) and the dualisable objects coincide with
the compact objects. With this monoidal structure, D(R-Mod) forms a rigidly-

compactly generated tensor triangulated category.

2.6.2.2 The stable module category

Throughout this section, let G be a finite group and k£ be a field. We denote
the group algebra by kG, the category of finitely generated left kG-modules by
kG-mod and the category of all kG-modules by £G-Mod.

kG is a cocommutative Hopf algebra with comultiplication given by diagonal
action on the elements of G and extending k-linearly, the counit is determined by
g +— 1 for all ¢ € G and the antipode takes g € G to g~'. A consequence of this
Hopf algebra structure is the following. Given kG-modules M and N, M ®; N and
Homy (M, N) both have kG-module structures where the action of kG on M ®; N
is determined by g(m ®; n) = gm ®; gm and the action of kG on Homy (M, N)
is determined by (gf) : M — N satisfying (¢f)(m) = gf(g~'m). If M and N
are finite dimensional over k (equivalently finitely generated as kG-modules) then
MY = M and MY ®; N = Homy (M, N) as kG-modules (e.g. [14], Section 3.1]).
Therefore, if M is finitely generated we call the kG-module Homy (M, k) the dual
of M and denote it by M"Y. In other words ®,, defines a closed symmetric monoidal
structure on kG-Mod such that the full subcategory of finitely generated modules
kG-mod is a rigid monoidal subcategory.

Now let us describe the tensor triangulated structure of the stable module
category. To define the stable module category in full generality we introduce the

following definition.

Definition 2.6.13. (e.g. [56, Section 18]) A ring R is quasi-Frobenius (QF) if it
is both right and left artinian and right and left self-injective.

Example 2.6.14. Let G be a finite group and k be a field. The group algebra kG

1S a quasi-Frobenius ring.

Definition 2.6.15. Given a QF ring R, the stable module category R-Mod
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has the same objects as R-Mod and morphisms given by
Hom(X,Y) = Homg(X,Y)/Proj(X,Y)

where Proj(X,Y) denotes the group of morphisms from X to Y which factor

through a projective module.

Now let us restrict to the case where R is the group algebra of a finite group
G over a field k. In this case kG-Mod is a rigidly-compactly generated tensor
triangulated category. Indeed, the full subcategory of projective objects is a tensor-
ideal and therefore the closed symmetric monoidal structure given by ®;, induces
a monoidal structure on the stable module category.

The shift functor is ¥ = Q7! where for any M € R-Mod, given an injective
envelope 0 — M — I, Q71(M) fits into a short exact sequence 0 — M — I —
QM) — 0 in R-Mod. Every short exact sequence 0 = X — Y — Z — 0 in
kG-Mod, gives rise to an exact triangle X — Y — Z — Q71X in kG-Mod and
every exact triangle in kG-Mod arises in this way.

The subcategory of compact objects is the full subcategory of finitely generated
modules, denoted by kG-mod. Note that the dual of a compact object M €
kG-mod is given by M"Y = Homy(M, k).

By Maschke’s Theorem if the characteristic of k is coprime to |G|, kG is semi-
simple. Therefore, for the rest of this section let k£ denote a field of positive
characteristic p and GG denote a finite group such that p divides the order of G.

The following theorem characterises the representation type of different group

algebras kG.

Theorem 2.6.16. (see [1], Theorem 4.4.4]) Let G be a finite group and k be an
infinite field of characteristic p.

(1) kG is of finite representation type if and only if G has cyclic Sylow p-

subgroups.

(11) kG is of domestic representation type if and only if char k = 2 and the Sylow
2-subgroups of G are isomorphic to the Klein four group.
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(i1i) kG has tame representation type if and only if char k = 2 and the Sylow

2-subgroups of G are dihedral, semidihedral or generalised quaternion.
(iv) In all other cases kG is of wild representation type.
Throughout this thesis we will look more closely at the following two examples.

Examples 2.6.17. (i) (Finite representation type) Suppose G = <g | ¢° = 1>
is the cyclic group of order five and let k be a field of characteristic 5.

(ii) (Domestic representation type) Let G = Vj be the Klein four group, that is
Vi={z,y|a®=y*=[z,y] =eq) = Cy x Cy and k be an algebraically
closed field of characteristic 2.

The Ziegler spectrum of the stable module category of a QF ring is described in
[27] as follows. Let StZgy denote the subset of non-projective elements of Zgp_yioq
with the subspace topology. Then the set of indecomposable pure-injectives in
R-Mod, denoted by Zg(R-Mod), can be identified with StZgg. Indeed, the topol-
0gy on Zgp \j,q corresponds to the subspace topology on StZgp. Therefore, we

have the following.

Proposition 2.6.18. [27, Proposition 6.1] The Ziegler spectrum of a QF ring R

1s homeomorphic to the disjoint union
O |_| ZgR—M?

where O denotes the finite clopen subset of indecomposable injectives (equivalently

indecomposable projectives).
In particular we have the following two examples.

Example 2.6.19. Suppose G = <g | ¢° = 1> 1s the cyclic group of order 5 and
let k be a field of characteristic 5 as in Example (i). Then kG = k[T]/(T°)
under the isomorphism T + g — 1. Set M; = k[T]/(T") for i = 1,....,5. The
M; form a complete list of the indecomposable finite dimensional modules up to

isomorphism, without repetitions (e.g. [14, Section 4.10]). These five modules
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form the points of the Ziegler spectrum of kG-Mod and the topology is discrete.
The only indecomposable projective modules is Ms and the Ziegler spectrum of
kG-Mod 1is discrete with four points, My, My, Mz and My.

Next let us consider the Ziegler spectrum of the stable module category with G
given by the Klein four group and % an alegbraically closed field of characteristic

2. We use the following proposition.

Proposition 2.6.20. [T], Section 3.14] Let G be a p-group and k be a field of
characteristic p. Then kG has a unique minimal left ideal, denoted soc(kG) and

the mon-projective indecomposable kG-modules correspond to the indecomposable

kG /soc(kG)-modules.

Example 2.6.21. [7j, Section 4.3] Let G = Vy be the Klein four group, that is
Vi=(z,y|2*=y?=[z,y] = eq) = Co x Cy and k be an algebraically closed field
of characteristic 2 as in Example (11).

We consider the algebra A = kVy/soc(kVy) as in Proposition [2.6.20 Note that
soc(kVy) = <1 +r+y+ a:y> and A\ is 3-dimensional, generated by v —1, y—1 and
1 with (x —1)*=(y—1)2=(z—1)(y — 1) = 0.

Let us consider the indecomposable pure-injective kG-modules. First note that
A = kG/soc(kG) is isomorphic to the path algebra of the quiver @ below factored
out by the ideal I = (a®,b?, ab,ba).

CQb

Thus A is a domestic string algebra and the indecomposable pure-injective A-
modules are string and band modules [53, Theorem 5.1].

For background on string algebras see for example [53], [39] [19], [54). Here
we define string and band modules only for our quiver Q) and ideal I.

A string v is a sequence v = vy,...v1 of arrows from @Q (in this case a and b) or

inverse arrows from @Q (in this case a=* and b=') such that, aa™t, a~ta, bb=! and
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b=tb appear nowhere in v, no subsequence of v of the form v;y;...v; is in I and no

-1 _ -1 -1 R
subsequence of v = vy ..v," of the form v; .. s in 1.

We list the strings and bands below:

(i) Finite strings

(ii) Infinite strings

b~la), (a=1b)>, (contracting)

b a=1b),

,\
Z
8

b~1a)>®, (contracting)

—
N
8

(d)

(i1i) Bands

8

( (
( (
(ba™1), (ab™1)>°, (expanding)
(ab-1), (ba~1), (expanding)

(a) ba™t, ab™!,

Given a finite string v,..v1, n > 1 we define the string module M (v,...v1) to
have underlying vector space k™' with standard basis xo, ..., x, and for « = a, b
we have

Tiy1r fvig=aandi#n
ar; = < ;1 ifv;lzaandzﬁéo

0 otherwise .

This can be visualised by drawing the string as a sequence of arrows where
direct arrows are drawn diagonally down from the right to the left and inverse

arrows are drawn diagonally down from the left to the right. One then labels the
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vertices xg, ..., T, from right to left and the action of o on x; is given by following
the arrow « starting at this vertex if it exists and declaring ax; = 0 otherwise.

For example, the module M (3(b='a)) corresponds to the diagram below.

Tg Ty i) Zo
T T3 T

V=t gt M(v) and M(v™1)

Up >

Given a string v = v,...v; and its inverse v~
are isomorphic. Thus, for each (family of ) pair(s) of finite strings (a)-(e) given
above we get a (family of ) finite dimensional indecomposable pure-injective string
module(s).

In a similar way, we define infinite string modules. Here we have two choices.
Given a left N-string v = ...v9v1 we define the direct-sum module M(v) to have
underlying vector space @,.yk and the direct-product module N(v) to have un-
derling vector space ll;enk. In both cases we fix a basis xg,x1,... and the action of

a=a, bis given by

iy if v =«
ari=qx; ., ifv;'=aandi#0

0 otherwise ,

applied componentwise in the product module case.

Again an infinite string and its inverse give isomorphic string modules (so we
only define M(v) and N(v) for a left N-string here). Infinite string modules can
be visualised using infinite diagrams. For example the modules M(*(ba™')) and
N(®(ba™1)) can both be depicted by the diagram below.

T3 Ty
Ty To o
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By [53, Theorem 5.1], M(v) for v a contracting infinite string (cases (a) and
(b) above) and N (v) forv an expanding infinite string (cases (c) and (d) above) are
indecomposable pure-injective modules (note that so-called “mized” infinite strings
don’t occur in this example).

Finally, we define the band modules for this example. For each indecom-
posable pure-injective k[T, T~ ']-module M = (U, ®), we denote by B(ab™', M),
the A-module with underlying vector space U @ U and action of a and b given
by a(z,y) = (y,0) and b(z,y) = (Py,0). Note that since k is algebraically
closed, the indecomposable pure-injective k[T, T~ ']-modules are indexed by X € k>,
n € NU{—o0, 00}, with the additional generic module. We label our band modules
accordingly. Here for fired X € k*, B(ab™', \, —0) is the adic module given by the
inverse limit @nn B(ab™',\,n) of a coray of epimorphisms and B(ab™', \,00) is
the Prifer module given by the direct limit hﬂn B(ab=', \,n) of a ray of monomor-
phisms in a tube in the Auslander-Reiten quiver (see for example [48, Section 8.1.2]
for more details).

In particular, the band module B(ab™, \,n) for A\ € k* and n € N has gener-
ators 2 and 2% for i = 1,....n and relations as follows.

azi =z, i=1,...n.

azb =0,i=1,..,n.
bei = Az | 1=1

b+ 2870 =2, n.
b2k =0,i=1,..,n.

Therefore the indecomposable pure-injective A-modules are as follows:

(i) Finite string modules
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(ii) Infinite string modules

111) Band modules

(1ii)
(a) B(ab~',\,n), A\ € k*, n € N,
(b) B(ab™ X\, —c0), A € k* (adic),
(¢) B(ab™',\,00), A € k* (Priifer),

CHAPTER 2. BACKGROUND

(d) B(ab™', G) where G = k(T) is the ring of rational functions as a module

(generic).

It remains to note that the indecomposable pure-injectives of kVy-Mod corre-

spond to the indecomposable pure-injectives of A-Mod by [35, Proposition 1.16]

and Proposition |2.6.20.



Chapter 3

A monoidal analogue of the

2-category anti-equivalence
between ABEX and DEF

The content of this chapter is from [59].

3.1 The 2-categories ABEX® and DEF*

In this section we define the 2-categories ABEX® and DEF®.

Definition 3.1.1. We will say that a functor F' : &/ — 2 between monoidal
categories (&7, ®,1,) and (%, ®’, 14) is monoidal if there exists an isomorphism
in B, €: 14 — F(ly) and a natural isomorphism p : (® 0 F' x F) — (F o ®)
satisfying the associativity condition pxgy zo (txy ® F(Z)) = pxyezo (F(X) &'
ty,z) and the unitality conditions, p1,, x o (e ® F(X)) = idpx) and px;,, ©
(F(X) ®"€) =idpx).

Definition 3.1.2. Let ABEX® denote the 2-category with objects given by skele-
tally small abelian categories equipped with an additive symmetric monoidal struc-
ture which is exact in each variable, 1-morphisms given by additive exact monoidal
functors and 2-morphisms given by (not necessarily monoidal) natural transforma-

tions.

25
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Notation 3.1.3. Given a category % and morphisms f: A — Band k: A — C
in ¢, we will write f|k if there exists some morphism &’ : B — C in % such that
k=FkKof.
Definition 3.1.4. Let C be a finitely accessible category with products and an
additive symmetric closed monoidal structure such that C' is a monoidal subcat-
egory. We say that a definable subcategory D C C is fp-hom-closed if for every
A€ CP®and X € D, hom(A, X) € D, where hom denotes the internal hom-functor.
We say that a definable subcategory D C C satisfies the exactness criterion if
given morphisms f : A — Band g : U — V in C' and a morphism h: AQU — X
in C where X € D, if (f ® U)|h and (A® g)|h then (f ® g)|h (see Notation|3.1.3)).

Definition 3.1.5. We define the 2-category DEF® as follows. Let the objects of
DEF® be given by the triples (D, C, ®) where C is a finitely accessible category with
products, ® is an additive symmetric closed monoidal structure on C such that
C'™ is a monoidal subcategory and D is an fp-hom-closed definable subcategory of
C satisfying the exactness criterion. Let the 1-morphisms in DEF® be given by
the additive functors I : D — D’ which commute with direct products and direct
limits and such that the induced functor I : fun(D’) — fun(D) (given by mapping
F:D — Abto Fol : D — Ab (see [51, Theorem 2.3])) is monoidal. The

2-morphisms are given by (not necessarily monoidal) natural transformations.

Remark 3.1.6. Notice that there exist forgetful 2-functors .# : ABEX® — ABEX
and . : DEF® — DEF which forget the monoidal structure.

3.2 The 2-category anti-equivalence

Theorem 3.2.1. There exists a 2-category anti-equivalence between ABEX® and
DEF® given on objects by o/ +— (Ex(«/, Ab), o/-Mod, ®) where the monoidal
structure, ®, on o/ -Mod is induced by the monoidal structure on </ wvia Day
convolution product. Conversely, the anti-equivalence maps an object (D,C,®) in
DEF® to the skeletally small abelian category fun(D) = (D, Ab)~ with monoidal
structure induced by Day convolution product on C'P-mod (see Definition .

We prove Theorem in several parts.
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3.3 The 2-functor 6 : (DEF®)? — ABEX®

First let us define a 2-functor § : (DEF®)°? — ABEX®. On objects, § maps
(D,C,®) in DEF® to fun(D). In Theoremwe show that the Serre subcategory
of C'P-mod corresponding to D is a Serre tensor-ideal. We use this in Definition
to define an additive symmetric monoidal structure on fun(D). We then show
that the monoidal structure is exact in each variable in Proposition [3.3.10]

Assumption 3.3.1. Let C be an additive finitely accessible category with products.
Suppose further that C has an additive closed symmetric monoidal structure such
that C' is a monoidal subcategory. Induce a monoidal structure on C-Mod via
Day convolution product and note that this restricts to a monoidal structure on
C'"-mod. We denote all tensor products by ®. Note that the monoidal structures
on C and CP-Mod are assumed to be closed, and therefore in both cases the
tensor product functor, ®, is right exact in each variable. Furthermore, as C is
an additive finitely accessible category with products, CP-Mod is locally coherent
[49) Theorem 6.1] and therefore C'P-mod is an abelian subcategory of C*-Mod (e.g.
see [48, Theorem E.1.47]). Therefore, every exact sequence in CP-mod is exact in
C'"-Mod and consequently the restriction of Day convolution product to CP-mod

is also right exact in each variable.

Remark 3.3.2. Given a finitely accessible category C satisfying all the properties
in Assumption , we can use the equivalence between the category L(C)®I
of pp-pairs in the canonical language for C and C-mod (see Theorem [2.4.32)) to
define a monoidal structure on L(C)®d*. Thus we can define a tensor product of
pp-pairs. For example, for A, B € C', the pp-pairs (x4 = x4)/(z4 = 0) and
(rp = xp)/(xp = 0) correspond to the representable functors (A, —) and (B, —)
respectively. Therefore (x4 = z4)/(za = 0) ® (zp = x2p)/(xp = 0) = (Tagp =
Taep)/(Taep = 0).

Before we prove the correspondence between fp-hom-closed definable subcate-
gories and Serre tensor-ideals (Theorem , we prove some useful lemmas. The
first uses the tensor-hom adjunction of a closed monoidal category to find a natural
isomorphism between two functors. Notice that if, for every X € C'®, the internal
hom-functor hom(X, —), restricts to a functor hom(X, —) : C* — C®| that is C?
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forms a closed monoidal subcategory of C, then the statement and proof of the

following lemma both simplify.

Lemma 3.3.3. Let C be as in Assumption and induce a monoidal structure
on C*-Mod wia Day convolution product. Then for all F € C**-Mod and X € C'?,
(X, —)®F is naturally isomorphic to ?ohom(X, —)|ew» where hom(X,—) :C — C
denotes the internal hom-functor and hom(X, —)|cw : CP — C is the restriction to
finitely presented objects.

Proof. First suppose F' is finitely presentable with presentation (B, —) o),
(A, —) Xy F — 0, with f:A— BinC" and suppose X € C*. Then (X, ) ® F

has presentation

(XoB, ) X (x oA ) (X, )@ F -0,

where X ® f: X ® A = X ® B is in C®. For any Z € C* we have the following
diagram in Ab.

(X®f,—)z (7TX®f)Z
(X®B,Z) (X®A,Z) ((X,—)@F)(Z) 0
ap oA 1772
(f, hom(X, =)z (7 Jhom(x.2) :

(B,hom(X, 7)) — (A,hom(X, 7)) — (? o hom(X, —)|ew)(Z) — 0

Since the isomorphisms ag and a4 are natural in A and B respectively, the 1z
form the components of a natural isomorphism 7 : (X, —)®F — ?ohom(X =)t
If F: C" — Ab is any additive functor then F = @ie 1 F; for some finitely pre-
sented functors F;. For eachi € I, we haven; : (X, —)®F;) — Fiohom(X, —)letos
defined as above. Furthermore, for any natural transformation A : F; — F} the
following diagram commutes, where X) : Fz — ?J denotes the natural transforma-

tion with components given by the unique map between direct limits induced by
A
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(X, =) ® F; —— F, o hom(X, —)lcs
%
(X7 _) ® )\ )\ hom(Xf_)‘cfp
1j ?
(X’_) ®F} J Ohom(Xv_)|CfP

Therefore, by the universal property of direct limits, the 7; for ¢« € I induce a

unique natural isomorphism
linye; (X, —) ® F) — limie; (| 0 hom(X, —)[ew) = ' o hom(X, —)cs.
Since (X, —) ® — commutes with direct limits,
limie/ (X, —) ® 1) = (X, —) © ligie F; = (X, —) @ F.

Therefore, we have a natural isomorphism 7 : (X, —) ® F' — Fo hom(X, —)|cw as
required. [

Lemma 3.3.4. Let C be as in Assumption[3.3.1 For every C € C,
hom(C,—):C = C

commutes with direct limits.

Proof. As hom(C,—) : C — C is right adjoint to C ® — : C — C and by
assumption C' ® — restricts to finitely presented objects, we can apply the proof
of [, Proposition 2.23] to deduce that hom(C, —) : C — C commutes with direct
limits. [J

Next, we simplify the criteria for a Serre subcategory of C'P-mod to be a Serre

tensor-ideal.

Lemma 3.3.5. Let C be as in Assumption and suppose S is a Serre subcat-
egory of C-mod. Then S is a Serre tensor-ideal of C-mod if and only if for all
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CecC®andall FeS,
(C,—)® F €S.
Proof. ( =) Holds by the definition of tensor-ideal.
( <= ) Suppose that for all C € C®P and all F € S, (C,—)® F €S. Let F; €S

and F, € C"-mod where F, has projective resolution
(V,—) — (U,—) = F, =0,

for g : U — V a morphism in C.

By right exactness of the induced tensor product, we have the exact sequence
(V.-)@Fr = (U, -)®@ Ff = F; @ Fy — 0.

By assumption, (U, —) ® Fy is an object of S. Therefore F, ® Fy € S as S is

Serre. Hence S is a tensor-ideal as required. [J

Now we are ready to prove the following theorem.

Theorem 3.3.6. Let C be an additive finitely accessible category with products.
Suppose further that C has an additive closed symmetric monoidal structure such
that C* is a monoidal subcategory.

Let D be a definable subcategory of C and S C CP-mod be the corresponding

Serre subcategory as in Theorem [2.4.39 Then S is a tensor-ideal of C®-mod if
and only if D s fp-hom-closed.

Proof. Recall that the functors in S are exactly those whose unique extension
along direct limits annihilates D. Therefore D is fp-hom-closed if and only if for
every A € C X € D and every F €S, ?(hom(A,X)) =0. By Lemmaand
definition of @, ? o hom(A, —) commutes with direct limits and therefore

\
7

F ohom(4,—) = F o hom(A, —)|em.

Furthermore, by Lemma |3.3.3] we have

(A, —)® F = F ohom(A, —)|ew : CP — Ab,
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—y
so F o hom(A, —) = (A, —) ® F.
Therefore, D is fp-hom-closed if and only if for every A € C*, X € D and
—
FeS, (A —-)®F(X)=0, equivalently (A,—) ® F €S.
Finally note that S is a Serre tensor-ideal if and only if it is closed under
tensoring with representable functors (see Lemma [3.3.5). O

Remark 3.3.7. Let C be a monoidal finitely accessible category with products as in
Assumption [3.3.1] By Theorem [3.3.6|and Theorem [2.4.32] a definable subcategory
D C C is fp-hom-closed if and only if the collection of pp-pairs ¢/1) such that
&(X)/(X) =0 for all X € D, forms a Serre tensor-ideal in the category L(C)®I+
with the monoidal structure as discussed in Remark[3.3.2] By Lemmal[3.3.5 a Serre
subcategory of IL(C)®* is a tensor-ideal if and only if it is closed under tensoring
with pp-pairs of the form (z¢ = 2¢)/(x¢ = 0) for all C' € C'. The equivalence in
Theorem sends a function Fy € CP-mod with presentation

(B,—)M(A,—)—)Ff—)(),

where f : A — B is a morphism in C®, to the pp-pair (v4 = x4)/(3ys x4 = ypof).
Thus for C € C™,

(zc =2¢)/(zc =0) @ (ra=24)/(Fys ¥4 =ynf)

= (vega = Towa)/(Fee Towa = Yoep(C ® f)).

By Theorem [3.3.6} if (D,C, ®) is an object of DEF®, then the corresponding
Serre subcategory of C'P-mod is a Serre tensor-ideal. Next we use this to define a

monoidal structure on fun(D). We prove the following lemma first.
Lemma 3.3.8. Let C be as in Assumption|3.53.1. Then
(C, =) ® — : C""-Mod — C"™-Mod

is exact for all C € C®. If we assume further that C € C™ is rigid then so is
(C, =) with dual given by (CV,—).
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Proof. We already know that (C,—) ® — is a left adjoint [20, Theorem 3.3 and
Theorem 3.6] and therefore right exact. We show that (C, —) ® — is also a right

adjoint and therefore is an exact functor.

We first define the left adjoint Lo : CP-Mod — C'-Mod on finitely presented
functors. Given F; € C'P-mod with presentation (B, —) Yo, (A,—) = Fy = 0,

denote by L¢(Fy) the functor with presentation

(hom(C, f),—)

(hom(C, B), —) (hom(C, A),—) = Lo (Ff) — 0.

It can be checked that this definition does not depend on the choice of f.

Now, given another finitely presented functor F, with presentation (V, —) o),

(U,—) —- F, — 0 and a morphism « : F; — Fj, chose any a; : U — A and

as : V' — B such that the following diagram commutes.

0 0

Fy a F,
- -
(40—
(f;=) (9, )
5o 2w

Then define the morphism Lgo(«) @ Lo(Ff) — Le(F,) by the unique map

making the following diagram commute.
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0 0
Lo(r) ——2rur,
Thom(C, f) Thom(C,g)
hom(C, o), —
(hom(C, A), —)< ( ) )(hom(C, U),—)
(hom(C, f), —) (hom(C, g), —)

hom(C, as), —
(hom(C, B), —)( ( )7

(hom(C, V), —)

Note that this does not depend of the choice of a; and ay. To define Lo (up
to isomorphism) on any F € C'"-Mod, we assert that Lo commutes with direct

limits.

It is easy to check that Lo : CP-Mod — C-Mod defines (up to isomorphism)
a functor, indeed this follows from the fact that hom(C,—) : C — C is a functor.
We claim that this functor is left adjoint to (C, —) ® — : C*-Mod — C-Mod.

As (C, —)®— and L commute with direct limits, it is enough to define the unit
and counit of the adjunction on finitely presented functors. Indeed, any functor
F € C™-Mod can be expressed as a direct limit of finitely presented functors,
say ' = Tﬂie 1F; where each F; € C-mod. By the universal property of direct
limits, the value of the unit, np : F — ((C,—) ® Lo(F), and the counit, ep :
Lo((C,—)® F) — F, at F, is uniquely determined by the respective components
at the F;.

The unit,  : Idetw-poq — ((C,—) ® —) o L¢, is defined on finitely presented
functors as follows. For F; € C'P-mod we define Mg, + Fr = (C,—) @ Lo(Fy) as
the unique map such that the following diagram commutes, where e¢ : (C'® —) o
hom(C, —) — Idc is the counit of the adjunction between C' ® — and hom(C, —).
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0 0
o () @ el
T (C, =) @ Thom(c, )
(A, —) LT o, ), )
(f, =) (€' ®@hom(C, f), —)
5,5 )6 homic, B, )

Similarly we define the counit of the adjunction, € : Loo(C, —)®— — Idem-yoa,
as follows. For Fy € C""-mod we define e, : Lo((C, —)) ® Fy) — Fy as the unique
map such that the following diagram commutes, where n¢ : Ide — hom(C,—) o
(C' ® —) is the unit of the adjunction between C'® — and hom(C, —).

0 0
Lo((C,—) ® Fy) ———— F
Thom(C,C0 ) 7y
(C' ® hom(C, A), —) (n0)a, ) (A, —)
(hom(C,C ® f), —) (f, )
(€ @ hom(C, B), —) 12 T)

It can be seen that n F; and e, don’t depend of the choice of presentation. It

remains to check that the triangle identities hold. Again, it is enough to check
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when evaluating at finitely presented functors and these follow easily from the
triangle identities on the adjunction between C'® — and hom(C, —).

If, in addition, we assume that C' € C™ is rigid then hom(C, —) = CV ® — and
therefore Lo = (CVY, —) ® —. Thus, (CY, —) ® — is left adjoint to (C, —) ® — and
(C,—)®—=((CY)Y,—)® — is left adjoint to (CY, —) ® —. Therefore, (C, —) ® —
is rigid with dual given by (CV, —) ® — as required. [

Next we define an additive symmetric monoidal structure on fun(D).

Definition 3.3.9. Suppose (D,C,®) € DEF® and let S C CP-mod be the Serre
subcategory corresponding to D. By Theorem [3.3.6] S is a Serre tensor-ideal of
C®-mod. First we define an additive symmetric monoidal structure on C-mod/S.

By [21], if the multiplicative system Y5 of all the morphisms « in C-mod
such that ker(a), coker(a) € S is closed under tensoring with objects of C*P-mod,
then C-mod/S has a monoidal structure such that the localisation functor ¢ :
C*-mod — fun(D) = C*-mod/S is universal among monoidal functors which map
the morphisms in Yg to isomorphisms.

By Lemma , for any C € CP*, (C,—) ® — : C-Mod — C'-Mod is exact.
Since, C'P-mod is an abelian subcategory of C'*-Mod, (C,—) ® — : CP-mod —
C-mod is also exact. Consequently, for every o : F' — G in C®P-mod, ker((C, —)®
a) = (C,—) @ ker(a) and coker((C,—) ® a) = (C, —) ® coker(«). Therefore if S
is a tensor-ideal and o € g then ker((C,—) ® a), coker((C,—) ® a) € S so
(C,—)®a e Ls.

Now consider the morphism Fj; ® a. We have the following commutative dia-

gram with exact rows.

(K—)®F<g’_)®F(U,—)®F F,F 0
V,-)®a (U,-)®a T
(ga_)®G i
V,-)®G U,-)®G F,0G 0

Since for every D € D, ((V,—) ® a)p and ((U, —) ® «)p are isomorphisms, so
is (F,; ® a)p. Hence ker(F, ® a), coker(F, ® o) € S and F, ® a € Xs.
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Applying [21], Corollary 1.4] we get an additive symmetric monoidal structure
on C*-mod/S. We induce a monoidal structure on fun(D) = (D, Ab)'™ via the

equivalence given in Theorem [2.4.37]

Next we show that, if D satisfies the exactness criterion, the monoidal structure

on fun(D) is exact in each variable.

Proposition 3.3.10. Let C be as in Assumption [3.5.1. Suppose D is an fp-
hom-closed definable subcategory and induce a monoidal structure on fun(D) as in
Definition[3.3.9

If D satisfies the exactness criterion then the monoidal structure on fun(D) is

exact in each variable.

