Faith's problem on R-projectivity is independent of ZFC

Jan Trlifaj, Univerzita Karlova, Praha

In