Proof. Suppose D satisfies the exactness criterion, i.e. for any f : A — B and
g:U — VinCPand for any D € D, if h: A® U — D satisfies (f ® U)|h and
(A ® g)|h then (f ® g)|h. Suppose further that 0 - F — G — L — 0 is an
exact sequence in fun(D). It is (isomorphic to) the image of an exact sequence
0 — Fy 5 F, 5 F, = 0 in C"-mod (see [48, Lemma 11.1.6 and Corollary
11.1.42]). If K € fun(D) then K is isomorphic to the image of Fj for some
F;, € C-mod. Therefore, since the localisation functor is monoidal, showing that
05 KeF 2% KoG6 225 K ® L — 0 is a short exact sequence in fun(D) is

equivalent to showing that the image of the (not necessarily exact) sequence

under the localisation functor gives a short exact sequence. By [49, Theorem

12.10], this is equivalent to showing that
0= (Fx ® Fy)(D) = (Fx ® Fy)(D) — (Fp @ F1)(D) = 0

is exact for all D € D.
Suppose Fy has presentation (7, —) o), (S,—) = Fy — 0, where k : S — T

is a morphism in C', then we have the following commutative diagram in C*P-mod.
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0 0 0
B Fi. ®
Ror %% peop 9% ponR 0
7Tk®Ff

(S,-)@Oé (Sv_)®ﬁ

0 — (S0 F (S,-)® F, (S, -)® F 0
<k7_)®Ff (k‘,—)@Fg (ka_)@)Fl

0 (Tv_)®Ff (T’_)®Fg (T7_)®Fl 0

(T,—)@Oé (Ta_)®5

Here the second row is exact since Fj, ® — is a left adjoint and therefore right
exact. The third and fourth rows are exact by Lemma [3.3.8f We must show that
([, ® a)p is a monomorphism (or has zero kernel) for all D € D. Fix D € D. To
enhance readability, for a functor F' € C'P-mod we will suppress the usual notation,
?, for the unique extension to a functor C — Ab which commutes with direct
limits, and simply use F'. By Yoneda’s lemma, (Fy ® «)p is a monomorphism if
and only if, for every morphism g : (D, —) — F, ® Fy, if (Fj, ® o) o f = 0 then
B =0. Suppose 3 : (D, —) = F}, ® Fy satisfies (F}, ® ) o 8 = 0.

Let us fix some notation. Say that F has presentation (B, —) o), (A, —) LN
Fy — 0 and F} has presentation (V, —) o), (U, —) UEN F, — 0. Choose any mor-
phisms oy : U — A and «s : V — B such that the following diagram commutes.

B LD 4 p 0
(a2a_) (041,—) a
A P SR 0

The proof will proceed in the following steps.
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Step 1: We will show that 8 = (71, ® 7f) o (v, —) where v : S® A — D and
there exists I' : S®V — D and & : T ® U — D such that

mo(S®@a)—l'o(S®g)=&o(kal).

Step 2: We will use the exactness criterion to conclude that
no(§@a)—l'o(S@g)=yi0k®g)+yo(k® ),
where y1 : T®V — Dand yo : T® A — D.
Step 3: We show that
(S, —)@a)o((S,—)@m)o(y, =) = ((S,—)®@a)o((S, =) @7y) o (ya0 (k©A), —)
and use that ((S,—) ® «) is a monomorphism to conclude that

((S’ _) ® ﬂ-f) o (’717 _) = ((Sv _) ® 7Tf) o (yQ © (k ® A)v _)'

Step 4: We compose both sides of
(S, =) @mp)o(n,—)=((S,—)@mp)o(k®A,—)o (y2,—)

by 7, ® F to get 8 = 0.

Step 1: Since 7, ® Fy is an epimorphism and (D, —) is projective, there exists
some v : (D, —) = (S, —) ® Fy such that § = (7, @ Ff) o~.

Since 0 = (Fy @ a) o f = (Fy @ a)o (my® Fy) oy = (m & Fy) o (S, —) @ a) 0r
and (D, —) is projective, ¢ := ((S,—) ® a) oy : (D, —) = (5, —) ® F, factors via
(k,—) ® F,, say ¢ = ((k,—) ® F,) o &, where £ : (D,—) — (T,—) ® F, (see the

diagram below).
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(T®V,-)
(T®g,—)
(TeU,-) e (D, -)
’5 ¢ y
(T,—)@éik’_)@Fg (S,-)® F, ™ © F,®F, 0
0

As (D, —) is projective, £ factors via (T, —) @ my, say £ = (T, —) ®m,) o (&1, —)
where & : T®U — D. Similarly, v : (D, —) — (S, —) ® F factors via (S, —) @7y,
say v = ((S, —)®ms)o(y1, —) where y; : S® A — D. Therefore, as ((S, —)@a)oy =
¢ =((k,—)®F,) o & we have

(5, =) ®@mg) o (S@ay, =)o, =) = ((S, =) @mg) o (k@ U, =) 0 (&, —).
Set l=y0(S®a;)—&o0(k®U): S®U — D. Then
(5, —)®mg)o(l, =) =0,
meaning (I, —) factors via (S® g, —), i.e. =10 (S®g) for some ' : S®V — D.
We have shown that
l=mo(§®@a)—Go(kaU)=1c(529).
Rearranging we have

nmo(S®@a)—l'o(S®g)=&o(kaU).
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Step 2: Now we can use the exactness criterion. Set h := v 0 (S ® ay) —

0o (S®yg) =& o(k®U). Consider the morphism (g,a;) : U — V @& A such
that py o (g,a1) = g and py o (g, 1) = a1, where p; and py denote the projection
maps. Then (S ® (g,1))|h and (k ® U)|h so since the exactness criterion holds
for D, (k ® (g,a1))|h and there exists some y : T ® (V & A) — D such that
yo(k®(g,a1)) = h. Set yy = yo(T'®iy) and y2 = yo (T ®iy), where iy : V — VHA

and i5 : A — V @ A are the inclusion maps. Then we have

no(S®a)—l'o(S®g)=h=yo(k®g)+y0(k®am).

Step 3: Composing (h, —) with (S, —) ® 7, we get,

((Sv _) ®7Tg) o (71 © (S®a1)7 _) = ((Sv _) ®7Tg) o (hv _)

(S®fa_) (S’_)®7Tf
&

(S@B,—) (S Av_> (S,—)@Ff 0
(S ® ag,—) (S®a,—) (S,—) @«
— S,—) ®m,
Sov,_) D28 )(S®U,—)( '8 (S,—)® F, 0

As shown on the commutative diagram above, we have
(S, =) @ mg) o (5, =) @ (an, =) = ((5, =) @ @) o ((5, =) @ my).
Therefore, as
(5, =) @mg) o (rro(S@an), =) = ((S, =) ®mg) o (y20 (k @), —)
we have

(9, =)@a)o((S; =) @mf)o(m, =) = (S, m)@a)o((S, =) @ms) o (ya0 (kD A), —).
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Since (S, —) ® a is a monomorphism we have
(S, =) @mp) oy, =) =((S, =) @mp) o (20 (k® A), —).
Step 4: Finally note that
(S, =) @mp)o(y20 (k@ A), =)= ((k, =) @ Fy) o (T, =) @ ms) 0 (2, —)
and therefore, as
y=((S =) @mp)o(n, =)= (k=)@ F)o((T,-)@my)o (42, )

we get that

B=(m@Fp)oy=(m®Fy)o((k,=)®F)o((T,—)@ms)o(y2,—) =0,

as required. [

In fact, the converse of Proposition [3.3.10] is also true.

Proposition 3.3.11. Let C be as in Assumption [3.3.1.  Suppose D is an fp-
hom-closed definable subcategory and induce a monoidal structure on fun(D) as
in Definition [3.5.9 If the monoidal structure on fun(D) is exact in each variable

then D satisfies the exactness criterion.

Proof. Suppose that the induced monoidal structure on fun(D) is exact in each
variable. Suppose f : A — B and g : U — V are morphisms in C®. By [49,
Corollary 3.11], C' has weak cokernels. Let ¢’ : V — W be a weak cokernel of g.

Then (W, —) W, (V,—) o), (U, —) is exact in CP-mod, that is im((¢’, —)) =
ker((g,—)). Therefore, its image (W, —)s s, (V, =) lo7s, (U, —)s is exact in
fun(D) and by assumption, (F)s®@(W, —)s Fpse@’ s, (Fr)s®(V,—)s Epsele. s,
(Ff)s ® (U, —)s is also exact in fun(D). As the localisation functor is monoidal,
this is equivalent to, (Fy ® (W, —))(D) Fred o, (Fr® (V,=)(D) Erelo=)o,
(Fr®(U,—))(D) being exact in Ab for all D € D, by [49, Theorem 12.10]. Consider

the diagram below.
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7Tf®(W,—) 7Tf®(V,—) 7Tf®(U,—)

(A W,—)

(f®W7_) (f®va_) (f®U7_)

(B®g/7_) (B@V,—) (B®ga_)

(B W,—)

Given any h : A® U — D such that (f ® U)|h and (A ® g)|h there exists
hi : B®U — D such that h = hy o (f ® U) and hy : A®V — D such that
h = hs o (A® g). But this means that

(Fr@ (g, =) o (mp @ (V,=)))p(he) = (77 @ (U, =))p(h2 0 (A @ g))
= (mp @ (U, =))p(hio (f @ U))
=0.

So (7 @ (V,=))p(he) is in the kernel of (F; ® (g,—))p which is equal to the
image of (Ff ® (¢',—))p. Therefore there exists some z € (Fy ® (W, —))(D) such
that (Fr ® (¢, —))p(z) = (7 ® (V,=))p(hs). But then, since (7 ® (W, —))p is
an epimorphism in Ab, there exists some morphism 2z’ : A ® W — D such that
(mp @ (W, =))p(2') = z.

Next, notice that (7 ® (V,—))p(ha — (2’ 0 (A® ¢’))) = 0. So there exists
some y : BV — D such that yo (f®V) = hy — (2’0 (A® ¢')). But then
yo(f®g)=yo(fe@V)o(A®g) = hyo(A®g) = h. That is (f ® g)|h, as required.

0
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Theorem 3.3.12. There exists a 2-functor 6 : (DEF®)°P — ABEX® which maps
(D,C,®) € DEF® to fun(D) = (D, Ab)'™ € ABEX®. The exact additive sym-
metric monoidal structure on fun(D) = (D, Ab)™ is given by inducing Day con-
volution product on C®-mod, establishing a monoidal structure on the localisation
C®-mod/S such that the quotient functor q : C-mod — C®-mod/S is monoidal
and asserting that the equivalence C-mod/S ~ (D, Ab)'™ is monoidal (Defini-
tion .

On 1-morphisms 6 maps I : D — D in DEF® to the 1-morphism
Iy : (D', Ab)"= — (D, Ab)"~ in ABEX® where Iy maps a functor F : D' — Ab
to Fol:D — Ab.

Given a 2-morphisms 7 : [ — J in DEF®, 0(7) : Iy — Jo is the natural trans-

formation where the component at F € (D', Ab)'~ is the natural transformation
O(r)p : Io(F) — Jo(F)
with component at X € D given by
FI(0) 225 FI(X),
noting that Io(F)(X) = (FoI)(X) = F(I(X)).

Proof. 6 is well defined on objects by Theorem |3.3.6] and Proposition (3.3.10]
Given a morphism I : D — D’ in DEF®, I, is monoidal by definition of the
morphisms in DEF® and therefore I is a 1-morphism in ABEX®. On natural
transformations # acts as in the original anti-equivalence and therefore 6 satisfies

the necessary axioms to be a 2-functor. [

3.4 The 2-functor ¢ : (ABEX®)? — DEF®

Next we define a 2-functor ¢ : (ABEX®)® — DEF® which maps a skeletally
small abelian category ./ with an exact additive symmetric monoidal structure to
(Ex(e7, Ab), @7-Mod, ®), where ® is induced by Day convolution product.
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First we show that (Ex(«, Ab), &/-Mod, ®) is a well-defined object of DEF®
(see Theorem [3.4.2)).

Lemma 3.4.1. Let &7 be an additive symmetric monoidal, skeletally small abelian
category. Suppose that for every exact functor E : o/ — Ab, every X € o/ and
every short exact sequence 0 > A — B — C — 0 in o7,

0= BE(X®A) - E(X®B)— EX®C) 0

1s exact in Ab. Then the monoidal structure on &/ s exact in each variable.

Proof. By Freyd-Mitchell Embedding Theorem [25, Theorem 7.34] there exists a
ring R and an exact fully faithful functor F': &/ — R-Mod. Composing F with
the forgetful functor R-Mod — Ab we get an exact faithful functor F : &/ — Ab.
For every short exact sequence 0 - A - B — C — 0 in &,

0>EX®A) —>EX®B)-EX®C)—=0
is exact in Ab but as E is faithful, E reflects exactness, so
0> XRA->XRB—->X®(C—=0

is exact in & as required. [J

Theorem 3.4.2. Let o/ be an additive symmetric monoidal, skeletally small abelian

category. The following are equivalent:

(1) The definable subcategory Ex(o/, Ab) C o« -Mod is fp-hom-closed (with re-

spect to Day convolution product).

(ii) The Serre subcategory Sgx C (&/-mod, Ab)® of all functors F such that
?(E) =0 for all E € Ex(/, Ab) is a tensor-ideal of («/-mod, Ab)® (with

respect to Day convolution product).

(i1i) The tensor product on < is exact in each variable.
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Proof. (i) + (ii): Follows directly from Theorem [3.3.6]

(iii) — (i): Suppose the monoidal structure on &7 is exact in each variable.
We first show that Ex(47, Ab) is closed under hom(M, —) where M € &/-mod
is representable, say M = (X, —). Indeed, in this case, for all A € & and E €
Ex(47, Ab),

hom((X, —), E)(A) = ((4,—),hom((X,—),F)) Z (A® X,—),E) =2 F(A® X),

by the Yoneda lemma and adjunction isomorphisms. What’s more, all these iso-

morphisms are natural in A. Therefore,
0 — hom((X, —), E)(A) — hom((X, —), E)(B) — hom((X, —), E)(C) = 0
is exact if and only if
0> FEA®X)—>EBeX)—>EC®X)—0

is exact. But the latter statement holds by our assumption on &7, as F is an exact

functor. Therefore hom((X, —), E) is exact as required.

Now we generalise to Fy € &/-mod. We want to show that hom(Fy, E) : &7 —

Ab is an exact functor.

First note that (F, —)|gx(w,ab) commutes with direct products and direct
limits and therefore is an object of fun(Ex(</, Ab)). By [561, Theorem 2.2],
there exists an equivalence o/ ~ fun(Ex(«/, Ab)) given by A — evy, where
evy : Ex(o/, Ab) — Ab maps an exact functor £ to E(A). Therefore, there

exists some Xp € &7 such that (F, —)|ex(,ab) = €Vx,.

Suppose 0 -+ A — B — C' — 0 is a short exact sequence in /. As E is an

exact functor and the monoidal structure on &7 is exact in each variable,

0= EA® Xp) > E(B® Xp) > E(C® Xp) =0,
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is exact in Ab. As a result, by the Yoneda lemma,
0= (A® Xp,—),E) > (B® Xp,—),E) = (C® Xp,—),E) =0,
is exact in Ab and by the adjunction isomorphism this gives the exact sequence

0— ((Xp,—),hom((A, —), E)) = ((Xp,—),hom((B, —), F))
— ((XF, =), hom((C, —), E)) — 0.

Applying the Yoneda lemma once more we have the exact sequence

0 = (hom((A, ), E))(Xr) — (hom((B, -), E))(Xp)
— (hom((C, —), E))(XF) — 0,

which is isomorphic to
0— (Ff,hOIﬂ((A, _)7 E)) - (Ff,hOHl((B, _)’E» - (Ff,hOHl((C, _)a E)) - 07

as we have already seen that hom((A, —), E'), hom((B, —), E') and hom((C, —), E)

are exact functors and (Fy, —)|gx(w,Ab) = eV,

Again, by the Yoneda lemma and adjunction isomorphisms we have for every
Ae

(Fy,hom((A, ), B)) = (Fr@(4, ), E) = (A, —), hom(Fy, E)) = hom(Fy, E)(A).
What’s more, all these isomorphisms are natural in A. Therefore

0 — hom(Fy, E)(A) — hom(Fy, E)(B) — hom(Fy, E)(C) — 0,
is exact in Ab and hom(FYy, E) is an exact functor as required.

(i) — (iii) Suppose E € Ex(«/,Ab) and X € &/. By (i) we have that
hom((X, —), F) is exact. Therefore, for all short exact sequences 0 - A — B —
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C —0in &,
0 — hom((X, —), E)(A) — hom((X, —), E)(B) — hom((X, —), E)(C) — 0,

is exact. But we have isomorphisms hom((X, —), £)(A) = ((A, —),hom((X, —), F))
= (X, -)®(A,-),E)=(X®A,-),F) 2 E(X ® A) which are natural in A.
Therefore, 0 - E(X ® A) — E(X ® B) — E(X ® C') — 0 is also exact.

So for any exact sequence,0 4 A —+B - (C - 0ina,0 > X®RA - X®B —
X ®C — 0 has exact image in Ab under any exact functor ¥ : &/ — Ab. Lemma
3.4.1] completes the proof. [

Remark 3.4.3. Recall that the objects of the 2-category ABEX® are skeletally small
abelian categories with additive symmetric monoidal structures which are exact
in each variable. However, in most examples (for instance &/ = R-mod for R a
commutative ring) the monoidal structure is only right exact. Theorem shows
where the equivalence fails without the exactness assumption. Indeed, if we desire
the equivalence o/ ~ fun(Ex(<7, Ab)) to be monoidal, the Serre subcategory Sgx

must be a tensor-ideal, in order to induce a monoidal structure on fun(Ex(<7, Ab)).

Theorem 3.4.4. There exists a 2-functor € : (ABEX®)°? — DEF® given on
objects by o — (Ex(/, Ab), o/ -Mod, ®) where the monoidal structure on 2/ -Mod
15 induced by Day convolution product.

& maps a 1-morphism E : o — ' in ABEX® to the functor E* : Ex(<«/’, Ab) —
Ex(</, Ab) given by ' +— F o E.

Given a natural transformation 7 : E — E' where E,E' : &/ — &' are 1-
morphisms in ABEX®, we define the natural transformation £(7) : E* — E'* to
have component at F' € Ex(</’, Ab)

&(r)p: EX(F) — E™(F)
the natural transformation with component at A € o7 given by

F(E(A) 224 F(E'(4)).
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Proof. By Theorem , Ex(47, Ab) is an fp-hom-closed definable subcategory
of @-Mod and Sg, is a tensor-ideal of («-mod, Ab)'P. Therefore we can define
a monoidal structure on fun(Ex(</, Ab)) (as in Definition such that the
localisation functor ¢ : (&/-mod, Ab)® — (&/-mod, Ab)® /Sg, ~ fun(Ex(</, Ab))

is a monoidal functor.

Note that the functor Y? : & — (&/-mod, Ab)® given by A — ((4,—),—)
is monoidal with respect to Day convolution product and the equivalence &/ ~
fun(Ex(«/, Ab)) from [51, Theorem 2.2] can be taken to be q o Y?. Therefore,
this equivalence is monoidal meaning the monoidal structure on fun(Ex(</, Ab))
is exact. In turn this implies, by Proposition [3.3.10} that Ex(</, Ab) satisfies the

exactness criterion. Therefore £ is well defined on objects.

Next we need to show that, given a morphism F : &/ — % in ABEX®, E* :
Ex(%,Ab) — Ex(«/, Ab) given by F + F o F is a morphism in DEF® that is
(E*)o : fun(Ex(«7, Ab)) — fun(Ex(%, Ab)) is monoidal.

By the original anti-equivalence in [51], we have the following commutative

diagram.
4 = fun(Ex(<7, Ab))
E (E%)o
B = fun(Ex(4%, Ab))

We have shown above that the equivalence given by the horizontal maps is
monoidal. Therefore the inverse equivalence fun(Ex(<, Ab)) — & is also monoidal

and (E*)q is naturally isomorphic to a monoidal functor, hence monoidal.

Finally, £ acts on natural transformations in the same way as the original anti-
equivalence, (forgetting the monoidal structure) and therefore is a well-defined
2-functor. [
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3.5 Completing the proof of Theorem [3.2.1

Recall Theorem B.2.1] below.

Theorem There exists a 2-category anti-equivalence between ABEX® and
DEF® given on objects by o/ +— (Ex(«/,Ab), o/ -Mod,®) where the monoidal
structure, ®, on </-Mod 1is induced by the monoidal structure on </ via Day

convolution product. Conversely, the anti-equivalence maps an object (D,C,®) in
DEF® to the skeletally small abelian category fun(D) = (D, Ab)'~ with monoidal
structure induced by Day convolution product on C®P-mod (see Definition .

It remains to prove that the 2-functors 6 : (DEF®)°P — ABEX® from Theorem
and ¢ : (ABEX®)°" — DEF® from Theorem [3.4.4] give an anti-equivalence
between ABEX® and DEF®. By the anti-equivalence between ABEX and DEF in
[51], we know that there exist equivalences €., : &7 — 0(£(o/)) = fun(Ex(<7, Ab))
for every o € ABEX® and ep : D — £(0(D)) = Ex(fun(D), Ab) for every
(D,C,®) € DEF®. It remains to prove that these equivalences are morphisms
in ABEX® and DEF® respectively.

Proposition 3.5.1. For any o/ € ABEX® the functor e, : o — fun(Ex(</, Ab))
given by €,(A) = evy is monoidal. Here evy : Ex(«7, Ab) — Ab maps an exact
functor F: o/ — Ab to F(A).

Similarly, for any (D,C,®) € DEF® the functor ep : D — Ex(fun(D), Ab)
given by ep(X) = evy : fun(D) — Ab where evy denotes the functor given by
‘evaluation at X’ (as in the proof of Theorem 2.3 in [51)]) is a morphism in DEF®.

Proof. By [49, Lemma 12.9 and Theorem 12.10] the functor
(«7-mod, Ab)? % (o7-mod, Ab)"P /Sy, ~ fun(Ex(</, Ab)),

maps a finitely presented functor F : &/-mod — Ab to ?|D that is the restriction
to D of the unique direct limit extension of F'. By the Yoneda lemma, €, : &/ —
fun(Ex (<7, Ab)) is naturally equivalent to the functor

o Y5 (of-mod, AbY? % (o7-mod, Ab)P /S, ~ fun(Ex(«/, Ab)),
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where )? : &/ — (&/-mod, Ab)® denotes the Yoneda embedding A — ((4, —), —).
Therefore, as the Yoneda embedding is monoidal with respect to Day convolution
product and the monoidal structure on fun(Ex(.7, Ab)) is defined such that the
localisation functor ¢ and the equivalence (&/-mod, Ab)® /S, ~ fun(Ex(</, Ab))
are monoidal, €, is a monoidal functor.

Next we show that, for all (D,C,®) in DEF®, (ep), : fun(Ex(fun(D), Ab)) —
fun(D) is monoidal. By [51], €n(p) : fun(D) — fun(Ex(fun(D), Ab)) is an equiva-
lence so we have a functor, 7 : fun(Ex(fun(D), Ab)) = fun(D), which is both right
and left adjoint to €qn(p). We show that (ép)o is naturally isomorphic to 7.

The unit of the adjunction v H €pnp) gives a natural isomorphism
1+ Idfun(Bx(fun(D),Ab)) —* €fun(D) © -

Now, for X € D and F € fun(Ex(fun(D), Ab)), (ep)o((€rn(p) © ¥)(F))(X) =
eviy ) (evy) = evx (y(F)) = v(F)(X), so (ep)o © €un(p) © 7 = 7. Therefore the
composition of the natural isomorphism 7 and the functor (ep)y gives a natural
isomorphism

(ep)on : (ep)o — (ep)o© €Efun(D) O Y = -

We have already seen that e, (p) is monoidal and therefore we can take v to
also be monoidal (e.g. see [24, Remark 1.5.3]).

Therefore (ep)p is naturally isomorphic to a monoidal functor and so is itself
a monoidal functor. Hence ep : D — Ex(fun(D, Ab)) is a morphism in DEF® as
required. [

Remark 3.5.2. The following diagram commutes, where the 2-functors denoted

by % are the forgetful 2-functors and the vertical maps are the 2-category anti-

equivalences.
o
ABEX® ABEX
Theorem [3.2.1] [51]
F
DEF® DEF




Chapter 4
Removing the exactness criterion

The content in this chapter is from [59].

As noted in Remark [3.4.3 for our 2-category anti-equivalence to hold, we
required the monoidal structure on the skeletally small abelian category to be
exact in each variable. However, given any fp-hom-closed definable subcategory
D of a finitely accessible category C, which satisfies Assumption [3.3.1] we can
induce a right exact monoidal structure on fun(D) as in Definition [3.3.9} In many
cases, this monoidal structure on the functor category is not left exact. In this
section we consider what can be said about the relationship between definability
and the monoidal structure for fixed C, where we remove the need for the exactness

assumption.

4.1 The Ziegler spectrum

In this subsection we define a coarser topology, Zghom(C), on pinj, such that the

identity morphism Zg(C) — Zg"*™(C) is a continuous map.

Theorem 4.1.1. Setting the closed subsets of pinj. to be those given by the in-
decomposable pure-injectives contained in an fp-hom-closed definable subcategory
of C defines a topology on pinj. which we will call the fp-hom-closed Ziegler
topology and denote by Zg"™(C).

Proof. We must show that a finite union and arbitrary intersection of closed

81
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subcategories is closed. Abusing notation slightly, we will write D N pinj, for the
isomorphism classes of indecomposable pure-injective objects contained in D, that
is the closed subset of the Ziegler spectrum corresponding to D.

We know (since the Ziegler spectrum defines a topology, e.g. [49, Theorem
14.1]) that given two definable subcategories D and D', the definable subcategory
generated by their union, <D U’ >def, satisfies

(DU D'>def N pinj. = (D N pinj.) U (D' N pinj,).

We must show that, if D and D’ are fp-hom-closed, then so is <D up’ >def. Notice
that the Serre subcategory corresponding to <D U >def is given by the inter-
section of the Serre subcategories corresponding to D and D', say Sp and Sp

respectively. By Theorem [3.3.6] Sp and Sp/ are tensor-ideals so Sp N Spr must
>def .

1S

also be a tensor-ideal. Applying Theorem [3.3.6 again gives that <D up

fp-hom-closed. It is straightforward to see that the intersection of fp-hom-closed

definable subcategories is fp-hom-closed and this completes the proof. [

Thus we have the following tensor-analogue of Theorem [2.4.33]

Corollary 4.1.2. Let C be as in Assumption|3.5.1. The correspondences in The-
orem [2.4.33 restrict to bijections between:

(1) the fp-hom-closed definable subcategories of C,
(ii) the Serre tensor-ideals of C*P-mod,
(ii) the closed subsets of Zg"™(C).

In particular, the lattice of Serre tensor-ideals of CP-mod forms a spatial frame
isomorphic to the lattice of open subsets Q(Zg"™(C)).

4.2 Tensor product of R-modules

Let us consider the case where C = R-Mod for a commutative ring R. Here,

R-Mod has a closed symmetric monoidal structure with tensor product given by
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®pgr. The tensor unit is R and the internal hom-functor is given by the usual
hom-set with R-module structure given by (rf)(z) = rf(x) = f(rz) for all x € X
where f € hom(X,Y) = Homg(X,Y) and r € R. Note that R-mod is a monoidal
subcategory.

The next result shows that if a functor F' € (R-mod, Ab)/? belongs to some
Serre subcategory S, and if F' is ‘simple enough’ then G ®g F' € S for any finitely

presented functor G.

Definition 4.2.1. Let A be a small preadditive category. The projective di-
mension of a module M € A-Mod is the smallest integer n > 0 such that M

admits a projective resolution
o> Py —> Py, — ... > Py — M — 0,

where all P; = 0 for all ¢ > n. If no such integer exists, M is said to have infinite

projective dimension. We denote the projective dimension of M by pdim(M).

Proposition 4.2.2. Let R be a commutative ring, S C (R-mod, Ab)/? be a Serre
subcategory and F € S satisfy pdim(F) = 0 or pdim(F) = 1. Then for any
G € (R-mod, Ab)’?, G® F € S, where ® denotes the tensor product induced by
®pr on R-Mod.

Proof. By Lemma we can take G = (C,—). Throughout, let D be the
definable subcategory associated to S as in Theorem [2.4.33]

Suppose F' € S satisfies pdim(F') = 0. Then F' = (A, —) for some A € R-mod.
Therefore, for all D € D, (A,D) = 0. For any C' € R-mod we have (C,—) ®
(A,—) = (C®r A,—). We want to show that for all D € D, (C ®g A, D) = 0.
But by the adjunction isomorphism we have (C ®gr A, D) = (C,hom(A, D)) =
(C,(A,D))=(C,0)=0,s0 (C,—)® (A, —) €S, as required.

Now suppose F' € S satisfies pdim(F') = 1. Then we have an exact sequence

0= (B, ) Y4, )nF o,

where the map f : A — B is an epimorphism in R-mod. We want to show that for
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all C' € R-mod, (C,—) ® F € Sie. the map (C ®p B, D) (CorS D),

is an epimorphism for all D € D.
As Fes, (B,D) L2,
for any C' € R-mod, the map (C, (B, D))

and the tensor-hom adjunction gives the following commutative diagram.

(C®RfaD)
(C®r B, D) (C®r A, D)

(C®gr A, D)

(A, D) is an isomorphism, for every D € D. Therefore

JCIGEIN (C, (A, D)) is an isomorphism

I
12

~

(C, (B, D))

(C, (4, D))

Therefore for any C' € R-mod, the map (C ®g B, D) (G8r]D), (C®rA,D)is

an epimorphism for all D € D and (C,—) ® F' € S as required. [

Remark 4.2.3. Proposition does not hold for pdim(F) = 2. Indeed, the
Serre subcategory generated by 7" in Example 4.2.4] given below provides a counter

example.

The following example is from [50, Section 13].

Example 4.2.4. [5(, Section 13] Let R = kle : €2 = 0], where k is any field.
We can define a monoidal structure on the category R-Mod with ® : R-Mod X
R-Mod — R-Mod given by the usual tensor product of R-modules, @ = ®g.
We extend this to a monoidal structure on (R-mod, Ab)® using Day convolution
product. First note that the only indecomposable R-modules are rR and U =
R/rad(R) = R/{e) = k. In fact every R-module is isomorphic to a direct sum of
copies of these indecomposable modules. We have Rr R= R, RrU =2 U and
UrU=U.

Consider the exact sequence 0 — <e> L REB U = 0. Let S and T be

determined by the ezact sequences 0 — (U, —) o), (R,—) — S — 0 and
0= (U,—) 2% (R—) Y2 (), =) = T = 0 in (R-mod, Ab)®. By Sec-

tion 13 of [50], the indecomposable functors in (R-mod, Ab)® are
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S: M~ eM,

T : M — anny(e)/eM,

(U,—) : M +— anny(e),

WM~ MjeM,

and

(R,—): M — M.

The table below shows the action of the tensor product on (R-mod, Ab)® (given
in [50, Section 13.3]).

® S T (U, —) W (R,—)
S S 0 0 S S
T o (U,-) (U-) T T

(R7 _) S T (U7 _) W (Rv _)

Let us identify the definable subcategories of R-Mod for R = kle : €2 = 0].
Recall that a module M € R-Mod has form M = R"™ & UW for some cardinals k
and A, (see [47, Section 6.8]). If both k and X are non-zero, then <M> = R-Mod.
Therefore, the only non-trivial proper definable subcategories of R-Mod are <R> =
{R™ : k a cardinal} and (U) = {U™ : X a cardinal}.

Since @ commutes with direct sums it is easy to see that both <R>def and <U>def
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are closed under tensor product and <U>def 18 a tensor-ideal in R-Mod. Further-
more, we have hom(R, —) = Hompg(R, —) = Idg-moa and therefore hom(R,U) =
U. It can also be checked that hom(U,U) = U. Any object in <U>dBf can be written
as a direct limit of finite powers of U and for any N € R-mod, hom(N, —) com-
mutes with direct limits. Therefore, since hom(—, —) commutes with finite direct
sums in both variables, hom(R,U) = U and hom(U,U) = U is enough to imply
that <U>def is fp-hom-closed. On the other hand, hom(U, R) = U meaning <R>def
is not fp-hom-closed.

Next let us consider the corresponding Serre subcategories. First take D =
<U >def. Then

T(U) = anny(e)/eU = U/0 = U,
(U, —)(U) = anny(e) = U,

WU) =U/eU =U/02U

and

(R, —)(U) =U.

Therefore Sp is generated by the indecomposable functor S and indeed consists just

of direct sums of copies of S. Aspdim(S) = 1, by Proposition G®S € Sp for

every finitely presented G : R-mod — Ab. Therefore, Sp is a Serre tensor-ideal.
Now take D = <R>def. Then

S(R)=eR =1,

T(R) = anng(e)/eR=U/U =0,
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and

(U, —)(R) = anng(e) = U,

W(R)=R/eR=U

(R, -)(R) = R.

87

Therefore Sp is generated by the indecomposable functor T. As T T = (U, —)

this Serre subcategory is not closed under tensor product.

In summary we get the following table, where < >def denotes ‘the definable sub-

category generated by’ and < >S denotes ‘the Serre subcategory generated by’.

Definable | Monoidal fp-hom- Tensor- | Serre Monoidal Tensor-
subcat. subcat. closed ideal subcat. subcat. ideal
0 Yes Yes Yes (R-mod, Ab)® | Yes Yes

def S
<U > Yes Yes Yes <S> Yes Yes

def S
<R> Yes No No <T> No No
R-Mod Yes Yes Yes 0 Yes Yes

So the Ziegler topology Zg(R-Mod) has underlying set {[R], [U]} with the dis-
crete topology, whereas Zg"™(R-Mod) has closed subsets (), {[U]} and {[R], [U]}.

4.2.1 Von Neumann regular rings

Let us consider the example of von Neumann regular rings.

Definition 4.2.5. A ring R is von Neumann regular if for every x € R there

exists some y € R such that x = zyx.

Proposition 4.2.6. Let R be a commutative von Neumann reqular ring, so the
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normal tensor product of rings, @gr, is a symmetric closed monoidal structure on

R-Mod. FEvery definable subcategory of R-Mod is fp-hom-closed.

Proof. The global dimension of (R-mod, Ab)™ is zero if and only if R is von

Neumann regular (e.g. see [48, Proposition 10.2.20]). Thus by Lemma , for R

von Neumann regular, every Serre subcategory of (R-mod, Ab)® is a tensor-ideal

and therefore, by Theorem [3.3.6, every definable subcategory is fp-hom-closed.
O

Proposition 4.2.7. Let R be a commutative von Neumann reqular ring, so the
normal tensor product of rings, g, is a symmetric closed monoidal structure
on R-Mod. FEwvery fp-hom-closed definable subcategory D of R-Mod satisfies the

exactness criterion.

Proof. R is von Neumann regular if and only if every (left) R-module is flat,
that is for every M € R-Mod, M ®g — : R-Mod — Ab is exact (e.g. see [48]
Theorem 2.3.22]). Therefore, since R is commutative, we obtain a symmetric closed
monoidal product on R-Mod which is exact in each variable. Furthermore, by [48|
Proposition 10.2.38] we have (R-mod, Ab)® ~ (R-mod)°®® ~ R-mod where the
direction R-mod — (R-mod, Ab)™ is given by the Yoneda embedding. Therefore,
this equivalence is monoidal with respect to Day convolution product. In other
words, letting D = R-Mod, fun(D) = (R-mod, Ab) ~ R-mod has an additive
symmetric monoidal structure which is exact in each variable and coincides with
the monoidal structure defined in Definition |3.3.91 Thus, by Proposition [3.3.11
D = R-Mod satisfies the exactness criterion. Consequently any fp-hom-closed

definable subcategory of R-Mod also satisfies the exactness criterion. [J

Remark 4.2.8. By Proposition [£.2.1] for R commutative and von Neumann regular,
Zg(R-Mod) and Zg"™(R-Mod) are the same topology. Furthermore, by Propo-
sition and Proposition [3.3.10] for every definable subcategory D C R-Mod,
we can induce an exact, additive, closed, symmetric monoidal structure on the
corresponding functor category fun(D).

By [48], Proposition 3.4.30] the definable subcategory generated by M € R-Mod
is given by (R/anng(M))-Mod viewed as a full subcategory of R-Mod via R —
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R/anng(M). Therefore, it is easy to see directly that (M >def

Futhermore, the associated Serre subcategory of (R-mod, Ab)® ~ R-mod is given
by {X € R-mod : (X, M) = 0}.

is fp-hom-closed.

4.2.2 Coherent rings
Now we consider the case where R is coherent.

Definition 4.2.9. A commutative ring R is coherent if every finitely generated
ideal is finitely presented, equivalently if every finitely presented R-module is co-
herent in the sense of Definition 2.4.18]

We can see by the above definition that a commutative ring R is coherent if and
only if the category R-Mod is locally coherent. Therefore, by Example the
subcategory Abs-R C Mod-R of absolutely pure modules is definable. In addition,
by Lemma R-mod is abelian.

Recall that an object X of a locally finitely presented abelian category is ab-
solutely pure if and only if it is fp-injective (see Proposition . We have the

following lemma.

Lemma 4.2.10. Let C be a locally finitely presented abelian category with an ad-
ditive closed symmetric monoidal structure such that C* forms a monoidal subcat-
egory. Suppose X € C and U € C® are such that hom(U, X) is absolutely pure.
Let f : A — B be a morphism in C'. If f : A — B is a monomorphism in C, then
every morphism h : U ® A — X factors through U ® f.

Proof. Via the tensor-hom adjunction there exists some A’ : U ® B — X such
that o = h' o (U ® f) if and only if there exists some 7’ : B — hom(U, X) such
that h = h' o f where h:A— hom(U, X) is the morphism corresponding to h
via the adjunction isomorphism (U ® A, X) = (A, hom(U, X)). But hom(U, X)
is absolutely pure and f : A — B is a monomorphism with A, B € C® so as

hom(U, X) is fp-injective, we get 1 factors via f as required. [

Proposition 4.2.11. Let R be a commutative coherent ring. Any fp-hom-closed

definable subcategory D of Abs-R satisfies the exactness criterion.
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Proof. Suppose f: A — B and g: U — V are morphisms in mod-R and X € D.
Suppose further that h : A® U — X satisfies h = Mo (f®@U) = h" 0o (A® g)
for some ' : B U — X and b’ : A® V — X, that is the following diagram

commutes.

foU
AU BU
A®g h
1
ARV X

As mod-R is abelian, we have exact sequences in mod-R, 0 — A’ Al B
and U LV S W — 0 where k : A — A is the kernel of f and ¢ : V — W is
the cokernel of g. Furthermore, since A’ ® — : mod-R — mod-R is right exact we

have an exact sequence
AU 2% AoV A% A e w — 0.

Now h"o (k@ V)o(A®g) =h"0(ARg)o(k@U)=No(feU)o(kaU) =0.
Therefore, h” o (k ® V') factors via A’ @ ¢, say h" o (k®@ V) =10 (A’ ® ¢) for some
[ AW — X.

!/

wov 20 vov A0 pow — g
ko V koW
A@V AW
B it
X

Note that D C Abs-R is fp-hom-closed so hom(W, X) is absolutely pure. In
addition, k : A — A is a monomorphism therefore applying Lemma [4.2.10} [ :
AW — X factors via k@ W, say [ =l'o (k@ W), where I' : A W — X.

We have h"o(k®@V') = l'o(A®c)o(k®@V). Settingr = h"—l'o(A®c) : AQV — X
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we have ro (k® V) =0. Let 7 : A — hom(V, X) be the morphism corresponding
tor: A®V — X via the adjunction isomorphism. Then 7o k = 0.

Now recall that mod-R is abelian and we have exact sequence 0 — A’ LAIER
B. Therefore, coker(k) = im(f). Write f : A — B asiyomy where 7y : A — im(f)
is the cokernel of k and iy : im(f) — B is a monomorphism. Then 7 factors
via mp 1 A — im(f), or equivalently, r factors via 7y @ V, say r = r' o (7; @ V).
Noting that hom(V, X)) is absolutely pure, we may apply Lemmato get that
" =71"0(if ® V) that is r factors via f @ V.

Finally note that h = h"o(A®g) = ro(A®g) = r"o(f@V)o(A®g) = r"o(f®yg).
Therefore we have shown that h factors via f ® g and the exactness criterion holds
for D. O

Remarks 4.2.12. (i) Proposition [4.2.11] also holds if we replace R by any skele-
tally small preadditive category A such that A-Mod is locally coherent.

(ii)) Coherent rings are precisely those rings R for which the theory of modules
in the language of R-modules has a model companion [23, Theorem 4.1 and
Theorem 4.8].

4.3 A rigidity assumption

Next we move on to the context where C® forms a rigid monoidal subcategory
of C. In this setting, we get the following corollary to Theorem [3.3.6] giving a

definable tensor-ideal/Serre tensor-ideal correspondence.

Corollary 4.3.1. Let C be a finitely accessible category with products and suppose
that (C,®,1) is a closed symmetric monoidal category such that C' is a symmetric
rigid monoidal subcategory. Let S be a Serre subcategory of C-mod and let D be
the corresponding definable subcategory of C as in (Theorem .

Then, S is a Serre tensor-ideal of CP-mod with respect to the induced tensor
product if and only if D is a definable tensor-ideal of C.

Proof. By Theorem [3.3.6] we have that S is a Serre tensor-ideal if and only if D is

~Y

fp-hom-closed. By rigidity of C'?, there exists a natural equivalence hom(A, —) =2
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AV ® — for all A € C™, therefore D is fp-hom-closed if and only if it is closed
under tensoring with objects of C'?. Suppose X € C and D € D. As C is finitely
accessible we can write X as a direct limit X = ligie 1X; where the X; are finitely
presented. Therefore, if D is closed under tensoring with objects of C', then
X®D = (@ie[Xi) ®D = @ieI(Xi ® D) € D, as — ® D commutes with direct

limits and D is closed under direct limits. O

4.3.1 Examples satisfying the rigidity condition

Example below gives a class of examples where the assumptions of Corollary
[4.3.1] are satisfied.

Example 4.3.2. Let G be a finite group and k be a field. The category of left kG-
modules, kG-Mod has a closed symmetric monoidal structure with tensor product
Q. Furthermore, the finitely generated left kG-modules form a symmetric rigid
monotdal subcategory, kG-mod.

Therefore, applying Corollary[4.5.1], the definable tensor-ideals of kG-Mod cor-
respond bijectively with the Serre tensor-ideals of (kG-mod, Ab)®.

In particular let us consider an example from [50, Section 13].

Example 4.3.3. [50, Section 13] Consider R = kle : €2 = 0] as in Ezample[4.2.)
but suppose further that the field k has characteristic 2. Then R is a group ring.
Indeed if we set e+1 =g and let G = <g N 1> = (5, then it is easy to see that
R = kG as rings. We can define a new tensor product ® : R-Mod x R-Mod —
R-Mod given by M @ N = M ®; N and where the action of R is determined by
g(M @ N)=gM ®gN.

Note that here the tensor unit is given by U and the tensor product satisfies
R®y, R~ R?. We will use the notation of Example[{.2.J. The table below shows
how this tensor product extends to (R-mod, Ab)® (See Section 13.5 of [50] for
details of the calculation.)
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® S T (U-) W (R,—)
S W 0o S W (R, —)
T 0 T T 0 0

U,-) |8 T ou-) W (R.—)
W w 0o W W (R,—)
(R=)|(R=) 0 (B-) (R-) (R-)

We get the following definable subcategory/Serre subcategory correspondence,
where, as required by Corollary[{.3.1) there is a one-to-one correspondence between
the definable tensor-ideals of R-Mod and the Serre tensor-ideals of (R-mod, Ab)™.

Definable Monoidal Tensor- | Serre Monoidal Tensor-
subcategory | subcategory ideal subcategory subcategory ideal
0 Yes Yes (R-mod, Ab)® | Yes Yes
()™ Yes No (S)° No No

def s
<R> Yes Yes <T> Yes Yes
R-Mod Yes Yes 0 Yes Yes

So the fp-hom-closed Ziegler topology, Zg"™(R-Mod), has underlying set
{[R],[U]} and closed subsets O, {[R]} and {[R],[U]}. As one might expect,
Zghom(R—Mod) is different in this ezample to Example where R is the same

but the monoidal structure is different.

4.4 Elementary duality

Throughout this subsection assume A is a small preadditive category with an

additive rigid monoidal structure. We show that elementary duality (see Theorem
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2.4.8) maps fp-hom-closed definable subcategories of Mod-.A to definable tensor-
ideals of A-Mod.

Notation 4.4.1. We will denote the monoidal structure on A by ®, while ® 4
denotes the tensor product of A-modules given in Definition [2.4.7]

Definition 4.4.2. Given a finitely presented right A-module M € mod-A with
presentation
(—ma) S (= mg) = M =0
where m : m; — my is a morphism in A, define (up to isomorphism) the finitely
presented left A-module M € A-mod to have presentation
(my, =) == (my, =) = M 0,

where m" : my — my is the dual morphism to m in A.

Similarly, given a finitely presented left A-module N € A-mod with presenta-
tion

(ng, =) 27 (n, =) = N =0

where n : n; — ny is a morphism in A, define (up to isomorphism) the finitely
presented right A-module N € mod-A to have presentation

(=n")

(_777‘;/) - } (_777‘1/) - N — 07

where nY : ny — ny is the dual morphism to n in A.

Proposition 4.4.3. Let A be a small preadditive category with an additive sym-
metric rigid monoidal structure and induce monoidal structures on A-Mod and
Mod-A via Day convolution product.

The maps (;) : A-mod < mod-A give an equivalence between A-mod and
mod-A.

Proof. Fix a presentation for each N € A-mod. First let us show that (—) :
A-mod — mod-A is functorial. Suppose h : N — N’ is a morphism in A-mod
where N and N’ have presentations (ng, —) o), (n;,—) - N — 0 and

(g, —) oo, (nf,—) = N’ — 0 respectively.
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By projectivity of representables we can choose hy : nj — ny and hy : nfy, — ng

such that the following diagram commutes.

N/

0

Thus, n o hy = hy on’ and dualising we get hy on" = n'V o hy. Therefore we

have the following commutative diagram where the map % is uniquely determined.

(_’n\/) -

(—ym") — 2 (=, m) N 0
(. h3) (—. 1Y) )
o) T ey N 0

It is straightforward to check that any choice of h; and hy induce the same
map h and functoriality of (—)¥ : A — A implies functoriality of (—). So (given
a choice of presentation for all N € A-mod) we have a well-defined functor, (—) :
A-mod — mod-A. Furthermore, since we have a natural isomorphism 14 —
((=)Y)Y, by construction, the functor (—) : mod-A — A-mod defined similary

(fixing a presentation for each N € A-mod) clearly gives a quasi-inverse. [

Lemma 4.4.4. For every L € Mod-A, M € mod-A and N € A-Mod, we have
an isomorphism
(LOM)@4N=2L®4(M®N),

natural in L and N.

Proof. First let us prove that for every a € A, we have an isomorphism (L ®
(—,a)) @4 N = L®4 ((a¥,—) ® N) which is natural in N and L. Recall that
—®4 N and — ® (—,a) are both right exact and therefore preserve direct limits.

Therefore, as Mod-A is locally finitely presentable, it is sufficient to assume that
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L is finitely presented. Suppose L has presentation (—,[;) SN (—,ly) = L —0.

By right exactness of — @4 N and — ® (—, a) we have an exact sequence

(_7l®a)®AN
_

(=L ®a)@aN (—®a)@4N — (LR (—,a)) @4 N — 0.

By definition of ® 4, (—,l®a) @4 N : (—, 1 ®a)@4 N — (—,la®a) @4 N is given
by N(l®a): N(l; ® a) - N(l; ® a). Thus by the Yoneda lemma we have the

following commutative diagram in Ab.

(= hi®a)®a N SILDLL (—la®a)®@4 N
l®a,—), N
(h@a—)N) 29N ey N

By considering Lemma we see that (aY,—) ® — : A-Mod — A-Mod
is right adjoint to (a,—) ® — : A-Mod — A-Mod. Thus we have the following
commutative diagram where the first row of downwards arrows is given by the

adjointness isomorphisms and the second row is given by the Yoneda lemma.

l®a,—), N
((l1®a7_)7N) (( ° ) ) (<l2®a7_)’N)

12
I

av,—)® N)(l
(@, =) & M) — D END v e mw)

By the definition of ® 4 we have ((a¢Y,—) @ N)(I) = (—,1) ®4 ((a¥,—) @ N).
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Furthermore, by right exactness of — ®4 ((a¥, —) ® N) we have an exact sequence

-1 aV,—)QN
(= 1) @4 ((a¥,—) @ Ny SO0,y @4 (@Y, —) @ N)

— Loy ((a,=)®N) = 0.

Thus we have an induced isomorphism (L ® (—,a)) @4 N 2 L ®4 ((a¥,—) ® N)

as shown on the commutative diagram below.

(—,l®a)@4 N
(—h®a)®@a N (= la®a) @4 N (L®(—,a)) @4 N 0
((l®a,—),N) i
((ll ®a’_)7N) ((l2®a’_)7N) i
(<), (@', =) @ N) |
((Zh _)7 (avv _) ® ) - ((127 _)7 (avv _) ® N) i
(_7l) X4 ((av>_)®N) \;:r

(_7l1) (X)A((ava_)(g)]\/v)*> (_7l2) ®A((ava_)®N) »L®A<<a 7_)®N) >0

As each of the isomorphisms in the first and second columns are natural in
(—,1;) and N, the induced isomorphism is natural in L and N. Furthermore, by
properties of dual morphisms in A we have that for every m : m; — mg in A the

following square commutes for i=1, 2.

li m, — ,N
((lu _)7 (m\/’ _) ® N)
((li?_)><m\1/7_)®N) ((Zia_)v(mgv_)@)N)

Therefore the induced isomorphisms (L® (—,m;)) @4 N = L4 ((m), —)®@N)

for ¢ = 1,2 commute with any morphism m : m; — ms in A in the following sense.
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(L& (=m))®aN
(L® (= m)) ®aN (L®(—,mp) @4 N —— (LM) @4 N —— 0

>~

I
L

L®@a((m’,—)®N) v
L ((mY,—)®N) —— Log((my,—)@®N) —— L4 (M&N)— 0

Hence the desired isomorphism (L ® M)®4 N = L ®4 (M ® N) is determined

uniquely by the commutative diagram shown above. [J

Theorem 4.4.5. Let A be a small preadditive category with an additive, sym-
metric, Tigid, monoidal structure and induce monoidal structures on A-Mod and
Mod-A via Day convolution product.

A definable subcategory D C Mod-A is fp-hom-closed if and only if the dual
definable subcategory D¢ C A-Mod is a tensor-ideal.

Proof. By Theorem [3.3.6 D C Mod-A is an fp-hom-closed definable subcategory
if and only if the corresponding Serre subcategory S C (mod-A, Ab)® is a tensor-
ideal.

By [48, Proposition 10.3.5], every functor in the dual Serre subcategory S C
(A-mod, Ab)® has the form F{ with copresentation

0—>FJ?—>A®A—f®i>B®A—
for some Fy € S. Therefore, X € D? if and only if for every f : A — B in A
such that Fy € S, FJ?(X) = 0 equivalently, f ®4 X : A4 X - B®y4 X is a
monomorphism.

By Lemma [3.3.5 S is a tensor-ideal if and only if S is closed under tensoring
with representables, that is, for all Fy € S and all M € mod-A, (M,—) ® Fy =
Fygp € S. Thus D is fp-hom-closed if and only if D¢ satisfies the following:
X € D if and only if for every F; € S, and every M € mod-A,

(MR lRaX: (MRA) @4 X - (M®B)®4X



4.4. ELEMENTARY DUALITY 99

is a monomorphism. But by Lemma [4.4.4]

(M@ f)oaX: (MA@ X = (Mo B)oaX
is a monomorphism if and only if

fOAMR®X): AR (M ®X) = Boag (M X)

is a monomorphism. Therefore, D is fp-hom-closed if and only if for every X € D?
and all M € mod-A, M ® X € D? or equivalently for all N € A-mod, N® X € D?
as (—) is an equivalence (see Proposition . That is, D is a fp-hom-closed if
and only if D¢ is closed under tensoring with finitely presented left A-modules if

and only if D? is a tensor-ideal, as required. [



Chapter 5

Definable subcategories of tensor

triangulated categories

In the rest of the thesis we focus on the triangulated setting. In this section
we consider the relationship between definable subcategories and the monoidal
structure in a rigidly-compactly generated tensor triangulated category. Fix a

rigidly-compactly generated tensor triangulated category T .

5.1 7T -tensor-closed definable subcategories

Since T°¢ is a skeletally small, symmetric monoidal category, we can induce a
symmetric closed monoidal structure on Mod-7¢ via Day convolution product
(see Section and [I1, Appendix A]). The following lemma shows that rigidity

of 7€ implies that representable functors in Mod-7° are also rigid.

Lemma 5.1.1. For C € T¢, the functor (—,C) ® — : Mod-T¢ — Mod-T*°, where
for F € Mod-T¢, (—,C) ® F is defined by Day convolution product, is both right
and left adjoint to (—,CY) ® —. In particular, (—,C') ® — is ezact and commutes

with products and direct limaits.

Proof. We will define the unit and counit and the adjunctions.
For each F' € Mod-T¢ define np : F — (—,CY)® (—,C)® F tobe (—,nc) @ F
where n¢ : 1 — CY ® C is the unit of the adjunction (C ® —) 4 (C¥ ® —)

100
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evaluated at the tensor unit, 1. Similarly, for each F© € Mod-T¢ define €5 :
(—,OYR(—,CY)®F — F tobe (—,ec) ® F where e¢ : C ® CY — 1 is the counit
of the adjunction (C ® —) 4 (CY ® —) evaluated at the tensor unit, 1.

Clearly the above define natural transformations n and €. Furthermore, the tri-
angle identities follow easily from the identities on n¢ and c. Therefore (—, CV)®
— is right adjoint to (—,C) ® —.

For each F' € Mod-T* define n. : F — (—,C)® (—,CY)® F tobe (—,n)® F
where 7, : 1 — C ® CV is the unit of the adjunction (C¥V ® —) 4 (C ® —)
evaluated at the tensor unit, 1. Similarly, for each F' € Mod-7°¢ define € :
(—,CY)®(—,C)®F — F to be (—,e,) ® F where e, : C¥ @ C' — 1 is the counit
of the adjunction (CV ® —) 4 (C'® —) evaluated at the tensor unit, 1. Again, this
defines natural transformations 1’ and €’ and the triangle identities follow easily
from the identities on 7, and €. So (—,C")® — is left adjoint to (—,C)®@—. O

Next we define a monoidal structure on (the skeleton of) Coh(7). For repre-
sentables, define (A, —) ® (B,—) = (A® B,—) for all A, B € T°. Now suppose
that the tensor product is right exact. Therefore, if Fy, F, € Coh(T) have pre-
sentations

(B,—) —> (A, —) = Fy—0
and

(V,—) — (U,—) - F, =0,

then Fy ® F; has presentation

((h2y)-)
(Bol) e (Ao V),—) —2222 5 (AU, —) — F; ® F, — 0.

It can easily be checked that this definition is well-defined up to isomorphism.
Note that since Serre subcategories are isomorphism-closed, the definition of a
Serre tensor-ideal of Coh(7") makes sense, despite only having defined the monoidal

structure up to isomorphism.
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Proposition 5.1.2. [36, Lemma 7.2] There is a duality
§ : (mod-T°)°? = Coh(T),

given by G — 0G where 0G(X) = Mod-T*(G, Hx) for any X € T.
Another way of describing this functor (up to isomorphism) is as follows.

Lemma 5.1.3. [36, proof of Lemma 7.2] If Gy € mod-T* has presentation
(—A) S By Gy o,

then 0Gy € Coh(T') has presentation

24, —) Y2 0,2y 5 66, — 0,

where A5 B L5 ¢ 25 94 is an exact triangle in T°. That is Gy = Fyn (see

Notation [2.5.0)).
(_7f)

Proof. Suppose Gy € mod-T* has presentation (—, A) —=% (—, B) LN Gy — 0.
Then for any X € T, dG;(X) = Mod-T“(Gy, Hx). Suppose o : Gy — Hx, then
mroa = (—,h) for some h: B — X by Yoneda’s lemma.

<_7f) Ty

<_7A) (_7B\> Gf 0

(_7 h\)\\ «

Hx
Furthermore h o f = 0 and given any k' : B — X such that K’ o f =0, (—, 1)
must factor through 7¢, say (—,h') = o’ o 7wy for some o/ : Gy — Hy. Therefore
as abelian groups we have 0G(X) = {h: B — X : ho f = 0}. Now consider the
exact triangle A ENY ;NGRS )\ morphism h : B — X satisfies ho f =0
if and only if A factors as h = g o f’ for some g : C' — X. Clearly — o f’" induces
an isomorphisms (C, X)\{g: C = X :g=g o f"} > {h:B— X :h=go f'}.
Therefore for all X € T, 6G¢(X) = (C,X)\{9: C = X :g=¢' o f'} = Fm(X),
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where Fy» € Coh(7) has presentation (XA, —) Yo, (C,=) = Fpr — 0. It

is straight forward to check that these isomorphisms are natural and therefore

We also denote the (unique up to natural isomorphism) inverse equivalence
Coh(T)°? = mod-T¢ by . The monoidal structure on Coh(7) defined above
is such that the functors ¢ in both directions are monoidal with respect to Day
convolution product on mod-7°. That is, for F,G € Coh(T) we have FF @ G =
(0F ® 0G).

As § is an equivalence, if S C Coh(7) is a Serre subcategory, dS C mod-T°
given by applying ¢ to each functor in S, is also a Serre subcategory. Let D C T
denote the definable subcategory consisting of all X € T annihilated by all functors
in S. Then G € S if and only if G € S if and only if (G, Hx) =0 for all X € D.

With Notation [2.5.6] in mind, have the following Lemma.

Lemma 5.1.4. [/, Lemma 2.2] Suppose A LBl o vaisa distinguished
triangle in T°. Furthermore, suppose J is a cohomological ideal of morphisms in

T¢ with corresponding Serre subcategory S C Coh(T) (see Theorem |2.5.11) and
set C=6S C mod-T¢. Then the following are equivalent:

(i) f'ed;
(ii) Gy € CC mod-T¢;
(iii) Fp € S C Coh(T).
Proof. (ii) <= (iii) Holds by Lemma[5.1.3]

(i) < (iii) (f', D) = 0 if and only if every morphism C' — D factors via f”
if and only if Fy(D) =0. O

Lemma gives us a clear ‘picture’ of the connections explored in [36] be-
tween the homological ideals of morph(7°), the Serre subcategories of Coh(7) and
the Serre subcategories of mod-T*.

Proposition below shows that with respect to the monoidal structures
defined above, ¢ sends Serre tensor-ideals to Serre tensor-ideals. First we give a

useful lemma.
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Lemma 5.1.5. A Serre subcategory S of Coh(T) is a tensor-ideal of Coh(T) if
and only if for all F € Coh(T) and A € T¢,

F® (A —)eS.

Proof. The same argument as [12, Lemma 2.12]. O
Proposition 5.1.6. The equivalence 6 : (mod-T¢)°® = Coh(T) maps Serre
tensor-ideals of mod-T° to Serre tensor-ideals of Coh(T).

Proof. By Lemma [5.1.5] S is a Serre tensor-ideal of Coh(7) if and only if S is
closed under tensoring with representables. But S is closed under tensoring with
representables if and only if for every Fjp» € S and C € T¢, Fgm € S. By
Lemma|5.1.4] and noting that for all C' € T¢, C'® — sends exact triangles to exact
triangles, this property is equivalent to saying, that for all Gy € S C mod-T*
and for all C' € T¢ Gegs € dS, equivalently, ¢S is closed under tensoring with
representable functors. It remains to apply [12, Lemma 2.12], which gives that §S
is a Serre tensor-ideal of mod-7° if and only if it is closed under tensoring with

representable functors. [

Definition 5.1.7. We say that a definable subcategory D of T is T°-tensor-
closed (respectively T-tensor-closed) if for all X € T¢ (respectively X € T)
and forall Y e D, X ®Y € D.

We say that D C T is a definable tensor-ideal if D is a definable subcategory,
T-tensor-closed and triangulated.

We say that a cohomological ideal J in T¢ is T“-tensor-closed if for every
f:A—=BinJandevery CeT C® feJ.

The following theorem gives a tensor-analogue of [2.5.11]

Theorem 5.1.8. Let T be a rigidly-compactly generated tensor triangulated cate-
gory, D be a definable subcategory of T, S be the corresponding Serre subcategory
of Coh(T), C=0S C mod-T¢ and J be the corresponding cohomological ideal of
morphisms in T¢ (see . The following are equivalent:
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(i) D is T -tensor-closed;
(11) D is T*-tensor-closed;
(111) S is a Serre tensor-ideal;
(iv) S is closed under tensoring with representable functors;
(v) Cis a Serre tensor-ideal;
(vi) C is closed under tensoring with representable functors;
(vii) J is T°-tensor-closed.

Remark 5.1.9. Recall from Section [2.5] that every pp formula in the language
Z(T) is equivalent to a division formula ¢ of the form Jyp, x4 = ypf for some
f:A— Bin T° By Proposition , ¢y is equivalent to ¢y for f': A — B if
and only if there exist morphisms k : B — B’ and | : B’ — B such that f =10 f’
and f' = ko f. Note that this defines an equivalence relation on morph(7¢). Thus
there is a bijective correspondence between the equivalence classes of pp formulas
in Z(T) and the equivalence classes of morph(7°¢) with respect to the equivalence
relation defined above.

Furthermore, viewing pp formulas as morphisms in 7¢, the set, Z, of pp for-

mulas that ‘define’ a definable subcategory D C T, in the sense that
D={XeT:9s(X)=0, Vf eI}
is given by the cohomological ideal
T=J={f €morph(T°) : (f,X)=0, VX € D}.

In order to prove Theorem we first give some Lemmas.

Lemma 5.1.10. [58, Lemma 2.12] Fix C € T¢ and let o denote the natural

1somorphism
a:CY®— — hom(C, —),
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of functors T¢ — T¢, with components ay : C¥V @ A — hom(C, A) given by the
natural evaluation map for all A € T€.
The natural isomorphism « extends to a natural isomorphism of functors T —

T. In particular, for every C € T¢ and X € T the natural evaluation map,
CY ® X — hom(C, X),
1S an isomorphism.

Lemma 5.1.11. A definable subcategory D of T is T °-tensor-closed if and only if

it is T -tensor-closed.

Proof. Suppose D is T °-tensor-closed. As D is definable, X € D if and only if
(f,X)=0for all f € J, where J C morph(7°) is the associated (by Theorem
2.5.11]) cohomological ideal. Suppose f € J where f : A — B and U € T¢ If
[ : U®B — X then the adjunction between U ® — and UY ® — gives a map
[:B>U"®X. AsDis T°-tensor-closed, UY @ X € D so lo f = 0. This implies
that [ o (U ® f) = 0. Therefore, for every U € T¢, (U ® f,X) = 0. Consider the

following commutative diagram in Ab.

~

(U® B, X) (U, BY ®X)
Uef X) U, e X)
Ued X)—— (U, Ao X)

From the diagram we can see that, (U ® f, X) = 0 for every U € T¢, if and
only if (U, f¥ ® X) = 0 for every U € T¢, equivalently, f¥ ® X is a phantom map.
By [12, Proposition 2.10(a)] if f¥ ® X is a phantom map, then so is f¥ @ X @ Y
forallY € T.

We have shown that if X € Dand Y € T, then f¥® X ®Y is a phantom map
for every f € J. In particular, as the tensor unit 1 € 7¢, (1, f¥®@ X ® Y) = 0 for
every f € J. But then (f, X ®Y)=0forevery fe TsoX®Y e€D. O

Now let us give a proof of Theorem [5.1.8]
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Proof. (i) <> (ii): A definable subcategory D is T-tensor-closed if and only if it
is T °-tensor-closed by Lemma [5.1.11

(iii) +» (iv): A Serre subcategory S C Coh(7) is a tensor-ideal if and only if
it is closed under tensoring with representable functors by Lemma [5.1.5

(v) <> (vi): A Serre subcategory C C mod-7° is a tensor-ideal if and only if
it is closed under tensoring with representable functors by [12, Lemma 2.12].

(iii) +» (v): S C Coh(T) is a Serre tensor-ideal if and only if C = §S C mod-T*
is a Serre tensor-ideal by Proposition .

(iv) < (vii): A Serre subcategory S C Coh(T) is closed under tensoring with
representable functors if and only if for all Fy € S and all A € T¢, Fugr € S. But
by Lemma this happens if and only if J is T °-tensor-closed.

(ii) <> (iv): It remains to show that D is T“-tensor-closed if and only if S is
closed under tensoring with representable functors. Let Fy € Coh(7) and C € T*.
Consider the following diagram, where the vertical maps are natural isomorphisms
induced by the adjunction between C' ® — and CV ® —.

(C ® f7 _)
(C® B,—) (C®A -) (C,—)® Fy 0
(B,CV® _)(f, o _)(A, CV®-) Fro(CV® —) 0

So there exists a natural isomorphism (C, —) ® Fy — Fyo (CY ® —). Therefore
forall FeSand C e T (C,—)®@F €S

< forall FeS,CeTand DeD, (C,—)®@ F)(D)=0

<« forall FeS,CeTand De D, F(CY® D) =0

< forallC¥eT¢and DeD,CY®D eD.

Noting that (CV)Y = C for all C' € T¢ (see [58, Remark 1.4]), we have that the
last statement is equivalent to ‘D is closed under tensoring with compact objects’.

O

Let us consider an example.
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Example 5.1.12. We consider some definable subcategories of kVy-Mod. Let ¢
be the pp formula Jy x = ay and ¢ be the pp formula Iy, 3z, x = ay Nz = bz.

Clearly, ¢/ is a pp-pair. The definable subcategory defined by closure of ¢/ is
generated by the following indecomposable pure-injectives

(i) M(D),
(ii) M("(b~'a)), n € N,
(iii) M("(b~a)bY), n € 220,
(iv) M(*(b~"a)),
(v) M(*(a™'b)),
(vi) N(*(ab™")),
(vit) M(ba™* N i), i € NU{—0c0, 400}, A€ k",

(viii) M(ba™ G).

Similarly, we can let ¢' be the pp formula Iy x = by and 1 be as above. Then

&' [ is a pp-pair. The definable subcategory defined by closure of ¢' /1) is generated
by the following indecomposable pure-injectives

(i) M(D),
(i) M("(b~'a)), n €N,
(iii) M("(ab=)a), n € Z=°,
(iv) M(*(b~"a)),
(v) M(*(a™'b)),
(vi) N(*(ba™")),
(vit) M(ba™* N i), i € NU{—00, 400}, € k¥,

(viii) M(ba™t, G).
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By using computer package ‘QPA’ (see [28]) in GAP (see [20]), one can see
that M(ab~tab™') @ M(b™'a) 2 P® P ® P @ M(ab™'), where P = kV, denotes
the four dimensional indecomposable projective module (see Appendiz . Thus

neither of these definable subcategories is T -tensor-closed.

Proposition 5.1.13. Suppose X is a collection of objects in T and D = <X>def 18

the definable subcategory generated by X. Then D is T -tensor-closed if and only
if, for all X € X and for allC € T¢, C ® X € D.

Proof. If D is T-tensor-closed, X € X and C' € T¢ then clearly C' ® X € D.
Conversely, suppose that for all X € X and for all C € T¢, C® X € D. Let
J C morph(7°) denote the cohomological ideal associated to D. Recall that
f e J if and only if (f,X) = 0 for all X € & if and only if (f,X) = 0 for
all X € D. We show that J is T“tensor-closed. Suppose f € J, C € T¢ and
X € X. Then (C® f,X) = (f,CV® X) and (f,CY ® X) = 0 since CV € T*
meaning C¥ @ X € D. Therefore C® f € J and J is T “-tensor-closed. It remains
to apply Theorem [5.1.8, O

Corollary 5.1.14. If X is any T “-tensor-closed full subcategory of T, then <X>def

is T -tensor-closed.

Example 5.1.15. Consider the definable subcategory D = <M(a)>def of kV;-Mod.
We claim that D is a T -tensor-closed definable subcategory.

Recall that the band module M (ba™*, \;n) for A € k* and n € N has generators
2t and 24 for i =1,...,n and relations as follows.

azi =z, i=1,...n.

azb=0,i=1,..,n.
bei = Az | i=1

b+ 20 i =2, n.

b2k =0,i=1,..,n.
We show that M (a) @ M (ba=', \,n) = P™. Denote the generators of M(a) by

zo and x1 with axg = x1 and ax; = bxg = bxr; = 0.
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Set

y{:x0®z{+xo®zg+x1®z§,

W=20®2d +0 @+ ® 4

; To @2t +11 @20 + (A + 1)xo @ 25 J=1

Yl = ‘ } ‘ - and
ToR2 +01 @02+ A+Dre@2+10®25 j>2
ToR 2+ 11 Q2 + ARz + A+ Doy @20 j=1

yiz x0®z{+x1®z{—|—)\x0®z§+x0®zg_l
+(A+1)x1®z§+$1®z§71 Jj=2,

forj=1,..n.

Note that oz; ® 2F) = (ax; @ 2F) + (2; ® azf) + (ax; @ azF) for a = a or
b. It is straightforward to check that ay] = ayy = y| + 3, ay = ay; = v} + vi,
by{ = byg = y{ + y§ and by% = byi = yé + yﬁ for 7 = 1,...,n. Recall that the
indecomposable projective P is giwen by P = kVy with generators 1,x,y and xy,
where a acts as x+1 and b acts as y+ 1. Consequently, the generators satisfy the

following relations,

al=z+1=2+z=ax
ay::r;y+y:a:2y—|—xy:axy
bl=y+1=y"+y=0by and

br = 2y + x = xy* + vy = yry + vy = bay.

Therefore 1 +— y{. T > yg, Yy — y§ and xy —> yi for 7 = 1,...,n defines an
isomorphism between P and the submodule of M(a) @ M(ba™', \,n) generated by
y{, yg, y§ and yi for each j = 1,..,n. To show that the yf foriv=1,....4 and
j=1,...,n generate M(a)@M (ba=', \,n), one can show that the generators r;Qz"

fork=1,2,1=1,2 and m = 1,...,n can be expressed as linear combinations of
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the y?. Indeed,

i) A T  +ws) ifj=1
To ® 25 = . ) -

Ayl +y) + A @z j =22,
can be seen inductively to be expressible as a linear combination of the yf . Simi-

larly, we have

2 ® 2 = A ys +yi) + 20 ® 2 j=1
1 2 — . . . . .
M +y) oo+ A ee@ 2 F AN @ 27!

J=2.
Given that the o ® z% can be expressed as a linear combination of the yf so can
£1Q 2 forj=1,..,n. In addition, to® 2z =yl + 0@ 2+ 11 @2} for j=1,....n
so we can also express each xy ® z{ as a linear combination of the yf Finally an
expression for ri ® Z{ = y% + 29 & z{ + 11 ® z% in terms of the yf can be computed
using the expressions for xo ® z{ and r; ® z%

Neat we show that, for anyn € N, M(a)®@ M("(b~'a)) = P™ @ M (a). Denote
the generators of M(a) by x¢ and x1 with the action of a sending xo to x1. This

can be pictured as follows.

Zo

X1

Denote the generators of M("(b~'a)) by xg, 1, ..., Tan with the action of a and

b as pictured below.

Ton—2 ) Zo

Lon
\ / b a

Ton—1 sl
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Forj=0,...n—1, set

Lo xg+ X1 Qxy+ Lo X Toy + 1 X Loy ]:0

0o To & Toj + X1 & Ty J=1

i JTo®@To+tTo @11+ 2o T2 j=0

=T To @ Tgj + T @ Tojy1 j=1

L To @ To + T1 @ To + T @ Tap—1 + T1 ® Top—1 + T QT + 71 QT2 Jj=0
o To ® Toj + &1 ® Toj + To ® Toj—1 + T1 @ Taj1 Jj=1
i To @ T+ To QT + To @ Toy +Tog X Top—1 J =0

o To @ Toj + X & Tojp1 + To @ Toj1 j=1

Y1 = To @ Tg

Y =ToR® X1 +2T1 QX9+ T1 & x7.

It can be checked that az) = az) = 2 + 21, azg =az] = z§ + 2, b2l = bzg =
2+ zg,, and bz} = bz = 2} + 2} for j = 0,....,n — 1 and therefore the submodule
generated by z{, zg, z§ and z;{ is isomorphic to P for each j = 1,...,n. In addition
ayr = Yo and by; = ays = by, = 0 so the submodule generated by y; and ys is
isomorphic to M(a).

To show that the z*g fori=1,...;4 and j =0,....,n — 1 together with y; and ys
generate M(a) @ M("(b~ta)) we show that each generator xy @ x; for k =0,1 and

[ =0,....,2n can be written as a linear combination of the zf, y1 and yo as follows.

Lo @ Ton—1 = 25 + 2
1 @ T :z{+z§—|—z§+zi, forj=1,...n—1
To @ Tgj—1 :zg—i—zi forj=1,...n—1
1 @ Top—1 :z?+zg+zg~l—zg
To @ Ty; =+ 4+ forj=1,...,n—1

ST B Y eu :
T Q Xy =21+ 25+ 2, +z forj=1,..,n—1



5.1. T-TENSOR-CLOSED DEFINABLE SUBCATEGORIES 113

To ® xo = Y1
T QTo=1ys+ 2 + 23
To ® Tan = Y1 + 29 + 23 + 25

0 0 1 1 1 1
T1 Q@ Top = Y2 + 21 + 25 + 21 + 25 + 23 + 24

Neat we show that, for anyn € N, M(a)®@ M ("(ab~')a) = P™ @ M (a)® M (a).
Denote the generators of M(a) by x¢ and x1 with the action of a sending xy to x.

This can be pictured as follows.

Zo

T1
Denote the generators of M(™(ab™')a) by xg,x1, ..., Tan1 with the action of a
and b as pictured below.
Ton—2 ) To

NS N/

Tont1 Ton—1 T

Forj=1,...n, set

Z{ :l'0®l‘2j+l'1®l‘2j

Z% =20 Toj + 29X L2541

J _

Z3 = Xg ®£L'2j + 21 ®$2j + X9 ®£E2j71 + 21 ®.’L’2j,1

J _
2y =20 & Toj + 29 ® T2j+1 + 29 ® Toj—1
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Y1 = To @ Tg
Yo =29 R T1+T1 ®Tg+ T1 QX
yizxo®x2n+1

/
Yo = T1 & Topy1

It can be checked that az] = az) = 2] + 2, az) = az) = 2} + 2}, bz] = bz} =
24 2] and bz = bz = 2} + 2] for j = 0,...,n — 1 and therefore the submodule
generated by z{, z%, z% and zi is i.somorphic to P for each 7 =0, ...,n—1. In addition
ayy =y and by; = ays = byy = 0 and similarly for yy and y) so the 2-dimensional
submodules generated by y1 and yo (respectively yy and yy) are isomorphic to M (a).

To show that the zf fori =1,..,4 and j = 0,....,n — 1, y1,4}, y2 and v
generate M(a) @ M("(ab™")a) we show that each generator x @x; for k = 0,1 and
[=0,...2n+1 can be written as a linear combination of the zg, Y1, Y1, Yo and yh

as follows.

To @ To = Y1
®ry 1 =2+2 j=1
Lo WT2j—1 =2 T2 J=1L.,N
/
o @ Tont1 = Yy
, - - ‘
A4+ forj=1,...,n—-1
To Q@ Toj = )
J oy L
Z+ 0 J=n
/
T1 & Tant1 = Yg
j ' j+1 i+
A4+ +z0 j=1.,n-1
T1 Q Xy = 4 A
T R .
Z1+ 2+ J=n
TIQToj1 =2+ 2+ 2+ 2, forj=1,...,n

x1®x0:y2+z%+z§.

Neat we show that, for anyn € N, M(a)®@ M(*(ab™')) = P™ @ M(a). Denote
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the generators of M(a) by xo and x1 with the action of a sending x¢ to x1. This

can be pictured as follows.

Zo

T

Denote the generators of M("(ab™1)) by xg, 1, ..., Ta, with the action of a and

b as pictured below.

Ton—1 T

Ton Ton—2 T3 Lo

Forj=1,....n, set

=20 Toj—1 + o @ Taj

zg =20 Toj_1 +T1 X Tgj_q

zg =20 ® Toj_1 + To ® Tg; + Lo @ Taj_o

zi = T ® Tgj—1 + 1 Q Toj—1 + To ® Taj—2 + T1 & Toj—2
Y1 = To & Tap

Yo = 21 Q Top

It can be checked that azl = az) = 2/ + 2, azg =az] = zé + 21, b = bzg =
2+ z§ and bz} = bz] = 2} + 2} for j = 1,...,n and therefore the submodule
generated by z{, zg, zg and zf,; s isomorphic to P for each j = 1,...,n. In addition
ay, = Yo and by, = ays = by, = 0 so the 2-dimensional submodule generated by 1,
and yo is isomorphic to M(a).

To show that the z) fori=1,...,4 and j = 1,....n, y, and y, generate M(a) ®
M ("(ab™")) we show that each generator x;, @ x; for k=0,1 and [ =0,...,2n can

be written as a linear combination of the zf, Y1, and yo as follows.
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To & Ton = U1
T1 @ Top = Y2
(L’(]®.T2j_2:Z{+Z§, forjzl,...,n
T Q@ Xojo =2 +25+ 2+ 2, forj=1,..,n
o .
A+ AT forj=1,...,n—-1
To QR Toj_1 = i ‘
Z1+ J=n
T R T = N IS
A+z24+27 +247 j=1,..,n-1

T1Q Toj_1 = . . ‘
2+ 25 4+ j=n

Finally we show that, for anyn € N, M(a) ® M("(b~*a)b") = PV, Denote

the generators of M(a) by x¢ and x1 with the action of a as pictured below.

Zo

X1

Denote the generators of M("(b~ta)b™') by xg, 21, ..., Tons1 with the action of

a and b as pictured below.

Ton41 Ton—1 I3 I

Ton i) Zo
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Forj=1,...n+1, set

g To @ Toj1 + 21 & X1 Jj=1..,n
b To@Toj—1 +T1 RTyj1 + X0 T +21 @9 J=n-+1
i To@Toj_1 +ToR@x25 J=1,...,m
2T To@@Toj1+ToRx9 J=n-+1
To @ Toj—1 +T1 @ Tojo1 +Tog @ Tgj_2 +T1 Qx50 J=1,...,n
Z:]’; = To® X1+ X1 QX1+ Tp X Toj—2+ X1 & Tgj—2
+29 Q 29 + 71 ® X9 j=n+1
i To @ Toj_1 + T RTyj +T9g @ Tej—2 J=1,....n
1=

To® Toj1 +To@To+TgRxgj—2 J=n-+1

It can be checked that az] = az) = 2| + 23, az} = az; = 25 + 21, bz] = bz} =

2+ zé and bz) = bzl = 20 + 2] for j = 1,...,n+ 1 and therefore the submodule

generated by z{, 23, z§ and zi 15 1somorphic to P for each j =1,...,n+ 1.

To show that M(a) @ M("(b~'a)b™") is generated by the 2 fori=1,...,4 and
j=1,...,n, we show that each generator x; ® x; fork=0,1 andl =0,....2n 4+ 1

can be written as a linear combination of the z! as follows.

Ty @ Taj—2 :z§+zi, fory=1,...,n+1
x1®x2j,2:z{+zg+z§+zi, forj=1,..,n+1

, i o .
A+ 2T+ forj=1,...n
l’o@l’gjfl: ; ) . .

, A 1 - A
2+ 2+ 2T + 2 j=1,...,n

18 T2j-1 = VRN RS U B | 1
ittt tatz j=n+1
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Thus we have shown that for every indecomposable finitely presented module
M in kV;-Mod, M(a) ® M is a direct sum of copies of M(a) and P. Therefore,
in kVy-Mod, M ® M(a) € <M(a)>def for every indecomposable compact object M.
Since the tensor product commutes with direct sums and every compact object is
a direct sum of indecomposable finitely presented modules, it follows that M &
M(a) € <M(a)>def for all compact objects M. By Proposition|5.1.13, the definable
subcategory generated by M (a) is T ¢-tensor-closed. Finally applying Theorem
we conclude that <M(a)>def is T-tensor-closed.

Notation 5.1.16. Given a subcategory X of a finitely accessible category C, we
denote by lim & the closure of & under direct limits.

We have established a one-to-one correspondence between the T-tensor-closed
definable subcategories of 7', the Serre tensor-ideals of Coh(7") and mod-7* and the
T*-tensor-closed cohomological ideals of morphisms of 7°. In [12], Balmer, Krause
and Stevenson associate to a Serre tensor-ideal C of mod-7° a pure-injective F € T
such that lim C = ker(Hp ® —) (see [12 Theorem 3.5]).

Let H : T — Mod-T¢/ lim C denote the composition
T 5 Mod-T¢ < Mod-T*/lim C.

Such a pure-injective, F, is constructed by considering the injective hull, I, of H,
in Mod-7°¢/ lim C, where 1 € 7" is the tensor unit. Here the monoidal structure on
Mod-T* is induced by that of 7¢ by Day convolution product (see Section and
the monoidal structure on the localisation Mod-7¢/ hﬂ C extends that in Definition
3.3.90 The quotient functor g : Mod-7¢ — Mod—TC/liﬂ C admits a right adjoint, r,
which preserves injectives (see [12, Proposition 2.13(e)]) and the restricted Yoneda
functor H : 7 — Mod-7T ¢ identifies the pure-injective objects in 7 and the injective
objects in Mod-7¢. Therefore there exists a unique up to unique isomorphism pure-
injective £/ € T, such that Hg is isomorphic in Mod-7° to r(I) that is the image
under the right adjoint r of the injective hull in Mod-7°¢/ hg C of Hy.

We have the following ‘picture’.
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C C modTe Proposition[5.1.6] S C Coh(T)

Serre Serre
®—ideal ®—ideal
([12],3.1) Theorem 5.1.§
E < T D - T
pure— T —tensor—closed
injective definable

Proposition 5.1.17. Let C C mod-7°¢ be a Serre tensor-ideal and E € T be the
associated pure-injective as in [12, Construction 3.1]. Suppose D is the definable
subcategory corresponding to the Serre subcategory S = §C C Coh(T).

Then the cohomological ideal associated to the definable subcategory D C T is

given by J = {f" € morph(T°) : E® f' = 0}.

Proof. Suppose f': B— C'in T¢and E® f' = 0. Completing f’ to a triangle in

T°¢ and tensoring with F, we get an exact triangle

EeAZL g2 poc 2l Ee e
Since £ ® f' = 0 every morphism X — F ® B factors via £ ® f. Since Hg ® Gy

has presentation

(77E®f)

(-, E®@A)|lre —— (-, E® B)|7e > Hp ® Gy — 0,

Hp ® Gy = 0 meaning Gy € Cas lim C = ker(Hg ® —). Therefore, by Lemma
b.14 f'eJ.

Conversely, suppose ¢’ : V- — W in T°¢ is in the cohomological ideal associated
to D. Complete ¢ to a triangle and rotate to obtain a triangle of form U % V g—/>
w LN YU. By Lemma [5.1.4] G, € C. Therefore, Hp ® G4, = 0. Note that we

have exact sequence

(- E@U)lr "2 (— B V)

TC_)HE®G9_>0'
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Considering the exact triangle, £ ®@ U P29, | ®@V Led g QW red g ® XU,

we see that Hp ® G, = 0 implies that £ ® ¢’ is phantom. But by [12, Corollary
3.6], £ ® ¢ is phantom if and only if £ ® ¢’ =0, as ¢’ € morph(7°). O

Remark 5.1.18. In other words, Proposition tells us that for any 7T-tensor-
closed definable subcategory D C T there is a pure-injective E such that D is
defined by a collection of pp formulas ¢ of the form Jyp, x4 = ypf where f
ranges over the morphisms in 7°¢ such that £ ® f = 0.

Proposition 5.1.19. Suppose we have a Serre tensor-ideal, C C mod-T°¢, and
corresponding pure-injective E € T as in [12, Construction 3.1]. Set S = 6C C
Coh(T) and let D C T be the corresponding T -tensor-closed definable subcategory
as in Theorem[5.1.8. Then E € D.

Proof. By Proposition 5.1.17) £ € D if and only if, (f,E) = 0 for all f €
morph(7°) such that £ ® f = 0. Suppose F ® f = 0 where f : A — B is
a morphism in 7¢ and g : B — E. Then Hggy = 0 so Hpg(gyy) = 0. By
[12, Corollary 3.6] Hgg(go)) = 0 implies the image of Hg; under the quotient
map Mod-T¢ — Mod—Tc/l'g C is zero. Therefore since F is pure-injective and
Hg ¢ hﬂ C meaning F is in the image of the right adjoint to the quotient functor
Mod-T* — Mod-T*/lim C, [12, Corollary 2.18(c)] implies that go f =0. O

5.2 Definable tensor-ideals

Recall that the distinction between a T-tensor-closed definable subcategory and a
definable tensor-ideal is that a definable tensor-ideal is a triangulated subcategory
(Definition [5.1.7)). In this section we consider the role of definable tensor-ideals in

a rigidly-compactly generated tensor triangulated category 7. It_is these triangn-

lated T -tensor-closed definable-subcategories that we can link to tensor triangular

geometry (Qna Ch qpfpr @

Notation 5.2.1. For a full subcategory X C 7 and I C Z, we denote by */X the
full subcategory with objects {Z € T : (Z,3'X) = 0,VX € X,i € I}. We write
just X for the case I = {0}.
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Similarly we denote by X7 the full subcategory of 7 with objects {Z € T :
(X,XZ)=0,VX € X,i € I}. We write X* for the case I = {0}.

First we show that D C T is a definable tensor-ideal if and only if +D is a
smashing tensor-ideal of 7. The correspondence between triangulated definable
subcategories and smashing subcategories is already known (e.g. see [37] and [40,
Remark 6.4]). However, for completeness we will give details of the proof before

establishing a tensor version.

Definition 5.2.2. A full triangulated subcategory B C T is said to be smashing

if the inclusion functor B < 7T has a right adjoint which preserves coproducts.

Definition 5.2.3. Full subcategories 4,V C T form a torsion pair if the follow-
ing hold:

(1) T, V) =0;
(ii) U and V are closed under direct summands;

(iii) For every object X &€ T there is an exact triangle
U—=X—=>V =XU

such that U e i/ and V € V.

A torsion pair, (U, V) is said to be a t-structure (respectively co-t-structure)
if XU C U (respectively X7'U C U). Given a t-structure (U, V), U is called the
aisle of the t-structure and V is called the coaisle. The heart of the t-structure
(U,V) is given by H; =U N V.

We will show that smashing subcategories B and triangulated definable sub-
categories D lie in torsion pairs (B, D). The following equivalent characterisation

of a smashing subcategory will be useful.

Proposition 5.2.4. (e.g. [46, Theorem 4.4.3]) Let B C T be a full triangulated
subcategory. Then B is a smashing subcategory if and only if B is the aisle of a

t-structure (B, BY) such that B* is closed under coproducts.
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Definition 5.2.5. We say that a full subcategory X C T is suspended (re-
spectively cosuspended) if it is closed under direct summands, extensions and
positive (respectively negative) shift.

We say that a full subcategory X C 7T is precovering if for every Y € T there
exists an X € X and a morphism f : X — Y such that, given any morphism
g : X' — Y with X' € X, there exists some h : X’ — X such that ¢ = ho f.

Preenveloping subcategories are defined dually.

Proposition 5.2.6. ([/4, Proposition 1.4] and [3, Example 2.4(3)]) Let V be a
suspended and precovering (respectively cosuspended and preenveloping) subcate-

gory of T. The inclusion functor V < T has a right (respectively left) adjoint.

Proof. The proof in the suspended case follows the argument of [44, Proposition
1.4]. The cosuspended case is dual. For completeness we give the proof of the
cosuspended case in full. Suppose X € 7. To find a left adjoint A : 7 — V
we need to find a universal morphism ex : X — A(X) with A(X) € V. As V
is preenveloping, we have a morphism f : X — V with V € V such that every
morphism f' : X — V' with V' € V factors (not necessarily uniquely) through
f. Complete f to an exact triangle, say X 1U — X Iy v % U and choose a V-
preenvelope of U, say f: U — W, with W € V. We have the following morphism

of triangles.

-1y X / 1% a U
2718 Kl bl = 8
_1 “
Sl 7z i Ve W

As V is cosuspended X' and Z are objects of V and since f : X — V is a
V-preenvelope, the morphism k : X — Z factors (not necessarily uniquely) via f,
say k=ho f. Set e=goh:V — V and note that eo f = f. We will show that
e is an idempotent. First we prove the following claim:

Claim: If [ : V — V', with V' € V, satisfies o f =0, then [ o e = 0.
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Indeed, since [ o f = 0, [ factors via o say [ =1’ o« and since 8 : U — W is a
V-preenvelope and V' € V, I’ factors via 3, say I’ =" o . Sol = 1" o ( o«) which
implies that [ o g = 0. In particular, loe =10 goh = 0 and we have proven the
claim.

Now since eof = e, (1—e)of =0and (1—e) : V — V where V' € V, so applying
the claim we get (1—e¢)oe = 0 or equivalently e? = e. Since idempotents in 7 split
(as T has coproducts- see [43] see Proposition 1.6.8]) we can write e = t o s where
s:V = ‘7, t:V—o>Vandsot= idy. Since V is closed under direct summands,
V e V. Weset V = A(X) and claim that ex = sof : X — A(X) is universal among
morphisms from X to an object in V. Indeed, if f': X — V' where V' € V then
f'= f"of as fis a V-preenvelope. But then f' = f"oeof = f"otosof = f"otoc.
Now if there exists some [ : A(X) — V' such that f/ = loex = 1loso f then
(f"ot—1)oso f=0. Therefore, by the claim (f” ot —1)osoe =0 and since
soe = s we get (f"ot—1)os = 0. Finally precomposing with t gives f"ot—1 =0

and the factorisation is unique, as required. [J

Corollary 5.2.7. [33, Definition and Proposition 1.1] Let V be a suspended and
precovering (respectively cosuspended and preenveloping) subcategory of T. Then
(V, V1) (respectively (1V,V)) forms a t-structure.

Proof. See [33, Definition and Proposition 1.1] for the suspended case. The
cosuspended case is dual. For completeness we sketch the proof of the cosuspended
case.
We need to show that for every object X € T, there exists a distinguished
triangle
X - X - X">3X'

such that X’ € YV and X” € V. As V is cosuspended, the inclusion V « T
has a left adjoint by Proposition [5.2.6] Let us denote it by A : T — V), so
VAMX),Y)=2T(X,Y) forall X € T and Y € V. Let X be an object of T and
ex : X — A(X) be the map corresponding to idy(x) under the above isomorphism.

Complete ex to an exact triangle in T,
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We want to show that Z € +V. Suppose h : Z — V' is a morphism in 7, where
V' € V. Consider the following morphism of triangles.

E_l
SIA(X) L R L SV

YIN(X) % Y A(X)
ho Z*I'y k

Since V is closed under extensions, ¥ € )V and therefore, as shown on the
diagram, the morphism [ factors uniquely through €. Notice that ko soex =
kol = ex. Therefore ko s = idy(x) by the universal property of the left adjoint A.
Therefore hoX 'y = hoX ! (yokos) =0 and h factors through 4, say h = k' 0.
But then since V' € V, I/ : X — V' factors via ex, say ' = h” o ex. Putting this
together we get h =h"oexod =0and Z € +V, as required. [

Next we recall some results from [37] which relate to triangulated definable

subcategories. We start with some definitions.

Definition 5.2.8. [37, Corollary 12.6] An ideal J C morph(7°) is said to be

exact if the following three conditions hold:
(i) J is shift-closed,
(ii) J is cohomological,

(iii) J is idempotent i.e. for every f € J there exist morphisms g, h € J such
that f = hog.

Next we characterise the Serre subcategories of mod-7¢ which correspond to

exact ideals.

Definition 5.2.9. A Serre subcategory C C mod-7°¢ is said to be perfect if the
right adjoint to the quotient functor Mod-7¢ — Mod-7°¢/ %ﬂ C is an exact functor.

A Serre subcategory C C mod-7¢ is said to be shift-closed if Gy € C if and
only if Gxy € C.
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Theorem 5.2.10. [37] There is a bijective correspondence between the following:
(i) the exact ideals J C morph(T¢),
(ii) the smashing subcategories B C T,
(i1i) the triangulated definable subcategories D C T,
(iv) the shift-closed perfect Serre subcategories C C mod-T°.

Here the bijection between (1) and (iii) is given by mapping a smashing subcategory
B to the definable subcategory D = B*, and a definable subcategory D to the

smashing subcategory B = +D.

Proof. (i) <> (ii): This is [37, Corollary 12.5]. The correspondence is given by
J —{X €T : every morphism C' — X with C' € T° factors via some f € J}
with inverse
B — {f € morph(T°) : f factors via some X € B}.
(i) «» (iv): This is [37, Proposition 8.8]. The correspondence is given by
J —{M € mod-T¢: M =im Hy, forsome f € J} C mod-T*

with inverse

C— {f € morph(7°) :im H; € C}.

(ii) «» (iii): Suppose B is a smashing subcategory of 7. By [37, Lemma
12.4], Bt is a triangulated definable subcategory. Conversely, if D is a definable
and triangulated subcategory of T then (+D,D) is a torsion pair by Corollary
. Since D is closed under coproducts, +D is a smashing subcategory by the
well known alternative characterisation given in Proposition [5.2.4] The fact that
these assighments give inverse bijections is a direct consequence of (+D, D) being

a t-structure. 0O
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~

Remark 5.2.11. Let 0 : Coh(7) — (mod-7¢)°? be the duality defined in Propo-
sition [5.1.2] By Lemma [5.1.4] the correspondence between (i) and (iv) is such
that the Serre subcategory C = ¢S where the S C Coh(7T) corresponds to J as in
Theorem [2.5.11] In addition, [35, Theorem 4.2] tells us that the exact ideal asso-
ciated as in (i) <> (ii) to a smashing subcategory B is equal to the cohomological
ideal associated as in Theorem to the triangulated definable subcategory
D = B!. In this sense the correspondences in Theorem are a restriction
of the correspondences given in Krause’s Fundamental Correspondence (Theorem
to triangulated definable subcategories.

The next result describes the relationship between a smashing subcategory B

and the perfect Serre subcategory C C mod-7 ¢ associated by Theorem [5.2.10

Proposition 5.2.12. [35, Lemma 5.9/ Let B be a smashing subcategory of T and
let C be the corresponding perfect Serre subcategory from Theorem |5.2.1().
Then X € B if and only if Hx € hgl C.

Now let us consider what happens when D is not just triangulated and definable

but a definable tensor-ideal.
Proposition 5.2.13. There is a bijective correspondence between the following.
(1) The smashing tensor-ideals B C T .

(1) The definable tensor-ideals D C T .

The bijection is given by B — B+ and D — +D. In particular, a smashing tensor-
ideal B and its associated triangulated definable subcategory D fit into a torsion
pair of the form (B, D).

Proof. Let (B, D) be a torsion pair with B a smashing subcategory and D definable
and triangulated. D is T“tensor-closed if and only if for every Y € B, X € D
and C € T¢, (Y,C® X) = 0 if and only if for every Y € B, X € D and C € T¢,
(CY®@Y,X) = 0 if and only if B is T*-tensor-closed. By Theorem [5.1.8| D is
T-tensor-closed (and consequently a definable tensor-ideal) if and only if it is 7
tensor-closed. It remains to show that B is T “tensor-closed if and only if it is a

smashing tensor-ideal.
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If B is a smashing tensor-ideal it is 7 °-tensor-closed. Conversely, suppose
that B is T “-tensor-closed and consider the family of coproduct preserving exact
functors {X ® — : T — T : X € B}. Applying [57, Lemma 3.8] with M = B
we get that L = {X € T : Y ® X € B, VY € B} is a localising subcategory
of 7. But since B is T*“tensor-closed, 7¢ C L meaning £ = 7. Therefore B is

T-tensor-closed and hence a smashing tensor-ideal, as required. [J

In summary, combining Theorem [5.2.10, with Theorem and Proposition

5.2.13 we have the following triangulated version of Theorem |[5.1.8

Theorem 5.2.14. Let T be a rigidly-compactly generated tensor triangulated cat-
egory, D be a definable subcategory of T, S be the corresponding Serre subcategory
of Coh(T), C =S be the Serre subcategory of mod-T¢ given by applying § to every

functor in' S and J be the corresponding cohomological ideal of morphisms in T¢

(see|2.5.11). The following are equivalent:

(i) D is a tensor-ideal, that is T -tensor-closed and triangulated;
(ii) C is a perfect Serre tensor-ideal;
(111) J is exact and T -tensor-closed.

In addition, the above equivalent conditions hold if and only if B = +*D is a

smashing tensor-ideal of T .

Let us denote the lattice of definable tensor-ideals of 7 by (D®2(T),C) and
the lattice of smashing tensor-ideals of T by (S®(7T), C).

Corollary 5.2.15. Let T be a rigidly-compactly generated tensor triangulated cat-
egory. There is a lattice isomorphism (S®(T), C) = (D®A(T), C)°P.

Proof. Note that if D C D’ and X € 1D’ then for all Y € D, (X,Y) = 0 so
X € *D. Hence *D' C +D. Therefore, the one-to-one correspondence between

definable tensor-ideals and smashing tensor-ideals is inclusion-reversing. [

In the remainder of this section we consider the role of localisation functors.
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Definition 5.2.16. [38, Definition 2.4] A triangulated functor (L,«) with L :
T —-Tanda:LoX = YolL,is alocalisation functor if there exists a natural
transformation 7 : Idy — L such that ¥nx = ax onsx, Ln : L — L? is invertible
and Ln = nL. Colocalisation functors are defined dually.

A localisation functor L is said to be a smashing localisation if L preserves

coproducts.
We have the following characterisation of a smashing subcategory.

Proposition 5.2.17. (e.g. [{0, Proposition 4.4.3]) A full triangulated subcategory
B C T is smashing if and only if it is the kernel of a smashing localisation functor

L:T—T.

If B C T is a smashing subcategory, we can take L to be the composition

T35 B4 T, where 7 is the inclusion functor and A is left adjoint to i.

Proposition 5.2.18. (e.g. [10, Theorem 2.6]) To every smashing localisation
functor L there corresponds a colocalisation functor I' such that, for every X € T
there exists a distinguished triangle, T'(X) — X — L(X) — XI'(X). In this case,
B = ker(L) = im(T"), B+ = im(L) = ker(T") and B = +(B*).

So by Theorem any triangulated definable subcategory, D, can be writ-
ten as B+ = im(L) = ker(T") for some smashing subcategory B with corresponding
smashing localisation and colocalisation functors L and I" respectively.

Next we prove a result from [31] which says that if the kernel of a localisation
functor L is a tensor-ideal, then L is smashing if and only if L = L(1) ® —. First

we prove the following two lemmas.

Lemma 5.2.19. Let (L : T — T,n : Idr — L) be a localisation functor. Then
forall X, Y €T, (nx, L(Y)) : (L(X),L(Y)) = (X, L(Y)) is an isomorphism.

Proof. We claim that the map 6 : (X, L(Y)) — (L(X), L(Y)) which takes a

morphism f : X — L(Y) to 77;(1)() o L(f) : L(X) — L(L(Y)) — L(Y), defines

an inverse for (nx, L(Y")). Indeed, since 1 is a natural transformation, for every
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g L(X) — L(Y), we have nyy)og = L(g) o nrx). But note that nyy) =
(nL)(Y) = (Ln)(Y) is invertible so

9= in o L(g)onex) = Ny oL(9)oL(nx) = npiy 0L(gonx) = (9o(nx, L(Y)))(9)-

Similarly, for any f: X — L(Y) we have that ny)o f = L(f) onx, so

f =150y 0 L) onx = (nx, L)) (10yy © L(F)) = ((nx, L(Y)) © 0)(f),

as required. [

Lemma 5.2.20. [31, Lemma 3.1.6 (b)] Let (L : T — T,n : Idr — L) be a
localisation functor such that for every X, Y € T, if L(X) =0 then L(X®Y) =0
and suppose C € T°. Then npayzc : L(1) @ C — L(L(1) ® C') is an isomorphism.

Proof. First we show that if L(Z) = 0 then (Z,L(1) ® C') = 0 for any Z € T.
Suppose that L(Z) = 0. Then (Z, L(1)®C) = (CV® Z, L(1)) = (L(CY® Z), L(1))
by Lemma [5.2.19] But L(Z) = 0 so L(CY ® Z) = 0 by the assumption on L.
Therefore (Z, L(1) ® C') = 0, as required.

Let

T(L()®0) L L) @ ¢ 222% L(L(1) ® C) — ET(L(1) ® O)

be the exact triangle as in Proposition As L(NL(1)® C)) =0, (I'(L(1) ®
C),L(1) ® C) = 0 meaning v : I'(L(1) ® C) — L(1) ® C is the zero morphism.
Consequently, there exists some p: L(L(1) ® C') = L(1) ® C such that id;q)gc =
ponLmec- Applying L to this equation we get idrLa)ec) = L(p) o L(nmsc) =
L(p)onrnyscy- Since 1 is a natural transformation, L(u)onrryec) = NLyeco -
So 1 is inverse to 1 1)ec as required. [

Proposition 5.2.21. [3], Definition 3.3.2] Let L : T — T be a localisation
functor such that for every X, Y € T, if L(X) =0 then L(X ®Y) = 0. Then the

following are equivalent:
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e There exists a natural isomorphism §: L(1) ® — — L;
e L preserves coproducts.

Proof. Suppose there exists a natural isomorphism 5 : L(1) ® — — L. Then

L(J[xy=rme(]x) = [[cmex) = []LX).

iel il il il

Conversely, suppose L preserves coproducts. For X € 7T, consider the distin-
guished triangle L(D(1)®X) 22 £(x) X2 1(L(1)@ X) — SL('(1)@X). By
[10, Theorem 2.6] L(I'(1)) = 0 so by assumption L(I'(1) ® X) = 0. Hence L(\x) :
L(X) = L(L(1) ® X) is an isomorphism. Define the map By : L(1) ® X — L(X)

by

NL()®X L(xx)™t
SN ) LA

L(1)® X L(L(1) ® X L(X).

Let A C T denote the full subcategory of T given by those X € T such that fx
is an isomorphism. We show that 7¢ C A and that A is a localising subcategory
of T, therefore A =T.

If Bx : L(1) ® X — L(X) is an isomorphism then so is npyex : L(1) @ X —
L(L(1) ® X). But then ¥(n1)gx) is also an isomorphism, so since 3(nnex) ~
Ns(L(ex) ~ Nr(esx, We have Byx is an isomorphism and therefore XX € A.

Suppose X — Y — Z — Y X is a distinguished triangle in 7 and X, Z € A.

Then we have the following commutative diagram where the rows are distinguished

triangles.
L(l)®X Ll)®Y Ll)®Z L(1) ® XX
L(X) L(Y) L(Z) L(XX)

Since fx and (7 are isomorphisms, so is fy. Therefore Y € A and A is
triangulated.

Let us check that A is closed under arbitrary coproducts. Suppose {X;}ier C A
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and consider

We need to show that 1y(1)g[7, x; is an isomorphism. Since for each j € I, X; € A,
we have that for each j € I, np(1)gx; is an isomorphism. Therefore we have maps,

-1 .
nL(1)®Xj L(1)®X;

L(L(1) ® Xj) L(1l) ® X; — [[,(L(1) ® X;) and by the universal
property of coproducts there exists a unique map g : [[, L(L(1)®X;) — [[,(L(1)®

X;) making the following diagram commute.

L(L(1) ® X;)

lL(1)®X;

[T(L(1) ® X3)

[T L(L(1) ® X5)

Now, since L(1) ® — and L preserve coproducts we have isomorphisms = :
ILL(LA) ® X;) = L(L(L) @ [, Xi) and € : [[,(L(1) ® X;) — L(1) ® [ ], X; such
that

Y oirrmex; = L(L(1) ®ix,)

and
§oirmex;, = L(1) ®@iy;.

We will show that the composition

OES | EOE=S | HUOESOES | (OEPIESOEL 1 B9

i

is inverse to nr1)e1, x;- We have the following commutative diagram.



132 CHAPTER 5. DEFINABLE SUBCATEGORIES OF TT-CATEGORIES

[LLM) @ L(1) ® X;)

w V/
// %\
Dell, X;

(L(1) @ I1; Xi) HellX)

It can then easily be checked, through some diagram chasing, that for all j € I,

Y onnyell, x, © € © B iLLmex,) = ILL1)@X;)

and

oy onpmely x, ©& 0 iLmex; = iL@)ex

Therefore 77" o Nl x; ©§ o = 1d[[ Lz(ex,) and poy “onLa el x; °§ =
idy1,(z(1ex,)- Consequently, Eopoy~1is the inverse of NLel], X;- Hence [LX,eA
as required.

Finally, note that by Lemma [5.2.20, nra)zc : L(1) ® C' = L(L(1) ® C) is an
isomorphism for all C' € T¢ so T*C A [

In summary we have seen that, if D is a definable tensor-ideal, then D is the
coaisle of a torsion pair (B,D) where B is a smashing tensor-ideal (Proposition
5.2.13)). Furthermore, the inclusion functor D < T has a left adjoint, A : T — D
and L = i o A\ defines a smashing localisation functor. Therefore L(1) = A(1),
D = im(A(1) ® —) and B = ker(A(1) ® —). Set C = §S where S C Coh(T) is
the Serre subcategory associated to D as in Theorem [2.5.11| Then by Proposition
5.2.120 X € B if and only if Hx € lim C. Recall that H:T— Mod-7*/lim C is
given by the composition T A Mod-Te % Mod-T¢/ lim C. Let H, be the image of
the tensor unit in 7 under H and suppose that the injective hull of H; is given by
Hp, for a pure-injective E € 7. By [12, Theorem 3.5] (see the end of Section
lim C = ker(Hg ® —) and therefore B = ker(F ® —). The following proposition
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shows that FE is isomorphic to the pure-injective hull of A(1).

Proposition 5.2.22. Suppose D is T -tensor-closed and definable and C C mod-T*
is the corresponding Serre subcategory. If the inclusion D — T has a left adjoint,
AT — D, then the (unique up to unique isomorphism) pure-injective E € T

constructed in [12, Construction 3.1] is isomorphic to the pure-injective hull of

A(L).

Proof. Let 1, : A(1) — E, denote the pure-injective hull of A(1) in 7 and note
that A(1) € D implies Ey € D. Let H : T — Mod—’TC/lig C denote H composed
with the quotient map ¢ : Mod-7¢ — Mod—TC/li_n>ﬂ Candlet H,, : Hi — Hg
be the injective hull of H; in the quotient category Mod-7°¢/ @ C as defined in
Construction 3.1 of [12] (see Section [5.1)). Let &1 : 1 — A(1) be the morphism in

T corresponding to idy(;y under the adjunction isomorphism
D(A(1), A(1)) = T(1,A(1)).

Since Fn - H, — Hpg is a monomorphism in MOd—TC/li_n)l C and EEA, the
image of F\ under H, is injective, the map Fm o H., factors through ﬁn-

. H, _

H, Hpg
Hm ° ﬁEl Hk

Hpg,

Similarly, H,, is a monomorphism in Mod-7¢/ lim C and Hp, is injective so any
map Fk(l) — Hp factors via ﬁm. By Proposition @L we have that E € D,
so we have a morphism & : A(1) — E corresponding to n under the adjunction
isomorphism 7 (1, E) = D(A(1), E). By naturality of the adjunction we have

n = £ o 1. By the above observation we have a morphisms &' : £y — F such that

the following diagram commutes.
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H

X -

Hya) Hg

A

By [12, Corollary 2.18(c)] Hy, and H}, correspond to maps k and &’ in 7. Now
since,

Hk/ OﬁkOﬁn:ﬁk/OHm\Oﬁel :Hgoﬁgl :ﬁn,

and Fn is an injective hull, we have that H o H}, is an automorphism. Applying
[12, Corollary 2.18(c)] again, we get that &’ ok an automorphism. In a similar vein,
Fk/onrf = Hyp o ﬁm — H¢ = 0 and since the target of this map, Hp is injective,
k' omy = £. By an identical argument, using that EEA is injective, k on = n) o€;.
Therefore,

kok'omyoe, =kofoe =kon=mn\oe.

Consider the following commutative diagram in Ab given by the naturality of

the adjunction between the inclusion D < T and .

&)

D(A(1),A(1)) T(1,A(1))
(A(1), f) (1, f)
PO, Z) —— T(1, 2)

Given a morphism f : A\(1) — Z, foe; is the image of the identity on A(1) under
the top horizontal isomorphism followed by (1, f). But then f o & is isomorphic
under the bottom horizontal isomorphism to f. So, if foe; = 0 then f = 0. Hence
g1 is a monomorphism and since kok’onyoe; = nyoeq, we have kok’ony =n,. As
My is a pure-injective hull, k£ o k¥’ is an automorphism. Suppose « is the two-sided

inverse of k' o k and [ is the two sided inverse of k o k. Then,

aokl =aok'okok off =k op,



5.2. DEFINABLE TENSOR-IDEALS 135

is inverse to k on both sides. Hence k is an isomorphism and E =2 E, as required.

O



Chapter 6

Topologies associated to tensor

triangulated categories

In this chapter we explore various topologies that can be associated to a rigidly-
compactly generated tensor triangulated category 7. Fix a rigidly-compactly gen-

erated tensor triangulated category 7.

6.1 The Ziegler spectrum

In this section we define five new Ziegler-type topologies.

6.1.1 Shift-closed Ziegler topology

In this section we will define the positive shift-closed Ziegler topology, negative
shift-closed Ziegler topology and shift-closed Ziegler topology on pinj and show
that the frame of open subsets of the shift-closed Ziegler topology is isomorphic

to the frame of open subsets of a quotient topology of the Ziegler spectrum.

Lemma 6.1.1. Let D be a definable subcategory of T with associated cohomological
ideal J and i € Z. Then XD = {3'X : X € D} is also definable in T with

associated cohomological ideal X7 .

136
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Proof. Let J C morph(7°) denote the cohomological ideal corresponding to D
and set X7 = {Xif : f € J}. The full subcategory, X C T, consisting of the
X € T satisfying (f, X) =0 for all f € ¥'7 is a definable subcategory. We show
that X = X'D. Indeed, X € D if and only if (f, X) =0 for all f € J if and only
if (X'f,2'X) =0 forall fe J ifand only if ¥'X € X.

So XD is a definable subcategory with corresponding cohomological ideal
<Eij>C0h0m. It remains to show that £'7 = (X'.7) . Indeed, f € (3'T)
if and only if for every X € D, (f,X'X) = 0 if and only if for every X € D,
(S7if,X) =0 if and only if S7'f € J. So (S17)"™ = 57 as required. O

cohom cohom

Definition 6.1.2. A definable subcategory D of T is said to be positive shift-
closed (respectively negative shift-closed) if X € D implies XX € D (respec-
tively X € D implies ¥7'X € D). A definable subcategory D of T is said to be
shift-closed if it is both positive and negative shift-closed.

We will say that a cohomological ideal J C morph(7°) is positive shift-
closed (respectively negative shift-closed) if f € J implies ¥f € J (re-
spectively f € J implies X7'f € J). We will say that a cohomological ideal
J C morph(7°) is shift-closed if it is both positive and negative shift-closed.

We will say that a Serre subcategory S of Coh(7) is positive shift-closed
(respectively negative shift-closed) if Fy € S implies Fyy € S (respectively
Fy € S implies Fy-15 € S). We will say that a Serre subcategory S of Coh(7) is
shift-closed if it is both positive and negative shift-closed.

Corollary 6.1.3. A definable subcategory, D of T, is positive (respectively nega-
tive) shift-closed if and only if the corresponding cohomological ideal J of
morph(7°¢), is negative (respectively positive) shift-closed if and only if the cor-
responding Serre subcategory S of Coh(T) is negative (respectively positive) shift-

closed.

Proof. D is positive shift-closed if and only if 3D C D if and only if Jp C Jsp.
But by Lemma Jsp = X Jp so D is positive shift-closed if and only if Jp C
Y Jp if and only if f € Jp implies f € L Jp (equivalently X7 f € Jp) if and
only if Jp is negative shift-closed. Similarly, D is negative shift-closed if and only
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if Y='D C D if and only if Jp C Js1p = X1 Jp if and only if Jp is positive
shift-closed.

For the analogous statement regarding Serre subcategories consider Lemma

LId O

Definition 6.1.4. Say that a subset 4 C pinj; is closed with respect to the
positive shift-closed (respectively negative shift-closed) (respectively shift-
closed) Ziegler topology if it is of the form D N pinj, for some positive shift-
closed (respectively negative shift-closed) (respectively shift-closed) definable sub-
category D.

Proposition 6.1.5. The closed subsets in Definition define a topology on
pinj in each of the three cases which we call the positive shift-closed Ziegler topol-
ogy (respectively negative shift-closed Ziegler topology) (respectively shift-closed
Ziegler topology) and denote by ngErJr (respectively Zg> ) (respectively ngzr).

Proof. We provide the proof in the positive shift-closed case. The proof in the neg-
ative shift-closed case is the same but with ‘positive’ and ‘negative’ interchanged.
The proof in the shift-closed case is achieved by removing ‘positive’ and ‘negative’
from the proof below.

Suppose D and D’ are positive shift-closed definable subcategories of 7. Then
the definable subcategory generated by their union, <D up >def, is positive shift-
closed. Indeed, it corresponds to the Serre subcategory Sp N Spr, where S, is the
Serre subcategory corresponding to * for x € {D,D'}. By Corollary [6.1.3, Sp
and Spr are negative shift-closed, so their intersection is also negative shift-closed.
Applying Corollary again gives the required result.

If we have a family {D; : i € I} of positive shift-closed definable subsets of
T, we know that the intersection () D; is definable. We must show that it is also
positive shift-closed. We have X EZEIﬂ D; if and only if X € D; for all i« € I, which
implies that ¥X € D; for all i € l?s[ince the D;s are positive shift-closed). But,
YX €D, for all i € I if and only if XX € (D;, so (D; is positive shift-closed.

It remains to note the relationship betzvévfeen deﬁzrfz;ble subcategories and their

pure-injectives (see [36]). O
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Now let us consider a quotient topology of the Ziegler spectrum which we will
show is equivalent (up to topologically indistinguishable objects) to the shift-closed
Ziegler topology defined above.

Notation 6.1.6. Given a topological space X and an equivalence relation, ~, on
the set X, let ¢ : X — X/. denote the quotient map. We define the quotient
topology on X/. to have open sets given by the subsets with open inverse image

under q.

Remark 6.1.7. Any power of the shift functor applied to an indecomposable pure-
injective gives an indecomposable pure-injective. This follows as X is an autoe-
quivalence on T and the properties that an object of a compactly generated tri-
angulated category are ‘indecomposable’ and ‘pure-injective’ are defined in terms

of the category structure.

Definition 6.1.8. Define an equivalence relation on pinj, by P ~y @ if and
only if there exists ¢ € Z such that P = ¥'Q. Let ¢ : pinjr — pinj;/., denote
the quotient map. We denote the quotient of the Ziegler spectrum under ~y by
287/ -

Lemma 6.1.9. A definable subcategory D of T satisfies D N pinjy = ¢ *(€) for
some subset € C pinj/~,, if and only if D is shift-closed.

Proof. If DNpinj; = ¢ (%) then P € D N pinj; if and only if [P]., € € if
and only if X?P € D for all i € Z. So the indecomposable pure-injectives in D are

~x
closed under shift. The corresponding cohomological ideal 7 is given by
{f € morph(7°) : (f,P) =0, YP € DN pinjs}.

Therefore if f € 7, then for any i € Z, and P € DNpinjr, (X'f, P) = (f,X7'P) =
0 as X7'P € DN pinjy. Hence f € J implies X'f € J for all i € Z meaning J is
shift-closed and by Corollary [6.1.3] D is shift-closed as required.

Conversely, suppose D is shift-closed and set € = ¢(D N pinj;). Then D N
pinjr C ¢ (%) and if P € ¢~ '(¢) then P ~x @ for some Q € D. But then
P =3¥"Q € D as D is shift-closed. Therefore DNpinj; = ¢ (%) as required. [
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Given a topological space X, recall that we denote the frame of open subsets

of X by O(X).

Proposition 6.1.10. The quotient map q induces a frame isomorphism between

O(Zg7) and O(Zgr /).

Proof. Suppose &' C pinj is an open subset of ngzr. Then the closed complement
¢ = pinj;\O = pinj; N D for some shift-closed definable subcategory D. As
D is shift-closed, [P]., ¢ q(%) if and only if for all i € Z, X'P ¢ D if and
only if there exists i € Z, ¥'P ¢ D if and only if [P]., € ¢(O). Therefore
4(6) = (pinjy/s)\a() is open.

Conversely, suppose 0" is an open subset of Zg;/.,. Then by definition of
the quotient topology, ¢~*(&”) is open in pinj, with respect to the Ziegler topol-
ogy Zgr. It is easy to see that the definable subcategory D C 7T such that
pinj-\¢ ' (0") = D N pinj; coincides with the definable subcategory D’ such that
the closed complement C’ in pinj; /.., of ¢ satisfies ¢~*(C’') = D' Npinj;. Indeed,
P € DNpinjy if and only if P ¢ ¢~ (&) if and only if ¢(P) € C' if and only if
P € D' N pinjs. By Lemma D' = D is shift-closed and therefore ¢~1(0”) is
also open with respect to ngzr.

It is straightforward to check that & +— q(€) and 0" — ¢~ '(0") defines an
order preserving bijection (and hence an isomorphism of frames) between the open
subsets of Zg> and Zgr/~, O

Corollary 6.1.11. P and Q are topologically indistinguishable in Zg?— if and only
if [P~y and [Q]~,, are topologically indistinguishable in Zgy /..

6.1.2 7T-tensor-closed Ziegler topology

In this section we define a different Ziegler-type topology.

Definition 6.1.12. We say that a subset ¢ C pinj is closed with respect to the
T-tensor-closed Ziegler topology if there exists a 7 -tensor-closed definable
subcategory D of T such that € = D N pinj.
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Proposition 6.1.13. The closed subsets given in Definition are the closed
subsets of a topology on pinj; which we will call the T-tensor-closed Ziegler

topology and denote by Zg?.

Proof. Let {D; : i € I} be a family of T-tensor-closed definable subcategories.
Then ﬂDi is also T-tensor-closed as if X € ﬂDi, X e D, foralli € I. So for
any YZEEI T, X®Y €D, for all ©+ € I, which Zierilplies X ®Y € ND;. Therefore,
if we set €; := D; N pinj, then the ¢, are a collection of closedZ Eslubsets of pinjr

with respect to Definition [6.1.12] But we have

ﬂ‘é = ﬂ(D, N pinj;) = (ﬂDZ) N pinjr,

iel iel iel

so since (D; is T-tensor-closed and definable, (%; is closed.

Now Zselippose D; and D, are T—tensor—closecf 6afnd definable, so 6; = D, N pinj,
are closed, for ¢ = 1, 2. To show that %, U %5 is closed we need to show that
D = <D1 UD2>def is T-tensor-closed. By [36], the Serre subcategory corresponding
to D is S1 N S,, where S; is the Serre subcategory associated to D; for i = 1, 2.
By Theorem [5.1.8] S; and S, are tensor-ideals of Coh(7). Therefore, S; NS, is
also a tensor-ideal of Coh(7). Applying Theorem again, we get that D is

T -tensor-closed, as required. [

Remark 6.1.14. Note that every T-tensor-closed definable subcategory is shift-
closed as forall X € T, ¥ X =¥1® X.

Our aim for the rest of this section is to answer the following question.

Question 6.1.15. Is there an equivalence relation ~g on pinj; such that Zg? and

2g7/~, have isomorphic frames of open subsets?

We will show that setting P ~g @ if and only if P and () are topologically
indistinguishable in Zg% induces a split monomorphism in the category of frames

0(Zg%) = O(Zgy/~, ), which in general is not an isomorphism.

Definition 6.1.16. Define an equivalence relation ~g on pinj; by P ~g @ if and

only if they are topologically indistinguishable in Zg%.
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Therefore we can consider the quotient topology Zgs/.., with closed subsets
¢ C pinjy/~, given by those subsets which satisfy ¢~*(4) = D N pinj; for some
definable subcategory D C 7.

Let us provide an alternative characterisation of when two indecomposable
pure-injectives, P and @, are topologically indistinguishable in Zg%. Recall that
for a full subcategory X C 7T, we denote by <X >def® the smallest T-tensor-closed

definable subcategory containing X'.

Lemma 6.1.17. P, ) € pinj; are topologically indistinguishable in Zg?i if and
. def® def®
only if <P> = <Q> .

Proof. This is clear from the definition of Zg%?. O

Now we show that the quotient map ¢ : pinj; — pinj;/., maps closed subsets
of Zg? to closed subsets of Zgr /..

Lemma 6.1.18. If D C T is definable and T -tensor-closed and € = q(DNpinj),
where q : pinjr — pinjy/~, is the quotient map, then ¢ ' (€¢) = DNpinjr, in
particular € is closed in 7gy/~, -

Proof. If P € ¢7'(%) then P ~g Q for some Q € D. Therefore, <P>def®

<Q>def® and since D is T-tensor-closed, () € D implies <P>def® = <Q>def® C D so
P € D, as required. [

Theorem 6.1.19. The quotient map q : pinjy — pinjy/~, induces a split
monomorphisms in the category of frames O(2g%7) — O(Zgr/~s)-

Proof. First we show that for an open subset & € O(Zg?), ¢(€) is open in
287 /~,- Indeed, the closed complement ¢ = pinj;\& of € is given by € =
DNpinjs for some T-tensor-closed definable subcategory D. Therefore, by Lemma
6.1.18, q(%) is closed with respect to the quotient topology and its inverse image
is €. Therefore, since ¢ is onto, ¢(&) is the open complement of €.

Clearly the map ¢ : O(Zg%?) — O(Zgy/~,) given by O — ¢(0) is inclusion-
preserving and commutes with finite intersection and infinite union. Therefore, it

is a morphism of frames.
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We define a frame morphism r : O(Zgy/~,) — O(Zg%) by mapping an open
subset &' of Zgy /., to the open complement of <D>def® N pinj, in Zg%, where
D is the definable subcategory of T such that ¢~!(¢) = D N pinj; with € =
(pinjy/~y)\O". Noting that

<D U ,D,>def® _ <<,D>def® U <D/>def®>def

and

<sz’>def® _ m <'Di>def®,

iel iel
it is easy to check that we have defined a morphism of frames. Finally note that
roq = id@)(zg%g) by Lemma [6.1.18, Therefore, ¢ is a split monomorphism in the

category of frames. [

Example 6.1.20. The split monomorphism in Theorem s not in general
an isomorphism. Indeed, let T = kV,;-Mod and identify the indecomposable pure-
injectives of T with the string and band modules given in Example|2.6.21].

In Ezample |5.1.15 we saw that <J\4(a)>def is T-tensor-closed and in partic-
ular M(a) ® M(ab™') = M(a) in kVy-Mod. Let us consider the closure, €,
of {{IM(ab")]/~p} in Zgs/~,. By definition of the quotient topology ¢~ (€) =
D Npinj where D is a definable subcategory of T. As M (a) is finite dimensional,
it is clopen in Zgr. In addition <J\/[(a)>def = <M(a)>def®, s0 ¢ H([M(a)]/~y) =
{M(a)} meaning {[M(a)]/~,} is clopen in Zgs/~.. Therefore {{M(a)] N®} ¢
€ as € is the smallest closed subset of pinjr/., containing [M(ab™')]/~
E\{[M(a)]/~y} is also closed.

Therefore, M(ab™') € D but M(a) ® M(ab™') = M(a) ¢ D. Hence D is not
T -tensor-closed and the open complement of € is not in the image of the split
embedding in Theorem [6.1.19,

~®

6.1.3 Tensor-ideal Ziegler topology

Definition 6.1.21. We say that a subset ¢ C pinj+ is closed with respect to
the tensor-ideal Ziegler topology if there exists a definable tensor-ideal D of
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T such that € = D N pinj.

Proposition 6.1.22. The close
subsets of a topology on pinj+ which

bsets gwwen in Definition |6.1.21] are the closed
Ul call the tensor-ideal Ziegler topol-
ogy and denote by Zg3*™.

Proof. Let {D; : i € I} be a family of definable tensor-ideals. Then (D; is also
iel

a definable tensor-ideal as it can easily be seen to be closed under extensions and

T-tensor-closed. Therefore, if we set 6; := D; N pinj, then the €; are a collection

of closed subsets of pinj; with respect to Definition [6.1.21] But we have

(% = (\(D: N pinj) = ((|D:) N pinj,

iel iel iel
so since (D; is a definable tensor-ideal, () %; is closed.
iel iel
Now suppose D; and D, are definable tensor-ideals, so 4; = D; N pinj, are
closed, for i« = 1, 2. To show that %} U %5 is closed we need to show that D :=
<D1 U D2>d6f is a definable tensor-ideal. By Theorem [5.2.14] the cohomological
ideals J; and J5 corresponding to D; and D, respectively are exact and 7T “-tensor-

closed. By [30] Lemma 4 11] 7,07 is-also-an-exactidealofmerphtT ©) and clearly

the T*-tensor-closed property is preserved by taking intersections. Thus, J; N7 is

exact and T °-tensor-closed and therefore, since J; N J> is the cohomological ideal

associated to D := <D1 U D2>def, D is a definable tensor-ideal by Theorem [5.2.14
O

Let D(7), D*(T), D®(T) and D®*(T) denote the lattice of definable subcat-
egories of T, the lattice of shift-closed definable subcategories of 7T, the lattice of
T-tensor-closed definable subcategories of 7 and the lattice of definable tensor-

ideals of T respectively.

Corollary 6.1.23. There exist isomorphisms of frames O(Zgy) = D(T)P,
0(Zg7) = D¥(T), O(Zg?) = D*(T)*® and QZgz®) 2 DEMTYP such that

the following diagram commutes.
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©, inclusion s, inclusion

O(Zgr) ——— OlZg7) O(Zgr)
D (T)op inclusion DE (TP inclusion D(T)

In particular, D(T), D*(T), D®(T) and DEMT) are all dual frames.

Let us consider these different Ziegler-type topologies in the following simple

example.

Example 6.1.24. Let T = kG-Mod where k is a field of characteristic 5 and
G = <g | ¢° = 1> as in Erample (i). The following table shows the tensor

product over k of these modules. The calculation was carried out using GAP (see

[26]); see Appendz'x for the GAP code.

Qi | My M, M M,y M
M, | My M, M; M,y M
M, | My M, M; M,a M, Mso My MP
Ms | My My ® My M, ® Ms D Ms MQ@Mé2) M(3)
My | My Ms®Ms M, M My & M M<4)
Ms | My M M MY M§5

By Ezample the Ziegler spectrum of T = kG-Mod is the discrete
topology on four points. Note that XM; = Ms_; and ¥=' = X. Therefore
ngzﬁ = Zg? = ngzr are all the same topology on pinj; = {My, My, M3, My}
with open subsets

{0, {M, My}, {M>, M5}, pinj;}.

Clearly the only T -tensor-closed definable subcategories of kG-Mod are 0, <J\45>def

and kG-Mod. Thus the T -tensor- closed Zzegler topology and_the tensor-ideat
_Ziegler topology of kG-Mod caincide and ave ’m*h the trivial topology on four points.

The next example shows that Zg% and Zg%‘ are in general different topologies.
DD D)
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Example 6.1.25. Let T = kV;-Mod and identify the indecomposable pure-
injectives of T with the string and band modules given in Example[2.6.21]. In Eu-
ample|5.1.15 we saw that <M(a)>def is T -tensor-closed. We show that <M(a)>def
1s not closed under extensions. Indeed, we can define a short eract sequence
0 — M(a) = M(ab—'a) LN M(a) — 0 in kV4-Mod as follows. Denote the gen-

erators of M(a) by xo and x1 with the action of a sending xo to x1. This can be

pictured as follows.
Lo

X1

Denote the generators of M(ab~ta) by xo, z1, o, T3 with the action of a and b

as pictured below.

) i)
T3 T

Define o : M(a) — M(ab~ta) by mapping xo — o and v, — 1 and define
B : M(ab~ta) — M(a) by mapping xo, x1 — 0, T3 — o and x3 — x1. Therefore
we have an exact triangle M(a) = M (ab~'a) LN M(a) — X M(a) in kVy-Mod and

<M(a)>def is T -tensor-closed but not a tensor-ideal. In_other words, M(a) is a

¢losed_point with respect—+to-Aer—but-rot-with-respectto-Zgs

6.2 The Balmer spectrum of T°

We—will-show—that—H-F—satisfres—the{tensor version of the) Telescope Conjecture,
thenthere-existsatattice iSsomorphisin betweerrthe-epen-sets-of-the Hochster-dual

of QP(‘(TC\ and the open sets nf Zg‘%A

Remark 6.2.1. In [11l Theorem 5.5] it is shown that the lattice of smashing tensor-
ideals, S®(T), of a rigidly-compactly generated tensor triangulated category, T, is
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complete and forms a frame. Belew—we-show—thatthisframeisspatial.

R

Theorem 6.2.2. The lattice of smashing—tersor=ideats—of-FS“tF), s a spatial

frame.

Proof. Recall that D®2(T) denotes the lattice of definable tensor-ideals of 7. By
Theorem [5.2.15| we have a lattice isomorphism (S®(7),C) = T),Q)°. In
Corollary |6.1.23| we saw that D®2(T) is i phic to the lattice of closed subsets
7835

of the topological space erefore the frame of smashing tensor-ideals of

T, S®(T) is iso ic to the frame of open subsets of Zg?ﬁA, hence it is spatial.

By Theorem [2.6.11] the lattice, Thom(7°), of Thomason subsets of Spe(7°) is
isomorphic to the lattice, Thick®(7¢), of thick tensor-ideals of T¢.

Next we define what it means for the Telescope Conjecture to hold for 7. As
we are working in the tensor triangulated setting, we provide both a non-tensor

and a tensor version of this conjecture.

Definition 6.2.3. (i) Let 7 be a rigidly-compactly generated tensor triangu-
lated category. We say that the Telescope Conjecture holds for 7 if every
smashing subcategory B C 7T is generated as a localising subcategory by

some thick subcategory I C T°. In this case, we necessarily have I = BNT*.

(ii) Let T be a rigidly-compactly generated tensor triangulated category. We
say that the tensor-Telescope Conjecture holds for 7 if every smashing
tensor-ideal B C T is generated as a localising subcategory by some thick
tensor-ideal I C T¢. In this case, we necessarily have I = BN T¢, (e.g. see
[10, Definition 4.2])

Remark 6.2.4. By Theorem [5.2.10] the Telescope Conjecture holds for 7 if and
only if every triangulated definable subcategory of 7 has form

(X eT:(AX)=0VAe I}

for some thick tensor-ideal I C T°.
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Proposition 6.2.5. [10, Definition 6.1 and Proposition 6.2] There ezists an in-

jective order-preserving map
A : Thom(T°) < S*(T)

which is a lattice isomorphism if and only if the tensor-Telescope Conjecture holds

for T.

Proof. (sketch) A is given by the composition
Thom(7°) = Thick®(T°¢) — S®(T),

where Thick®(7°¢) < S®(T) maps a thick tensor-ideal of 7¢ to the localising
subcategory of T it generates. By [10, Theorem 4.1(a)], the localising subcategory
of T generated by a thick tensor-ideal of 7¢ is a smashing tensor-ideal.

We call the map Thick®(7¢) — S®(T) inflation. It is always injective and is
surjective if and only if the tensor-Telescope Conjecture holds for 7 [10, Proposi-
tion 6.2]. Therefore, if the tensor-Telescope Conjecture holds for 7 then inflation
is a lattice isomorphism Thick®(7°) = S®(T). O

Theorem 6.2.6. For any rigidly-compactly generated tensor trianqulated category
— O(Zg3™), from the
to the open subsets of Zg?ﬁA.

T there exists a lattice monomorphism, & : O(S
open subsets of the Hochster dual o
Furthermore, if the t

1somorphism.

~Telescope Conjecture holds for T, then £ is a lattice

Proof. As explained in Section [2.6.1], the open subsets of the Hochster are exactly
the Thomason subsets of Spe(7¢), so O(Spe(T¢)*) = Thom(7°¢). FPherefore by
Proposition [6.2.5, there is a lattice monomorphism Q(Spc = Thom(7°) a
S®(T) to the lattice of smashing tensor-ideals of y Remark , we have
and by definition of Zg$* we have

an isomorphism of frames S®(7) = D®A
DEA(T)P = O(Zg$™). Therefore ave a monomorphism of frames

£ O(SpelFT) = Thom(T°) < S¥(T) 2 DEA(T)P = O(Zg22).
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Furthermore, if the tensor-Telescope Conjecture holds

sition [6.2.5] the morphism

meanin a lattice isomorphism. [

— S®(T) is a lattice isomorphism,

Let us consider an example. First we recall a useful lemma.

Lemma 6.2.7. [58, Lemma 1.9] Let K be a skeletally small rigid tensor triangu-
lated category. If K is the smallest thick subcategory containing the tensor unit, 1,

then every thick subcategory of K is a thick tensor-ideal.

Example 6.2.8. Suppose R is a commutative noetherian ring. Then by (|8, The-
orem 6.3(a)] and [9, Example 4.4]) the Balmer spectrum, Spc(D¢(Mod-R)), is
homeomorphic to the Zariski spectrum, Spec(R). In addition, by [{5, Corollary
3.4], the Telescope Conjecture holds for T = D(Mod-R) and the thick subcate-
gories of D°(Mod-R) correspond to the specialisation closed subsets of Spec(R).
By Lemma [6.2.7], every thick subcategory is a thick tensor-ideal and therefore we

have a bijection between the—ejseﬁ—&u-bﬁet-s—uﬁ"g;iﬁ' and the specialisation closed

subsets of the Zariski spectrum Spec(R). DE(T)

In the remainder of this section we will consider the case where T is the stable

module category of a group algebra.

Definition 6.2.9. Let G be a finite group, k& be an algebraically closed field of
characteristic p > 0 and M be a finite dimensional kG-module. Let H(G, M) =
Ext} . (k, M) where Ext!(k, M) is the ith cohomology of

0 — Homye (P, M) — Homyg (P, M) — Homya(P? M) — ...
where .. — P2 25 pt 24 po P by (s a projective resolution of k as a
kG-module.
Set H*(G, k) = @, H (G, k). This s a finitely generated graded-commutative
k-algebra.

Definition 6.2.10. Let Proj(H*(G, k)) denote the space of maximal homogeneous
ideals of the graded-commutative algebra H*(G, k) strictly contained in the max-

imal ideal of positive degree elements. We endow Proj(H*(G, k)) with the Zariski
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topology. That is the closed subsets of Proj(H*(G, k)) are given by
{V € Proj(H*(G,k)) : I CV},

as I varies over the homogeneous ideals of H*(G, k).
For any M € kG-mod we introduce a support variety, Vi (M) in Proj(H*(G, k)).

Definition 6.2.11. For any M € kG-mod, define I(M) to be the homogeneous
ideal given by the kernel of the map

H*(G,k) = Extyq(k, k) —— Extro (M, M).
We then set
Va(M) ={V € Proj(H*(G,k)) : Ig(M) C V}.

Proposition 6.2.12. ([15, Proposition 3.3 and Theorem 3.4] and [8, Theorem
5.9]) (Proj(H*(G,k)),0) is a classifying support data on kG-mod, where o is
given by M — Vg (M).

Remark 6.2.13. In [I5, Proposition 3.3 and Theorem 3.4] it is shown that the
thick tensor-ideals of kG-mod correspond to non-empty sets of closed homogeneous

subvarieties X’ of Proj(H*(G, k)) which are closed under specialization in the sense

that if W € X and W/ C W then W' € X. Notice that X — |J W gives a one-
Wex
to-one correspondence between these sets and the specialization closed subsets of

the topology Proj(H*(G,k)).
Using Theorem we get the following corollary.

Corollary 6.2.14. There exists a homeomorphism
Spc(kG-mod) = Proj(H* (G, k)).

Proposition 6.2.15. [16, Theorem 11.12] Let T = kG-Mod where G is a finite
group and k is a field of characteristic p where p divides the order of the group.
Then the tensor-Telescope Conjecture holds for T .
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Thus, by Theorem [6.2.6, the thick tensor-ideals of kG-mod correspond via an
inclusion-reversing map to the definable tensor-ideals of kG-Mod. Let us consider

a particular example.

Example 6.2.16. Let G = Vj be the Klein four group, that is Vy = <x,y | 2% =
y: = [z,y] = eg> =y x Cy, k be an algebraically closed field of order 2 and set
T = kV;-Mod. By [17, Section 4.3], the non-trivial proper thick tensor-ideals of
kV,-mod are indexed by the projective line over k. In particular, {M("(b=*a)b™1) :
n € Z=°} and {M("(ab™')a) : n € Z=°} are the indecomposable modules con-
tained in two thick tensor-ideals and for each A € k™ the set of band modules
{B(ab™',\,n) : n € N} is the set of indecomposable modules contained in a thick
tensor-ideal of kVy-mod. As the (tensor version of the) telescope conjecture holds
for T, the definable tensor-ideals of kVy-Mod have the form I+ where I is a thick
tensor-ideal of kVy-mod. Thus the non-trivial proper definable tensor-ideals of

T = kVy-Mod are indexed by the projective line over k.



Chapter 7
Internal tensor-duality

Fix a rigidly-compactly generated tensor triangulated category 7. In this section

we define an internal tensor-duality of definable subcategories of T .

7.1 Defining internal tensor-duality

For any f: A — B in T¢ there exists a dual morphism fY : BY — AV given by

the following composition,

BY na®BY AV o Aw BY AVefeBY

AY® B® BY 228, 4V,

Furthermore, for any C' € T* there exist an isomorphism d¢ : C' — (CV)Y such
that for any f: A — B in T¢ we have f = §5' o (fV)¥ 0 d4. Therefore, given any
ideal of morphisms 7, f € J if and only if (fY)Y € J.

Definition 7.1.1. Given a cohomological ideal J C morph(7°), we will call the
set JY ={fY:f € T}, the internal tensor-dual of 7.

By the above discussion, (JV)¥ = J. We will show that the internal tensor-
dual of J is also a cohomological ideal, and use the assignment J +— 7" to define
an internal tensor-duality of definable subcategories.

We apply the following Theorem.

152
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Theorem 7.1.2. [27, Theorem 7.4] Let K and T be compactly generated trian-
gulated categories. Suppose there is a duality between K¢ and T¢ and denote by
O : mod-K¢ = T¢-mod the induced equivalence of categories. Let A : T¢-mod —
mod-T¢ be the duality defined by AM(X) = (M,HX) for all X € T¢, where
HX = (X, =)|7e and set T = A o © : mod-K¢ — mod-T¢.

Then T yields an inclusion-preserving bijective correspondence between the Serre

subcategories of mod-K¢ and the Serre subcategories of mod-T¢ and therefore in-

duces an isomorphism between the open subsets of Zgy and Zg+.

Since (=) : T¢ — T¢ is a duality, we have an inclusion-preserving bijective
correspondence I' between the Serre subcategories of mod-7¢ and mod-7¢ which
induces an automorphism on the opens subsets of the Ziegler spectrum, Zg,. We
show that this bijective correspondence coincides with the assignment J +— JV
on the related (by Theorem cohomological ideals.

Given (—, A) AN ( ) — Gy — 0in mod-T¢, O(Gy) = Fyv € T%mod has
presentation (A, —) At (BV —) — Fyv — 0. Note that this is the duality
defined in Section [4.4] with A = T°.

Suppose A LpL ol vaisan exact triangle in 7¢. Then, since (—)" is

exact we have an exact triangle (¥A)Y — CY — " BY L5 AV and by definition
of A, we have F(Gf) A(Ffv) Gymv.

Suppose A g B C —) > A is an exact triangle in 7¢ and therefore so
is (XA)Y — 7 ov I — AY. If C C mod-T*¢ is a Serre subcategory with

corresponding cohomologlcal ideal 7, then by Lemma 4, Gy € Cif and only if
f' € J. By Theorem 2 I'C € mod-T° is also a Serre subcategory and by the
above Gy € C if and only 1f G € I'C. Therefore, applying Lemma again,
f' e J if and only if f'V is in the cohomological ideal associated to I'C. In other
words, if the cohomological ideal associated to C is J then the cohomological ideal
associated to I'C is JV.

Definition 7.1.3. Given a definable subcategory D C T associated to the coho-
mological ideal 7, we denote by DV the definable subcategory of T associated to
JV. We call DY the internal tensor-dual of D.

Given a Serre subcategory S C Coh(7) associated to the cohomological ideal
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J we denote by S the Serre subcategory of Coh(T) associated to J". We call
SY the internal tensor-dual of S.

Given a Serre subcategory C C mod-7° where S = 6C C Coh(7), we denote by
CY C mod-T° the Serre subcategory 6SV. We call CV the internal tensor-dual
of C.

Remark 7.1.4. Recall that every pp formula in the language Z(7) is equivalent
to a division formula ¢ of the form Jyp, x4 = ypf for some f: A — Bin T° (see
Section [2.5)). Therefore we can define an internal tensor-duality of pp formulas by
¢ — ¢pv. Notice here that if ¢ and ¢4 are equivalent then ¢,v and ¢ v may not
be equivalent pp formulas but they will be isomorphic. Indeed if f : A — B and
f'+ A— B’ then ¢sv and ¢pv have free variable of sort BY and B’ respectively
and therefore are not equivalent if B # B’. However, by Proposition [2.5.4] there
exist morphisms k : B — B’ and [ : B’ — B such that f =[o f' and f' = ko f.
For any X € T, —o kY : ¢pv(X) = ¢pv(X) and — o 1Y : ¢pv(X) — ¢pv(X)
define inverse group isomorphisms, i.e. ¢pv and ¢pv are naturally isomorphic
when regarded as coherent functors 7 — Ab. Indeed, in order to define a specific
functor I' : mod-7¢ — mod-7°¢ one needs to fix a choice for the presentation of
each finitely presented functor in mod-7°. However, since the choices for I' related
to each selection are naturally isomorphic, all choices give rise to the same duality

on definable subcategories.

7.2 Properties
In this section we explore some properties of internal tensor-duality.

Lemma 7.2.1. Given any set of morphisms I C morph(7°),

<]\/>coh0m _ (<I>c0hom)\/‘

Proof. By the discussion after Theorem [7.1.2}, we have seen that ({1 V>C0h0m)v is a
cohomological ideal. Therefore, since (I contains IV, ((1 V>C0hom)v contains

I and we must have <I>mhom C (<IV>COh0m)V. Applying (—)" we get (<I>C0hom)v C

> cohom
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<[V>C0h0m. For the converse note that IV C (<[>C0hom)v and (<I>C0hom)v is a co-
homological ideal so (I V>COhom C ({1 >C0h0m)v. Hence (I V>C0hom = ({1 >COhom)V as
required. [

Proposition 7.2.2. Let D C T be a definable subcategory with corresponding
cohomological ideal J. If D is T -tensor-closed then D = DV .

Proof. By Theorem [5.1.8] D is a T -tensor-closed if and only if it is 7T °-tensor-
closed if and only if 7 is T “-tensor-closed.
Recall that for f: A — Bin T¢, fY is given by

(AY ®ep)o(AY® f® BY)o(na® BY).

Therefore, as J is T“tensor-closed, AY ® f @ BY € Jso f¥ € J. So JY C J.
Consequently, 7 = (J")¥ C JV, giving equality as required. [

Remark 7.2.3. The converse to Proposition[7.2.2|does not hold. Indeed, in Example
below, the definable subcategory generated by {M;j, My} is self-dual with

respect to internal tensor-duality, however it is not 7-tensor-closed (consider the
table in Example [6.1.24]).

Proposition 7.2.4. Suppose D C T is a positive shift-closed definable subcategory,
that is XD C D. Then the internal tensor-dual DV C T is a negative shift-closed
definable subcategory.

Proof. Suppose D C 7T is a positive shift-closed definable subcategory with
associated cohomological ideal J C morph(7¢). Then X717 C J by Corollary
and so (X717)Y C JV. Recall that (—)V is exact, so in particular for any
f € morph(T°), (E71f)V 2 XfY so BTV C JY. Consequently, if X € DY, then
for all g € 7Y, (Xg,X) =0 = (g9,27'X). Therefore, X7'X € D". Hence D" is

negative shift-closed as required. [

Theorem 7.2.5. Internal tensor-duality induces a lattice automorphism on

a2

O(Zgr) which gives an isomorphism @(ngzﬁ) >~ O(Zgr ), restricts to an auto-
morphism on O(Zg7) = @(Zg?r) NO(Zgr ) and fizes O(Zgs).
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Proof. First we show that the induced map is inclusion-preserving. Given open
subsets 0 C ¢" in O(Zgy), the closed complements satisfy pinj;\& = D N pinj
and pinj;\&" = D' N pinj; where D and D’ are definable subcategories with
D’ C D. Therefore the corresponding cohomological ideals satisfy Jp C Jpr and
since (—)" is inclusion-preserving we have Jy C Jp3,. So D'V C DY which gives
0¥ C 0" where 0V := pinj;\(D" N pinj;) and 0" = pinj;\(D"V N pinj;).
Therefore since (—)" is clearly self-inverse, we have an automorphism on O(Zg;).

It remains to apply Proposition and Proposition [7.2.4 O

7.3 Examples
Let us consider some examples.

Example 7.3.1. Suppose G = <g | ¢° = 1> 1s the cyclic group of order five and
let k be a field of characteristic 5. Then kG = k[T|/(T®) under the isomorphism
T — g—1. As in Ezample [2.6.19, let M; = k[T]/(T*) for i = 1,...,5 be the
indecomposable (finite dimensional) modules.

Denote by ¢ij : M, — M, the k-linear map which takes T'~' to T'"'. Then
the ¢;; for 1 <i <mn and1 < j <m form a basis for all k-linear maps from M,
to M,,.

Let f = ¢1o+ a3 : My — M3 and consider the definable subcategory D = {X €
kG-Mod : Hom(f, X) = 0}. We claim that D = <M1>def. Since every definable
subcategory is generated by its indecomposable pure-injectives, it is sufficient to
check that My € D but M, ..., My ¢ D.

Since there are no non-zero kG-linear morphisms from My — Ms — Ms, f
is non-zero in Hom(M,, M3). Also note that the only kG-linear morphisms from
Ms — My have the form Ap11 for some A € k. Therefore for any h = A¢11 : M3 —
M, ho f =0, in other words (f, My) = 0 (both in kG-Mod and kG-Mod) and
M, € D.

My & D as M(p11 + ¢aa) : M3 — My is kG-linear for any A € k, and A(¢11 +
¢92) o f = Ap1a : My — My is non-zero when X is non-zero. Mz & D, as (f, M3) :
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(M3, M3) — (Ms, M3) maps idy, — f and My ¢ D as (¢12 + ¢z + ¢34) © f =
13 + ¢oq which is non-zero in Hom (M, My).

Now let us calculate the dual definable subcategory of D. Let X € kG-mod have
fized k-basis, {x1,...,xn}. The unit, nx : k — XY@ X, and counit, ex : X@ X" —
k, of the adjunction X @ — 4 XV ® — are given by nx : 1 — Z?zl pj1 ®@x; and ,
Ex 1 x; @ ¢j1 > i, where ¢j1 : X — k maps x; — 1.

Similarly the unit and counit of the adjunction XV ® — 4 X ® — are given by
’I’];( : k’-)X@Xv, 1 '-)Z?lej(ggbjl ande'X:XV®X—>k, ¢j1®mi’_>6ji-

Recall that given a morphism g : A — B in kG-mod, ¢¥ = (AY ® eg) o (AY ®
g® BY)o (na® BY). In particular if we fir {1,T} as an ordered basis for My and
{1,T,T?} as an ordered basis for Ms, we have

2 2
[V gin - Z¢j1 QT ® g — Z(bjl @ T ® ¢ir > Gi—11,
j=1 =1

where ¢g; = 0.

It is straight forward to check that for any ¢nq € M),

0, ifi=1

T¢i1 = . i1 ) )
(—].)’L Z;‘:l(_l)ngjla 1 Z 2

Therefore, we can define an isomorphism Mz = My given by T? — ¢11, T — —¢o
and 1 — ¢31 + ¢91. Similarly, we have an isomorphism My = My given by
o1 =T, =1 = 1. Thus, fV = ¢1o — d11 — daa : Mz — Mo,

M, ¢ DY as ¢11 0 (12 — P11 — P22) = —¢11 : My — My is non-zero in
Hom(Mj3, My). Clearly, My ¢ DY. In addition, (¢12 + ¢23) © (P12 — d11 — Pa2) =
— @19 — Po3 + P13 1 M3 — Mjz is non-zero in Hom(Msz, My) so Mz ¢ DY. Finally,
the only kG-linear maps from My — My have form a(¢p13 + ¢o4) + bd14, S0 any
map in the image of (1o — P11 — Pao, My) has form a(—p13 — ¢as + P14) — b1y for
some a, b € k. However, this map factors via the projective My as

—(¢p13+24 +¢35)+¢14+¢25\

M; v M a(P11+¢22+¢a3+¢aa)+b(P12+Paz+¢aa)

M47
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so My € DV.

In summary, if D = <M1>def then DV = <M4>def.

Now let g = ¢11 : My — My and h = ¢ : My — M. Let J, and Jy, be the
cohomological ideals generated by g and h respectively and denote the corresponding
definable subcategories by Dy and Dy, respectively. It is straight forward to check
that Dy = ( My, My)™ and Dy, = (My, My, My)*". Furthermore, g¥ = ¢y : My —
Mz and h¥ = ¢14 : My — My and one can check that D] = <M1,M2>def and
D) = <M1, M, M3>def. Therefore we have <Mg>def =D, N D;/ and (<M2>def)v =
Dy ND, = <M3>def. We have shown that for any definable subcategory D C
kG-Mod and fori=1,...,4, if M; € D then Ms_; € D".

Example 7.3.2. Suppose G = <g | g° = 1> is the cyclic group of order five, let k be
a field of characteristic 5 and let M; fori =1, ...,5 denote the indecomposable pure-
injectives, as in the above example. We show that the internal tensor-duality on
the definable subcategories of kG-Mod and elementary duality of definable subcat-
egories of kG-Mod do not coincide. Given the pp pair ¢/ where (x) is T'x = 0
and ¢(x) is T w = 0, the corresponding definable subcategory is generated by
My, ..., M;, as for all these, T* annihilates the whole module. The elementary dual
pp-pair is DY/ D¢ where Dp(x): Jy, x = yT™ and Dy(x): Jy,x = yT*. There-
fore the elementary dual definable subcategory is generated by My, ..., M;. That is,
the definable subcategory generated by {Mj, ..., M;} for any i =1,...,4 is self-dual
with respect to elementary duality, whereas the internal tensor-dual is given by
{Ms_;, ..., My} which only coincides with {Mj, ..., M;} when i = 4.

In rest of this section we will record some results from [4] which describe internal
tensor-duality in the derived category of modules over a commutative ring.

Suppose R is a ring. We begin by considering two dualities.

Definition 7.3.3. [4, Section 2.2] Denote by (—)* the functor
RHom(—, R) : D(Mod-R) — D(R-Mod).

As described in [4], Section 2.2], (—)* restricts to a duality between compact objects

and when R is commutative (—)* is the internal hom-functor and on compact
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objects (—)* = (=), where (—)" is as in Definition [2.3.1]

Now assume R is a k-algebra for some commutative ring k£ and let W be an
injective cogenerator in Mod-k (e.g. k =7Z and W = Q/Z). Denote by (—)* the
functor

RHom,(—, W) : D(Mod-R) — D(R-Mod).

We will use the same notation for the quasi-inverse (contravariant) functors
(=) = RHom(—, R) : D(R-Mod) — D(Mod-R) and (—)* = RHomy(—, W) :
D(R-Mod) — D(Mod-R).

Definition 7.3.4. (see [4, Lemma 2.3]) Given a definable subcategory
D C D(Mod-R) with corresponding cohomological ideal 7 C morph(D¢(Mod-R))
we denote by D* C D(R-Mod) the definable subcategory corresponding to the
cohomological ideal J* C morph(D¢(R-Mod)).

Remarks 7.3.5. (i) The restriction of (—)* to compact objects is the duality D
used in [27, Corollary 7.5] to give an inclusion-preserving bijective correspon-
dence between the Serre subcategories of D¢(Mod-R) and D°(R-Mod).

(ii) D* and D" coincide in the case that R is commutative. In particular, the du-
ality given in [27, Corollary 7.5] and the internal tensor-duality of Definition
[7.1.3] coincide when R is a commutative ring and 7 = D(Mod-R).

The following lemma from [4] gives us a better understanding of internal tensor-

duality in the case 7 = D(R-Mod) for R a commutative ring.

Lemma 7.3.6. [, Lemma 2.3] Suppose D is a definable subcategory of D(Mod-R).
For every X € D(Mod-R), X € D if and only if X* € D*.
For every Y € D(R-Mod), Y € D* if and only if Y™ € D.



Chapter 8

Torsion pairs and definability

8.1 Internal tensor-duality of torsion pairs with

definable coaisles

Recall that if 7 = D(R-Mod) where R is a commutative ring, then internal tensor-
duality coincides with the duality defined in [4, Lemma 2.3] (see Chapter [7). In
this section we extend some results from [4] to the setting of algebraic rigidly-
compactly generated tensor triangulated categories.

Recall (Definition that a torsion pair (U, V) is a pair of full additive sub-
categories of 7 which are closed under direct summands, there are no morphisms
from an object in U to an object in V and for every X € T, there exists an exact
triangle U - X — V — XU with U € Y and V € V. As a consequence both U
and V are closed under extensions and therefore triangulated if and only if they
are shift-closed. First let us consider stable and compactly generated torsion pairs

with definable coaisles.

Definition 8.1.1. We say that a torsion pair (U,V) is stable if it is both a
t-structure and a co-t-structure. In particular, both &/ and V are triangulated

subcategories of T .

The correspondence between triangulated definable subcategories and smash-
ing subcategories in Theorem [5.2.10| can be rephrased as follows.

160
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Theorem 8.1.2. Suppose (U,V) is a stable torsion pair. Then V is definable if
and only if U is a smashing subcategory of T.

Definition 8.1.3. A torsion pair ({4, V) is said to be generated by a set of objects
X CTif (U, V)= (H(XxL),xt). If X is a set of compact objects, (U, V) is said

to be compactly generated.

Remarks 8.1.4. (i) Every compactly generated torsion pair has a definable
coaisle since V = {X € T : (id4,X) = 0 VA € X}. The associated co-

homological ideal is generated by identity morphisms.

(ii) The Telescope Conjecture holds for T if and only if every stable torsion
pair whose coaisle is definable, is a compactly generated torsion pair. The
tensor-Telescope Conjecture holds for 7 if and only if every stable torsion
pair whose coaisle is a definable tensor-ideal, is a compactly generated torsion

pair.

Lemma 8.1.5. [2, Theorem 4.3] For every set of compact objects X C T¢,

(H(X4), x1) forms a torsion pair.
Proposition 8.1.6. Internal tensor-duality yields a bijection

e R S

Proof. (U,V) is a compactly generated t-structure generated by X C 7€ if and
only if the cohomological ideal J associated to the negative-shift-closed definable
subcategory V is generated by {id4 : VA € X}. By Lemma J is generated
by {ids : VA € X} if and only if the cohomological ideal JV associated to the
definable subcategory VY is generated by {idav : VAY € XV}. By Proposition
[7.2.4 V is negative shift-closed if and only if V¥ is positive shift-closed.

Thus, (+(X1), X1) is a compactly generated t-structure generated by X C T¢
if and only if (£((XV)4), (XV)1) is a compactly generated co-t-structure. [

For the rest of this section we assume that 7T is algebraic. This assumption
allows us to extend Proposition to TTF triples (defined below).
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Definition 8.1.7. A compactly generated triangulated category 7T is said to be
algebraic if it is equivalent to the derived category of a small dg category or
equivalently the stable category of a Frobenius exact category which is compactly

generated (see for example [40), Section 3] for more details).

Definition 8.1.8. [4, Section 2.5/ A TTF (torsion-torsion-free) triple
(U, V, W) is formed by two adjacent torsion pairs (U,V) and (V,W). A TTF
triple (U, V, W) is said to be suspended (respectively cosuspended) if ¥V C V
(respectively 71V C V). A TTF triple (U, V, W) is said to be generated by a
set of objects X of T if ¥V = X+. If X is a set of compact objects, (U, V, W) is

said to be compactly generated.

Suppose (U, V, W) is a TTF triple with V definable. Let VV be the internal
tensor-dual of V and set U’ = +VY and W = (VV)L. We consider whether
U, VY, W) forms a TTF triple. We introduce the following terminology.

Definition 8.1.9. We will say that a TTF triple (U, )V, W) is definable if V is a
definable subcategory of T.

Under the assumption that 7 is an algebraic rigidly-compactly generated tensor

triangulated category, we have the following lemma.

Lemma 8.1.10. ([2, Theorem 4.3] and [55, Theorem 3.11]) For every set X of
compact objects, (+(X1), X+, (X1)L) is a TTF triple.

Proposition 8.1.11. Suppose T is an algebraic rigidly-compactly generated ten-
sor triangulated category. Then internal tensor-duality of definable subcategories
induces a bijective correspondence

{Suspended compactly generated } o {Cosuspended compactly generated
TTF triples TTF triples

Proof. By Lemmal8.1.10} for every set X of compact objects (*(X+), X+, (x+)4)
is a TTF triple. Thus every compactly generated t-structure (U,)) extends to a
cosuspended TTF triple (U, V, W) and every compactly generated co-t-structure
(U', V") extends to a suspended TTF triple (U', V', W'). The result then follows

from Proposition [8.1.6, [
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Remarks 8.1.12. (i) For T = D(R-Mod) where R is a commutative ring, this

correspondence coincides with the 1-1 correspondence given in |4, Theorem

3.1] (see Theorem [8.2.14]).

(i) If (U, V, W) and (U', VY, W') correspond as in Proposition [8.1.11], then ¢ N
T =UNTe
Next we extend Proposition [8.1.11] to definable TTF triples. The following

proposition will be useful.

Proposition 8.1.13. [37, Lemma 4.2 and Theorem 12.1] Suppose a torsion pair
(U,V) has a definable coaisle. Then the cohomological ideal corresponding to V is
given by J = {f € morph(7°) : f factors via some U € U}.

Proof. Clearly if f € morph(7°) factors through some object in ¢ then f € J.
Conversely, suppose f : A — B is a morphism in J. Since (U, V) is a torsion pair,
we have an exact triangle U % B 5 V 5 SU with U € Y and V € V. Since
(f,V) =0 we must have that ko f = 0. But then since g is a weak kernel of k, f
factors via g, say f = go f’ as required. [

Lemma 8.1.14. Let D C T be a definable subcategory. If D is extension-closed
then (+D, D) is a torsion pair. If, in addition, we assume that T is an algebraic

triangulated category, then (D, D4) is also a torsion pair and D fits into a TTF
triple (+D, D, D+).

Proof. It is well known that any definable subcategory D C T is preenveloping
[0, Proposition 4.5]. If in addition we assume that 7 is an algebraic triangulated
category, then any definable subcategory D C T is precovering [40], Corollary 4.8].
It remains to apply Corollary 5.2.7 O

Next we use results from [37] to prove the following lemma.

Lemma 8.1.15. D C T is extension-closed if and only if DV C T is extension-

closed.

Proof. First we show that a definable subcategory D is extension-closed if and

only if the corresponding cohomological ideal J C morph(7°) is idempotent.
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Suppose J = J? and let X Y P 7 - %X be an exact triangle in 7 with
X,Z €D. Assume f : A — B is an morphism in J. Then f = h o g for some
g:A— A and h: A” - B in J. Therefore, given any morphism k : B — Y,
Bokoh=0as Z € D meaning koh = aoh’ for some ' : A* — X, as shown

below.
A / B
E\ /
A k
o
X a Y al A X

Consequently, ko f =kohog=aoh’og,but hog=0as X € D,sokof =0
and Y € D. Therefore D is extension-closed.

Conversely, assume D is extension-closed and let J be the corresponding co-
homological ideal. By Lemma |8.1.13],

J = {f € morph(T®) : f factors through some X € +D}.

Following the proof of [37, Theorem 12.1], we show that any morphism f : A —
U where U € D factors through some g € J. Denote by C C mod-7¢ the
Serre subcategory corresponding to D, that is C = {im H; : f € J}, and set
L= hgl C. Then £ C Mod-T°¢ is a localising subcategory and Mod-7¢/L is an
abelian Grothendieck category. Let I be an injective cogenerator of Mod-7¢/L,
let ¢ : Mod-T¢ — Mod-T¢/L be the quotient functor and denote the right adjoint
to ¢ by r : Mod-T¢/L — Mod-T*. Notice that (Hy,r(I)) : T — Ab is a
homological functor which takes coproducts to products. Therefore by Brown’s
representability theorem [42, Theorem 3.1], there exists some X € T such that
Mod-T*(Hx,r(I)) = T(—,X). Forall g € J, (Hy,r(I)) =0, asim H; € C C
L, so for all g € J, (9,X) = 0 meaning X € D. Therefore if U € 1D then
(Hy,r(I)) = (U, X) = 0 and consequently Mod-7¢/L(Hy,I) = 0 meaning Hy €
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L. Therefore we can write Hy; as a direct limit Hy = hérl im H,, where each g, € J.
Suppose f : A — U. Then there exists some ¢ € I such that Hy : Hy — Hy factors
through the colimit map A; : im H,, — Hy, say Hy = \;o7. We have the following

diagram.

Recall that Hy; is absolutely pure or equivalently fp-injective (Theorem [2.5.13)),
so A; factors through ¢ as shown by the dashed line in the above diagram. In

addition, H, is projective since A € T¢, so « factors via Hy, as pictured below.

Hy
Hy Hy
: !
| N /A/ |
| im Hg, !
| / \ i
v H,, l
Hy, Hy,

By Yoneda’s lemma, the dashed lines on the above diagram are of the form
(—, k) and (—,1) where k: A — U; and [ : V; — U. Therefore f =10 g; ok and in
particular f factors via some ¢g; : U; — V; in J.

We have shown that any morphism in J factors as A ENN 7 B for some
UElDandf:A—>UfactorsasA£>Ui£>Vii>Uforsomegiej. Since
A€ T¢and J is an ideal g; 0o k € J and since f'ol:V; — B is a morphism in 7°
which factors via U € *D, f'ol € J. Therefore J = J? as required.

It remains to note that J = J2 if and only if 7V = (JV)2. O



166 CHAPTER 8. TORSION PAIRS AND DEFINABILITY

Theorem 8.1.16. Let T be an algebraic rigidly-compactly generated tensor trian-
gulated category. Then internal tensor-duality induces a bijection

Suspended definable } o Cosuspended definable }
TTF triples in T TTF triples in T

which restricts to an automorphism on the class

Stable definable
TTF triples in T

and restricts to a bijection

{Suspended compactly generated } PN {Cosuspended compactly generated
TTF triples in T TTF triples in T

Proof. Suppose (U,V, W) is a suspended definable TTF triple. Then ¥V C V
and V is extension-closed. By Lemma VY is also extension-closed and by
Proposition VY is negative shift-closed. Thus VV is cosuspended. Applying
Lemma|8.1.14] we get a cosuspended definable TTF triple (U, V¥, W'). Conversely,
if (U, V, W) is a cosuspended definable TTF triple, then (U’, V¥, W') is a suspended
definable TTF triple by a similar argument. A TTF triple (U, V, W) is stable and
definable if and only if V is a shift-closed definable subcategory. In this case, by
Proposition [7.2.4] V" is a shift-closed definable subcategory and by Lemma [8.1.14]
VY can be extended to a TTF triple (U’, VY, W'). The restriction to compactly
generated TTF triples is Proposition 8.1.11] O

8.2 Silting and cosilting objects

In this section we consider the case 7 = D(R-Mod) where R is a commutative
ring. We describe how the bijection in Theorem [8.1.16| restricts to an injective
map from certain silting objects to pure-injective cosilting objects. In turn this
injective map restricts to the silting-cosilting duality established in [4, Theorem
3.1 and Theorem 3.3].

Notation 8.2.1. Recall from Notation that for any I C Z, X1 ={Z € T :
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(X,XZ)=0VXeXicl}land "X ={ZeT:(Z,XX)=0,VX € X,ic I}
fI={i€Z:i>0} wewill write L>0and if I = {i € Z : 7 < 0} we will write
1<0.

Definition 8.2.2. [52, Definition 4.1] An object S € T is silting if (S+>°, $+=0) is
a t-structure in 7. An object C' € T is cosilting if (+=0C, 1>9C) is a t-structure in
T. Two silting (respectively cosilting) objects S and S’ in a triangulated category

with coproducts are said to be equivalent if they induce the same t-structure.

Example 8.2.3. [52, Ezample 4.2] Let A be an abelian category with a projective
generator P. Then P is a silting (in fact tilting) object in D(A) and the associated
t-structure is the standard one. Dually, if A has an injective cogenerator E then
E is cosilting (in fact cotilting) in D(A) and the associated cotilting t-structure is

also the standard one.

Definition 8.2.4. [4 Section 2.5] A torsion pair (U,V) is said to be

non-degenerate if ﬂZE"U =0= ﬂZZ”V. A suspended TTF triple (U, V, W) is
ne ne

said to be non-degenerate if so is the t-structure (V,W). A cosuspended TTF

triple (U, V, W) is said to be non-degenerate if so is the t-structure (U, V).

Definition 8.2.5. A subset X C D(R-Mod) is said to be closed under directed
homotopy colimits if for every directed diagram of chain complexes, {X; : i € I},
in Ch(R-Mod) such that (when viewed as an element of D(R-Mod)), each Xj is in
X, then the direct limit lim;e; X; (calculated in Ch(R-Mod)) belongs to X.

A TTF triple (U, V, W) is said to be homotopically smashing if V is closed

under directed homotopy colimits.

The following result characterises silting and cosilting t-structures in terms of

non-degenerate TTF triples.

Proposition 8.2.6. [3, Theorem 4.11 and Theorem 6.13] There is a bijective
correspondence between silting t-structures (V, W) and non-degenerate suspended
TTF triples (U, V, W) which are generated by a set of objects.

If T is an algebraic compactly-generated triangulated category, then there is a

bijective correspondence between the t-structures (U,V) which are generated by a
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pure-injective cosilting object and non-degenerate cosuspended TTF triples (U, V, W)

which are homotopically smashing.
In addition we have the following.

Proposition 8.2.7. [39, Theorem 4.6] Suppose T is an algebraic compactly-
generated triangulated category and t = (U,V) is a non-degenerate t-structure.

Then t is generated by a pure-injective cosilting object if and only if V is definable.

Lemma 8.2.8. Suppose V C T is definable and extension-closed. Then () X"V =
nez
0 if and only if (X"VY =0.

nez

Proof. Suppose V C T is definable and extension-closed and (1, ., X"V = 0.
Then by Lemma |6.1.1} <U g >C0h°m = morph(7°) where J is the cohomo-

nez
logical ideal associated to V. But then { |J Z”jV>C0h°m = (U E*”j)V>C°h°m =
neZ nez
«(yU Z”J>C0hom)v = morph(7°), using Lemma(7.2.1, So () X"VY = 0 as required.
nez neZ

O

For the rest of this section we restrict to the case T = D(R-Mod) where R
is a commutative ring. Recall that (—)* denotes the functor RHomy(—, W) :
D(Mod-R) — D(R-Mod) = D(Mod-R) where R is a k-algebra for some commu-
tative ring k£ and W is an injective cogenerator for Mod-k (Definition .

In this case non-degeneracy is preserved by one direction of the bijective cor-
respondence given in Theorem [8.1.16]

Lemma 8.2.9. [/, Lemma 3.2] Suppose (U, V, W) is a suspended TTF triple such
that 'V is definable and let (U', V¥, W') denote the dual cosuspended TTF triple with
respect to Theorem|(8.1.10. If (U,V, W) is non-degenerate then so is (U', VY, W').

Proof. Suppose X € (| XU’ = +2VY. Then RHom(X, VY) = 0 since

neL

H™(RHom(X, V")) = (2"R, RHom(X, V")) = (X, S "VY) =0
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for all n € Z. By Lemma Y+ C VY so RHom(X, V") = 0. But by [4, Lemma
2.1}, RHom(X, V") 2 RHom(V, X*) so RHom(V, X) = 0 meaning

0= H"(RHom(V, X)) = (X"R,RHom(V, X 1)) & (V,27"X)

for all n € Z. Therefore X* € V2 = "W =0, i.e. XT =0. Thus X =0 and
nez
) X"U' = 0 as required. [

nez

Proposition 8.2.10. Let T = D(R-Mod) where R is a commutative ring. Inter-

nal tensor-duality gives rise to an injective map

{ Silting objects S in D(R-Mod)
with S+>0 definable, up to equivalence

Pure—injective cosilting objects

} — in D(R-Mod), up to equivalence }

Proof. We have seen that every silting object gives rise to a non-degenerate
suspended TTF triple (U, V, W) by (Proposition . Therefore, if in addition
Y = S§+>0 is definable we can apply Theorem to get a cosuspended TTF
triple (', VY, W'). By Lemma [8.2.§ and Lemma we have that (U, VY, W')
is non-degenerate and therefore applying Proposition again, we get a pure-

injective cosilting object. [J

Remark 8.2.11. The map in Proposition [8.2.10] is surjective if and only if the
converse to Lemma [8.2.9 holds.

Next we give a result from [4] which, in the case that R is a commutative ring,
uses a restriction of the injective map given in Proposition [8.2.10l First we need

some definitions.

Definition 8.2.12. [4, Definition 2.13] A silting object S € D(Mod-R) is of finite
type if the TTF triple it induces is compactly generated. Similarly, a cosilting
object C' € D(R-Mod) is said to be of cofinite type if it induces a compactly
generated TTF triple.

Definition 8.2.13. [4, Section 2.6] A silting object in D(Mod-R) is called a
bounded silting complex if it belongs to K°(Proj-R). Similarly, a cosilting
object in D(R-Mod) is a bounded cosilting complex if it belongs to K°(R-Inj).
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The following theorem from [4] shows how the correspondence in Proposition

3.2.10| restricts to a silting-cosilting duality.

Theorem 8.2.14. [/, Theorem 3.1 and Theorem 3.3] Suppose R is any ring.

There is a one-to-one correspondence

Compactly generated } { Compactly generated }
TTF—triples in D(Mod-R) TTF—triples in D(R-Mod) J >

given by mapping the TTF triple in D(Mod-R) generated by the set S of compact
objects to the TTF triple in D(R-Mod) generated by S* = {C*: C € S}.
Furthermore, this correspondence induces an injective map

{ Silting objects of finite type

Cosilting objects of cofinite type }
in D(Mod-R), up to equivalence )

} — in D(R-Mod), up to equivalence

which is given by S — ST and restricts to a bijection

{ Bounded silting complexes } Bounded cosilting complexes of cofinite type
in D(Mod-R), up to equivalence A { in D(R-Mod), up to equivalence }

8.3 T-structures with monoidal hearts

In this section we take a closer look at the example 7 = D(R-Mod) where R
is a coherent commutative ring of weak global dimension at most one such that
every finitely presented R-module has finite projective dimension. Here 7 comes
equipped with the standard t-structure which has the monoidal heart R-Mod. We
show that for each definable subcategory D of T and each n € Z, H"(D) and
H~"(D") are elementary dual definable subcategories of R-Mod.

We begin with some background on t-structures in compactly generated tri-
angulated categories. Suppose (U,V) is a t-structure. Then U is suspended and
precovering and V is cosuspended and preenveloping. Therefore we can apply
Proposition which results in the following adjoint functors.

Definition 8.3.1. We define the truncation functors 7, : 7 — U (respectively
v : T — V) to be the right adjoint to the inclusion functor U < T (respectively
left adjoint to the inclusion functor V < T).
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It follows from the existence of these truncation functors that the triangle in
part (iii) of the definition of a torsion pair is actually functorial and can be written
as 7y (X) = X = (X)) = By (X).

Recall that the heart of the t-structure (U,V) is given by H; = U N LY.
Given a t-structure ¢ = (U,V) there exists a functor HY : T — H,; given by
HY = 740X omy0X~! In addition, we set H = HY o ©" for any integer n. We

have the following proposition.

Proposition 8.3.2. (e.g. see [32, Proposition 10.1.11(i)]) The heart of a t-
structure, t = (U, V), is an abelian category and HY : T — H; is a cohomological

functor.
Below we give a standard example which motivates these definitions.

Example 8.3.3. Let A be an abelian category. The standard t-structure in
D(A) is given by D = (D=0, D=1) where D= = {X € D(A) : H(X) =0, Vi > 0}
and D= = {X € D(A) : Hi(X) =0, Vi < 1} where H} : D(A) — A denotes the
usual ith cohomology functor.

The heart of the standard t-structure is D=°ND=" = {X € D(A) : H(X) =
0, Vi # 0} and is therefore equivalent to the category A. Furthermore the coho-
mological functor Hf} : D(A) — Hp ~ A is the nth cohomology functor.

In particular, if A = R-Mod for some commutative ring R then D(R-Mod)
15 a rigidly-compactly generated tensor triangulated category and the heart has an
additive closed symmetric monoidal structure given by the tensor product of R-

modules, @g.

Next we give some results comparing the Ziegler spectrum of D(R-Mod) with
the Ziegler spectrum of R-Mod. We begin with the following definition using the
notation of [27].

Definition 8.3.4. Define a functor I,, : R-Mod — D(R-Mod) given on objects by
M +— M|—n], for each n € Z.

Proposition 8.3.5. ([27, Proposition 7.1]) For each n € Z, the functor I, :
R-Mod — D(R-Mod) maps indecomposable pure-injective R-modules to indecom-
posable pure-injective objects in D(R-Mod).



172 CHAPTER 8. TORSION PAIRS AND DEFINABILITY

Definition 8.3.6. We denote by Zgp C Zgpp-moq) the set of (isomorphism
classes of) indecomposable pure-injectives in the image of the restriction of I,
to Zg(R-Mod).

The following theorem was proven in [27].

Theorem 8.3.7. ([27, Theorem 7.3]) Let R be a ring. The following statements
hold.

(i) For each n € Z, 7g}, is a closed subset of Zgp(p-roa)-

(i1) Suppose R is right coherent and every finitely presented R-module has finite
projective dimension. Then I, induces a homeomorphism between Zg(R-Mod)
and Zgp C Z8p(r-Moa) With the subspace topology.

(11i) The disjoint union UZZg}i2 is a closed subset in Zgp(poaq) With open com-

ne
plement X consisting of the indecomposable pure-injective complexes with at

least two non-zero cohomology groups. Thus,

28 p(R-Mod) = X U UZg%.

nez

In [27] it is shown using the above theorem, that Zgpp-voq) = U Zgg for R
nez

von Neumann regular or right hereditary. In [I3] the authors give the following

generalisation.

Theorem 8.3.8. [153, Theorem 3.4 and Corollary 3.6] Let R be a ring of weak
global dimension at most one. Then every definable subcategory D C D(R-Mod)
is determined on cohomology, that is X € D if and only if H"X[—n] € D for all

n € Z. As a result we have Zgppaioqy = U Zgk-
neL

Throughout the rest of this subsection suppose R is a coherent commutative
ring of weak global dimension at most one such that every finitely presented R-
module has finite projective dimension and set 7 = D(R-Mod). Then for every
M € R-mod and n € Z, M[-n] € D°(R-Mod). By Theorem [8.3.7 every I,
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induces a homeomorphism between Zg(R-Mod) and Zgh C Zgpp-poq) With the

subspace topology and by Theorem 8.3.8, Zgp(z-nioq) = U Zgh.
neZ

Proposition 8.3.9. Suppose D C D(R-Mod) is a T -tensor-closed definable sub-
category, then H"(D) C R-Mod is an fp-hom-closed definable subcategory.

Proof. Suppose X € H"(D) and A € R-mod. By our assumption on R and
Theorems [8.3.7 and [8.3.8] H"(D) is definable, X[—n] € D and A[0] € D¢(R-Mod).
Since D is T-tensor-closed, A[0]Y ®% X[-n] =& RHom(A[0], X[-n]) € D and
therefore H"(RHom(A[0], X[—n])) € H"(D). But,

H"(RHom(A[0], X[—n])) = D(R-Mod)(A[0], X[0]) = Homp(A, X),

so hom(A, X) € H"(D) and H"(D) is fp-hom-closed. [

Corollary 8.3.10. There exists a lattice monomorphism

(O)(Zg%(R—Mod)) — O( U Zg"™ (R-Mod)),

nez

where |J Zg"™(R-Mod) denotes the Z-indexed disjoint union of copies of the fp-
nez

hom-closed Ziegler topology. The mapping on closed complements sends a closed
subset € C Zg%(R_MOd) to |JE™ C U Zg"™(R-Mod) where, if € = D Npinj, for

nez nez
a T -tensor-closed definable subcategory D C T, then €™ = H"(D) N pinj z-poq-

Proposition 8.3.11. If D C D(R-Mod) is a definable subcategory with internal
tensor-dual DV, then for anyn € Z, (DN I,(R-Mod))" = DY N I_,(R-Mod).

Proof. Suppose D C D(R-Mod) is a definable subcategory with corresponding
cohomological ideal (7. Then D N I,,(R-Mod) is also definable by Theorem [8.3.7]
[27, Theorem 7.3] and we will denote the corresponding cohomological ideal by
J'. Since, for all X € DN I,(R-Mod), H(X) = 0 for all i # n, (R[—i],X) =0
for all @ # n. Therefore, idg_; € J' for all i # n and J' is generated as a
cohomological ideal by J U {RJi] : i@ # —n}. Therefore, by Lemma and
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noting that (idg_)" = idgj_sv = idgy, the cohomological ideal J" associated to
(DN I,(R-Mod))" is generated by JY U {R]i] : i # n}.

Therefore, Y € (D N I,(R-Mod))Y if and only if Y € DY and H(Y) =
(R[i],Y) =2 (idgp),Y) = 0 for all i # n. So Y € (DN I,(R-Mod))" if and only if
Y € DY NI_,(R-Mod), as required. [

Corollary 8.3.12. If D C [,(R-Mod) C D(R-Mod) is a definable subcategory

then its internal tensor-dual DV is contained in I_,(R-Mod).

Theorem 8.3.13. Suppose R is a coherent commutative ring of weak global di-
mension at most one such that every finitely presented module is of finite projective
dimension and let T = D(R-Mod). Let D be a definable subcategory of T with in-
ternal tensor-dual DV. Then, for eachn € Z, H"(D) and H™"(D") are elementary
dual definable subcategories in the sense of Theorem [2.4.19

Proof. Let D be a definable subcategory of T with corresponding cohomological
ideal 7. First we show that H"(D") C H"(D)".

Let Y € H™(D") and suppose F, € (R-mod, Ab)® has the following presen-
tation, (V,—) 2= (U,~) — F, — 0. Recall that Y € H™(D)? if and only if for
all F, € (R-mod, Ab)® such that F,(H"(D)) = 0, (F,)4(Y) = 0 where (F,)¢ has
presentation

9OR—

0= (F)"— (Ueg—) 7= (Vg —)

and H"(D)? denotes the elementary dual definable subcategory of
H™(D) C R-Mod. Assume F,(H"(D)) = 0, or equivalently for all X € H"(D) and
every morphism h : U — X, h factors via g. We want to show that ¢ ®r Y is a
monomorphism.

By our assumption on R, I_,(g) : U[—n] — V[—n] is a morphism in 7° and

therefore there exists an exact triangle in 7°¢ of the form

AL U] 225 vien) — A

Now for every Z € DN I,,(R-Mod), Z = H"(Z)[—n| where H"(Z) € H"(D) and
so any morphism U[—n| — Z corresponds (via I,,) to a morphism U — H"(Z).
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Therefore, since every morphism U — H"(Z) factors via g, every morphism
Ul-n] — Z factors via g|—n], or equivalently, (f,Z) = 0. Hence, f is in the
cohomological ideal associated to D N I,,(R-Mod), which we will denote by J'.

Now, by [27, Theorem 7.3], Y € H "(D") implies Y[n] € DVNI_,(R-Mod) and
by Proposition we have Y € H~"(DV) if and only if D(R-Mod)(f",Y[n]) =
0 for all f € J'. So D(R-Mod)(f¥,Y[n]) = 0 for all f € J' or equivalently
H"(f @5 Y[0]) =0 for all f e J".

Since — ®% Y'[0] is exact and H™ is cohomological we have an exact sequence

H™(feRY[0]) H"™(g[-n]@RY[0])
_—__) \

H"(A@pY[0]) H"(U[-n]®RY[0]) H"(V[=n]@gY[0]).

Therefore since f € J' and H™(f ®@%Y[0]) = 0, H"(g[—n] ®% Y0]) is a monomor-
phism. Consequently,

g@rY = H(g[0] ®F Y{0]) = H((g[—n] &% (Y0)[n]) = H"((9]—n] @} Y]0]))

is a monomorphism and Y € H"(D).

We have established that H~"(DV) C H"(D)?. For the converse, note that
H™(D) = H"(DY) C H™(DY)¢ and recall that elementary duality of definable
subcategories is inclusion-preserving. Therefore, H"(D)¢ C H"(D") and we have

equality, as required. [

Remark 8.3.14. Under the assumptions of Theorem [8.3.13] if D is T-tensor-closed,
then DY = D (see Proposition [7.2.2) and we can see that the monomorphism in
Corollary [8.3.10] is not an isomorphism. Indeed, given a non-zero fp-hom-closed
definable subcategory D C R-Mod and n # 0, there is no T -tensor-closed definable
. 0 ifi#n
subcategory X C D(R-Mod) such that H*(X) = since if H"(X') =
D if 1 =n,
D then H"(X) = D
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Appendix A

GAP code

A.1 Example 5.1.12

We show that M(ab~tab™) @ M(b™'a) X PO P& P& M(ab™!), where P = kV
denotes the four dimensional indecomposable projective module. First we load the
‘QPA’ package (see [28]) and define the path algebra in GAP (see [20]) using the

following input.

gap> LoadPackage("qpa");

gap> Q:=Quiver(1,[[1,1,"a"],[1,1,"b"]1]);
gap> kQ:=PathAlgebra(Field(Z(2)),Q);
gap> AssignGeneratorVariables(kQ);

gap> relations:=[a"2,a*b-b*a,b"2];

gap> A:=kQ/relations;

Next we calculate by hand the action of a and b on the 15 dimensional module
M(ab~tab™') ® M(b~'a). Denote the generators of M(ab~tab™!) by z, ..., 4 as

pictured below.

T3 T
Ty T2 Zo

182
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Denote the generators of M(b~'a) by yo,y1 and yo with the action of a and b

as pictured below.

Y2 Yo
Y1

Therefore we take z; ® y; for ¢ = 0,...,4 and j = 0,...,2 as generators for
M(ab~tab™') ® M(b~'a). Fix the order of the generators to be

To & Yo, To XD Y1, To XD Y3y «ovy Ty Q Yo, Ty X Y1, Ty & Yo.

The action of a is given by multiplying on the left by the following matrix.

01 0000O0OO0OO0OO0OO0OOO0OO0QO0
0000O0O0OO0OO0OOOO0OO®O0OO0®O0
0000O0OO0OO0OO0OOOO0OOO0OO0T®O0
000010110O0O0O0O0O00©O0
0000O0OO0OO0O1O0O0OO0OO®O0OO0®O0
0000O0OO0OO0OO0OTO0OO0OOO0OO0O0
0000O0OO0OO0O1TO0O0OO0OO0OO0®O0ODO
0000O0OO0OO0OO0OOOO0OOO0OO0®O0
000O0O0OO0OO0OO0OOOO0OOO0OO0@O0
00000OO0OO0OO0OO0OO0O1O0T1T10
0000O0OO0OO0OO0OO0OO0OO0OOO0OT1OQ 0
0000O0OO0OO0OO0OO0OO0OO0OO0OO0©O0T1
0000O0OO0OO0OO0OO0OO0OO0OOO0OT1® 0
0000O0OO0OO0OO0OOOO0OO®O0OO0ODQ 0
0000O0OO0OO0OO0OOOO0OOO0OO0®O0

The action of b is given by multiplying on the left by the following matrix.
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0000O0OO0OO0OO0OOOO0OO®O0OO00QO0
0000O0OO0OO0OO0OOOOOO0OO0O0
01 000O0O0O0OO0OO0OO0OO0O0®O0OO
10000O0O0OO0OO0OOOO0OO0O®O0OO
01 0000O0OO0OO0OO0OO0OOO0OO0O0
01 10100O0O0O0O0O0O0O0¢O0
0000O0OO0OO0OO0OOOOO0OO0O®O0ODO
0000O0OO0OO0OO0OOOOO®O0OO0®O0
0000O0OO0OO0O1O0O0OO0OO0O®O0OO0®O0
0000O0OO0OT1TO0OO0OOO0OO0OO0O®O0OO
0000O0OO0OO0O1O0O0OO0OO®O0OO0QO0
0000O0OO0OO0O1T1TO0OT1O0O0O0@O0
0000O0OO0OO0OO0OOOO0OO0OO0®O0OO
0000O0OO0OO0OO0OOOOOSO0O®O0OO® 0
000O0O0OO0OO0OO0OOOO0OOO0OT1TOQO0

Below we provide the GAP input to define the matrices which correspond to

the action of a and b, denoted by ‘mata’ and ‘math’ respectively

gap> v0:=[0%Z(2),0%Z(2),0%Z(2),0%Z(2),0*Z(2),0%Z(2) ,0%Z(2) ,0%Z(2),
0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2)];

gap> v2:=[0%Z(2),Z2(2)70,0%Z(2) ,0*Z(2),0%Z(2),0%Z(2),0%Z(2),0%Z(2),
0%Z(2),0%Z(2) ,0%Z(2) ,0%Z(2),0%Z(2) ,0%xZ(2),0*Z(2)];

gap> vb78:=[0%Z(2),0%Z(2),0%Z(2),0%Z(2),Z(2)"~0,0%Z(2) ,Z(2)"0,Z(2)"0,
0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2)];

gap> v8:=[0%Z(2),0%Z(2) ,0%Z(2),0*Z(2),0%Z(2),0%Z(2),0%Z(2),Z(2)"0,
0%Z(2),0%Z(2) ,0%Z(2) ,0%Z(2),0*Z(2) ,0%Z(2),0*%Z(2)];

gap> v9:=[0%Z(2),0%Z(2),0%Z(2) ,0%Z(2),0%Z(2) ,0%Z(2) ,0%Z(2) ,0%*Z(2),
Z(2)70,0%Z(2),0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2)];

gap> v111314:=[0*Z(2),0%Z(2),0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2),
0%Z(2),0%Z(2),0%Z(2),Z(2)°0,0%Z(2),Z(2)"0,Z2(2)"0,0%Z(2)];

gap> v14:=[0*Z(2),0*Z(2),0%Z(2),0%Z(2),0%Z(2),0%Z(2) ,0%xZ(2) ,0*Z(2),
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0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,2(2)"0,0%Z(2)];

gap> v15:=[0%Z(2),0%Z(2),0%Z(2),0%Z(2),0%Z(2),0%Z(2) ,0%Z(2) ,0%Z(2),
0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,Z(2)"0];

gap> mata:=[v2,v0,v0,v578,v8,v9,v8,v0,v0,v111314,v14,v15,v14,v0,v0];
gap> v1:=[Z(2)70,0%Z(2),0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2),0%Z(2),0%Z(2),
0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2)];

gap> v235:=[0%Z(2),Z2(2)70,Z2(2)"0,0%Z(2) ,Z(2)~0,0%Z(2) ,0%Z(2) ,0%Z(2),
0*Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2),0%Z(2),0%Z(2),0%Z(2)];

gap> v8:=[0%Z(2),0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2),0%Z(2),0%Z(2),Z(2)"0,
0%Z(2) ,0%Z(2),0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2)];

gap> v7:=[0%Z(2),0%Z(2),0%Z(2) ,0*Z(2),0%Z(2),0%Z(2),Z2(2)"0,0%Z(2),
0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%Z(2) ,0%xZ(2)];

gap> v8911:=[0%Z(2),0%Z(2) ,0%Z(2),0%Z(2) ,0%Z(2),0%Z(2) ,0%Z(2),
Z(2)°0,Z2(2)°0,0%Z(2),Z(2)"0,0%Z(2) ,0%Z(2),0%Z(2),0*xZ(2)];

gap> matb:=[v0,v0,v2,v1,v2,v235,v0,v0,v8,v7,v8,v8911,v0,v0,v14];

We define the 15 dimensional module M (ab~'ab™) @ M (b~'a) assigned to the

variable S as follows.

gap> S:=RightModuleOverPathAlgebra(A, [["a", matal, ["b",matbl]);
<[ 15 1>

Using the command ‘DecomposeModuleWithMultiplicities” we find that
M(ab~tab™') ® M(b~'a) decomposes into 3 copies of a 4-dimensional module and

a 3-dimensional module.

gap> DecomposeModuleWithMultiplicities(S);
[ [<[4]1> <[31>1,[3,11]

Recall that the unique indecomposable projective P is kG, where G = V, =
<x,y\x2 =y? = [x,y] = eg>. Here the generators are 1,z,y and zy, the action of

a = x + 1 is given by multiplication on the left by the matrix
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(el
S O ==
_ = O O
_ = O O

and the action of b = y + 1 is given by multiplication on the left by the matrix

S = O =
—_ O = O
S = O =
—_ O = O

We define the 4-dimensional projective module in GAP, assigned to the variable

P as follows.

gap> e12:=[Z(2)70,Z(2)"0,0%Z(2),0%Z(2)];

gap> e34:=[0%*Z(2),0*Z(2),Z2(2)°0,Z2(2)"0];

gap> el13:=[Z(2)70,0%Z(2),Z2(2)"0,0%Z(2)];

gap> e24:=[0%Z(2),Z(2)"0,0%Z(2),Z(2)"0];

gap> P:=RightModuleOverPathAlgebra(A, [["a", [e12,e12,e34,e34]], ["b",
[e13,e24,e13,e24]111);

Similarly the 3-dimensional module M (ab™!) can be pictured as follows.

X

T2 Zo

Therefore, fixing the order of the generators xg, 1, x2, the action of a is given

by the matrix

o O O
o O O
oS = O
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and the action of b is given by

o = O
o O O
o O O

Therefore we define M(ab™!) in GAP, assigned to the variable H as follows.

gap> H:=RightModuleOverPathAlgebra(A, [["a", [[0%Z(2),0%Z(2),0*Z(2)],
[0%Z(2),0%Z(2),Z(2) 0], [0*Z(2),0%Z(2),

0%Z(2)111, ["b", [[0%Z(2),0%Z(2),0%Z(2)],[Z(2)~0,0%Z(2),0%Z(2)],
[0%Z(2),0%Z(2),0%Z(2)1111);

Now using the ‘IsDirectSummand’ command, we check that P = kG and H =

M(ab™') are indeed the 3 and 4-dimensional indecomposable direct summands of

M(ab™tab™') @ M (b~ ta).

gap> IsDirectSummand(P,S);

true

gap> IsDirectSummand(H,S) ;

true

A.2 Example 6.1.24

Let T = kG-Mod where k is a field of characteristic 5 and G = <g|g5 = 1>. We

show that the table below gives the tensor product over k£ of these modules.

®Qp | My M, M3 M, Ms
My | My M, M; M, M3
My | My My® M M,® M, Mz®Ms M
My | My My®My My MsadMs Myao MP MY
My | My Ms®Ms M, M My M
Ms | My MP M) MY M
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The first row and column are clear as M; is the tensor-unit and the last row
and column follow since the subcategory of projective modules is a tensor-ideal.
For the other six entries we use the computer package GAP (see [20]).

First we load the ‘QPA’ package (see [28]) into GAP, define the quiver @) with
one vertex and one arrow and define the algebra A = kG which is the path algebra

of @ factored out by the relation 2% = 0 where z is the single arrow of the quiver

0.

gap> LoadPackage("qpa");

gap> Q:=Quiver(1,[[1,1,"x"]1]1);

gap> kQ:=PathAlgebra(Field(Z(5)),Q);
gap> AssignGeneratorVariables(kQ);
gap> relations:=[x"5];

gap> A:=kQ/relations;

Next we define the five indecomposable variables Mj, ..., M5 in GAP using the

following input.

gap> M1:=RightModuleOverPathAlgebra(A, [["x", [[0xZ(5)]1]1]1]1);

gap> M2:=RightModuleOverPathAlgebra(A, [["x", [[0%xZ(5),Z(5)"~0], [0*Z(5)
,0%Z(85)1111) ;

gap> M3:=RightModuleOverPathAlgebra(A, [["x", [[0%¥Z(5),Z(5)~0,0%Z(5)],
[0*Z(5) ,0%Z(5) ,Z(5)"0], [0%xZ(5) ,0%Z(5) ,0%Z(5)]11]11);

gap> M4:=RightModuleOverPathAlgebra(A, [["x", [[0%xZ(5),Z(5)~0,0%Z(5),

0%Z(5)]1, [0%xZ(5) ,0%Z(5) ,Z(5)~0,0%Z(5)]1, [0%xZ(5) ,0%Z(5) ,0%Z(5) ,Z(5) ~0]

, [0%xZ(5) ,0%Z(5) ,0%Z(5) ,0%xZ(5)1111);

gap> M5:=RightModuleOverPathAlgebra(A, [["x", [[0%xZ(5),Z(5)~0,0%Z(5),

0*Z(5) ,0%Z(5)], [0%xZ(5) ,0%xZ(5) ,Z(5)~0,0%Z(5) ,0%Z(5)], [0*xZ(5) ,0%Z(5),

0%Z(5),Z(5)~0,0%Z(5)], [0%xZ(5) ,0%Z(5) ,0%xZ(5) ,0%Z(5) ,Z(5) ~0], [0*Z(5),

0%Z(5) ,0%Z(5) ,0+Z(5) ,0%Z(5)1111);

Next we calculate the tensor products by hand. Here M, has generators
L, T,.., T ' and M;®M; has generators 1®1, T®1,..., T '®1, .., 1T, .., T '
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T7=1. We fix the order of the generators and calculate the action of T noting that
Txy)=Trey+z®Ty+ Tr® Ty for all generators x and y.

We shall provide working for M, ® Mjz. For all other tensor products we will
simply display the GAP code. We have generators 1 ® 1, TR 1,1 T, T®T,1 ®
T2, T ®T? Therefore T(121) =T ®1+1®T+T ®T so the first row of our
matrix will be [0,1,1,1,0,0]. Indeed the action of T" is given by multiplying on
the left by the matrix

o O O o o O

o O O O =
o O O O O =
o O OO = ==
O O O = O O
SO = = = O O

We define the 6-dimensional module N := M, ® Mj3 in GAP using the following

input code.

gap> v0:=[0%Z(5),0%Z(5) ,0%Z(5) ,0*Z(5),0*Z(5),0%Z(5)];
gap> v234:=[0%Z(5),Z(5)"0,Z(5)~0,Z(5)~0,0%Z(5),0%Z(5)];
gap> v4:=[0%Z(5),0%*Z(5),0%*Z(5),Z(5)~0,0%Z(5),0%Z(5)];
gap> v456:=[0%Z(5),0%Z(5),0%Z(5),Z(5)~0,Z(5)"~0,Z(5)"0];
gap> v6:=[0%Z(5),0%Z(5),0%*Z(5),0%Z(5),0*Z(5),Z(5)"0];
gap> mat:=[v234,v4,v456,v6,v6,v0];

gap> N:=RightModuleOverPathAlgebra(A, [["x",mat]]);

Using the ‘DecomposeModule’ command we see that Ms; ® M3 decomposes as
an indecomposable 2-dimensional module and an indecomposable 4-dimensional
module. Since in this example there is only one indecomposable module of each
dimension, we can deduce that My ® M3 = My, & M,. The ‘IsDirectSummand’

command confirms this conclusion.

gap> DecomposeModule(N) ;
[ <[ 21>, <[ 41>]
gap> IsDirectSummand(M2,N);
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true
gap> IsDirectSummand(M4,N) ;

true

We define the 4-dimensional module L := My ® M, in GAP using the following

input code.

gap> u0:=[0*Z(5),0%Z(5),0%Z(5),0*Z(5)];

gap> u4:=[0%Z(5),0%Z(5),0%Z(5),Z(5)"0];

gap> u234:=[0%Z(5),Z2(5)"0,Z(5)~0,Z(5)"0];

gap> L:=RightModuleOverPathAlgebra(A, [["x", [u234,ud4,ud,u0]]]);

Using the ‘DecomposeModule’ command and the ‘IsDirectSummand’ command
we can see that My @ My = M, & Ms.

gap> DecomposeModule (L) ;
[<[11> <[31>]

gap> IsDirectSummand(M1,L);
true

gap> IsDirectSummand(M3,L);

true

We define the 8-dimensional module H := My ® M, in GAP using the following

input code.

gap> w0:=[0%Z(5),0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5),0%Z(5),0%Z(5)];
gap> w256:=[0%Z(5),Z(5)"0,0%Z(5) ,0%Z(5),Z(5)~0,Z(5)~0,0%Z(5),0%*Z(5)]
gap> w367:=[0%Z(5),0%Z(5),Z(5)~0,0%Z(5) ,0%xZ(5),Z(5)"0,Z(5)"0,0%Z(5)]
gap> w8:=[0%Z(5),0%Z(5) ,0%Z(5) ,0*Z(5),0%*Z(5),0%Z(5),0%Z(5),Z(5)"0];
gap> w6:=[0%Z(5),0%Z(5) ,0%Z(5) ,0%Z(5),0%Z(5),Z(5)~0,0%Z(5),0%Z(5)];
gap> w7:=[0%Z(5),0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5),0%Z(5),Z(5)"0,0%Z(5)];
gap> wa78:=[0%Z(5),0%Z(5),0%Z(5),Z(5)~0,0%*Z(5) ,0*Z(5),Z(5)"0,Z(5) 0]
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gap> H:=RightModuleOverPathAlgebra(A, [["x", [w256,w367,w478,w8,w6,w7,
w8,w0]11);

Using the ‘DecomposeModule’ command and the ‘IsDirectSummand’ command
we can see that My ® My = M5 & Ms.

gap> DecomposeModule (H) ;

[ <[ 31> <[51>]

gap> IsDirectSummand(M3,H);
true

gap> IsDirectSummand(M5,H);

true

We define the 9-dimensional module J := M3;® M3 in GAP using the following

input code.

gap> y0:=[0%Z(5),0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0¢Z(5) ,0%Z(5) ,0%Z(5) ,0
*Z(5)];

gap> y245:=[0%Z(5),Z(5)"0,0%Z(5),Z(5)~0,Z(5)~0,0%Z(5) ,0%Z(5) ,0+Z(5),
0%Z(5)];

gap> y356:=[0%Z(5),0%Z(5),Z(5)~0,0%Z(5),Z(5)~0,Z(5)"~0,0%Z(5) ,0*Z(5),
0%Z2(5)1;

gap> y6:=[0%Z(5),0%Z(5) ,0%Z(5) ,0*Z(5),0%Z(5),Z(5)"0,0%Z(5),0%Z(5),0%
Z(5)];

gap> y578:=[0%Z(5) ,0%Z(5),0%Z(5) ,0%Z(5) ,Z(5)~0,0%Z(5) ,Z(5)~0,Z(5) "0,
0*Z(5)];

gap> y689:=[0%Z(5),0%Z(5),0%Z(5),0%Z(5),0%xZ(5),Z(5)"~0,0%*Z(5),Z(5)"0,
Z(5)"0];

gap> y9:=[0%Z(5),0%Z(5) ,0%Z(5) ,0%Z(5) ,0+Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) , Z(
5)°0];

gap> y8:=[0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5),0%Z(5),Z(5)~0,0%
Z(5)1;
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gap> J:=RightModuleOverPathAlgebra(A, [["x", [y245,y356,y6,y578,y689,y
9,y8,y9,y0111);

Using the ‘DecomposeModule’ command and the ‘IsDirectSummand’ command
we can see that Mz @ Mz = M, & Ms ® Ms.

gap> DecomposeModule(J);
[<[11> <[31>, <[51>1]
gap> IsDirectSummand(M3,J);
true

gap> IsDirectSummand(M1,J);
true

gap> IsDirectSummand(M5,J);

true

We define the 12-dimensional module W := M3 ® M, in GAP using the follow-

ing input code.

gap> z0:=[0*Z(5),0%Z(5),0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) , 0%
Z(5),0%Z(5) ,0%xZ(5),0%Z(5)];

gap> z256:=[0%Z(5),Z(5)~0,0%Z(5),0%Z(5),Z(5)~0,Z(5)"~0,0%Z(5) ,0*Z(5),
0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5)]1;

gap> z367:=[0%Z(5),0%Z(5),Z(5)~0,0%Z(5),0%xZ(5),Z(5)"~0,Z(5)"0,0*Z(5),
0%Z(5),0%Z(5) ,0%Z(5),0*Z(5)];

gap> z478:=[0%Z(5),0%Z(5),0%Z(5),Z(5)~0,0%Z(5) ,0%xZ(5) ,Z(5)"0,Z(5)"0,
0%Z(5) ,0%Z(5) ,0%Z(5) ,0*Z(5)];

gap> z8:=[0%Z(5) ,0%Z(5) ,0%Z(5),0*Z(5),0%*Z(5),0%Z(5),0%Z(5),Z(5)~0,0%
Z(5),0%Z(5),0%Z(5) ,0¥Z(5)]1;

gap> z6910:=[0*Z(5) ,0*Z(5) ,0%Z(5),0%Z(5),0%Z(5),Z(5)~0,0%Z(5) ,0*Z(5)
,2(5)70,Z2(5)"0,0%Z(5),0*Z(5)];

gap> z71011:=[0%Z(5) ,0%Z(5) ,0*Z(5) ,0%Z(5),0%Z(5),0%Z(5),Z(5)~0,0%Z(5
),0%Z(5),Z(5)"0,Z(5)"0,0*Z(5)];

gap> z81112:=[0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,Z(5)"
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0,0%Z(5),0%Z(5),Z(5)"0,Z(5)"0];

gap> z12:=[0%*Z(5) ,0*Z(5) ,0%Z(5) ,0%¥Z(5) ,0%Z(5) ,0*Z(5) ,0%Z(5) ,0%xZ(5),0
*Z(5) ,0%Z(5),0%Z(5),Z(5)"0];

gap> z10:=[0*Z(5) ,0*Z(5) ,0%Z(5),0%Z(5),0%Z(5),0%Z(5),0%Z(5),0%Z(5),0
*Z(5),Z2(5)"0,0*%Z(5),0*Z(5)];

gap> z11:=[0%*Z(5) ,0%Z(5) ,0%Z(5),0%Z(5),0%Z(5),0%Z(5),0%Z(5) ,0%xZ(5),0
*Z(5),0%Z(5),Z(5)"0,0%Z(5)];

gap> W:=RightModuleOverPathAlgebra(A, [["x", [z256,2367,2478,28,26910,
z71011,z81112,212,210,z11,212,20]11]) ;

Using the ‘DecomposeModule’ command and the ‘IsDirectSummand’ command
we can see that M3 X M4 = M2 &P M5 D M5.

gap> DecomposeModule (W) ;
[<[ 21> <[51> <[51>]
gap> IsDirectSummand(M5,W);
true

gap> IsDirectSummand (M2,W);

true

We define the 16-dimensional module F' := M;® M, in GAP using the following

input code.

gap> s0:=[0%Z(5),0%Z(5) ,0%Z(5) ,0*Z(5),0%Z(5),0%Z(5),0%Z(5),0%Z(5) ,0%
Z(5),0%*Z(5),0%Z(5) ,0%Z(5) ,0%Z(5) ,0*Z(5) ,0%Z(5) ,0*Z(5)];

gap> s256:=[0%Z(5),Z(5)"0,0%Z(5),0%Z(5),Z(5)~0,Z(5)~0,0*Z(5) ,0*Z(5),
0%Z(5),0*Z(5) ,0%xZ(5),0%Z(5),0*Z(5) ,0%Z(5),0*Z(5) ,0%xZ(5)];

gap> s367:=[0%Z(5),0%Z(5),Z(5)~0,0%Z(5),0%xZ(5),Z(5)"~0,Z(5)"0,0*Z(5),
0*Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%xZ(5)];

gap> s478:=[0*Z(5),0%Z(5),0%Z(5),Z(5)~0,0%Z(5) ,0%xZ(5) ,Z2(5)"0,Z(5)"0,
0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%xZ(5)]1;

gap> s8:=[0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5),0%Z(5),Z(5)~0,0%
Z(5),0%Z(5),0%Z(5),0%Z(5),0%Z(5),0%Z(5) ,0%Z(5),0%Z(5)];
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gap> s6910:=[0%Z(5) ,0%xZ(5) ,0%Z(5) ,0%Z(5) ,0*Z(5),Z(5)~0,0%Z(5),0%Z(5)
,2(5)70,Z(5)~0,0%Z(5) ,0%xZ(5) ,0%Z(5) ,0%Z(5) ,0%Z(5),0%Z(5)];

gap> s71011:=[0%*Z(5) ,0%Z(5) ,0*Z(5) ,0%Z(5) ,0%Z(5),0%Z(5),Z(5)~0,0%Z(5
),0%Z(5),Z2(5)~0,Z(5)"0,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5)];

gap> s81112:=[0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%xZ(5),Z(5)"
0,0%Z(5),0%Z(5),Z(5)"0,Z(5)"0,0%Z(5) ,0%xZ(5),0%Z(5),0*Z(5)];

gap> s12:=[0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5),0%Z(5),0%Z(5),0
*xZ(5) ,0%Z(5),0*Z(5),Z(5)"0,0%Z(5) ,0%xZ(5) ,0%Z(5),0*xZ(5)];

gap> s101314:=[0*Z(5) ,0%Z(5),0%Z(5) ,0%xZ(5) ,0%xZ(5) ,0%Z(5) ,0%Z(5) ,0*Z(
5),0%Z(5),Z(5)"0,0%*Z(5) ,0%Z(5) ,Z(5)~0,Z(5)"0,0%Z(5) ,0xZ(5)];

gap> s111516:=[0*Z(5),0%Z(5),0%Z(5) ,0%xZ(5) ,0%xZ(5) ,0%Z(5) ,0*%Z(5) ,0*Z(
5),0%Z(5) ,0%Z(5) ,Z(5)~0,0%*Z(5) ,0%Z(5),0%Z(5),Z(5)~0,Z(5)"0];

gap> s121516:=[0*Z(5) ,0%Z(5),0%Z(5) ,0%xZ(5) ,0%xZ(5) ,0%Z(5) ,0%Z(5) ,0*Z(
5),0%Z(5) ,0%Z(5),0*Z(5),Z(5)"0,0*Z(5) ,0%Z(5),Z(5)"0,Z(5)"0];

gap> s111415:=[0*Z(5) ,0%Z(5),0%Z(5) ,0%xZ(5) ,0%xZ(5) ,0%Z(5) ,0%Z(5) ,0*Z(
5),0%Z(5) ,0%Z(5),Z(5)"0,0%Z(5) ,0%Z(5),Z(5)"0,Z(5)"0,0%Z(5)];

gap> s16:=[0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5),0%Z(5),0%Z(5),0
*xZ(5) ,0%Z(5),0*Z(5) ,0%Z(5),0*Z(5) ,0%xZ(5) ,0%Z(5),Z(5)"0];

gap> s14:=[0*Z(5),0*Z(5),0*Z(5),0%Z(5),0%Z(5),0%Z(5),0%Z(5),0%Z(5),0
*Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5) ,0%Z(5),Z(5)"0,0%Z(5) ,0xZ(5)];

gap> s15:=[0*Z(5) ,0*Z(5) ,0%Z(5),0%Z(5),0%Z(5),0%Z(5),0%Z(5),0%Z(5),0
*xZ(5) ,0%Z(5) ,0%Z(5) ,0%Z(5),0%Z(5) ,0%xZ(5),Z(5)~0,0%Z(5)];

gap> F:=RightModuleOverPathAlgebra(A, [["x", [s256,s367,5478,s8,s6910,
s71011,881112,s12,s101314,s111415,8121516,s16,s814,s15,516,s0]111) ;

Y

Using the ‘DecomposeModule’ command we can see that My @ My = M, &
Ms ® Ms @ Ms.

gap> DecomposeModule (F);
[L<[11> <[51> <[5]> <[5]>]
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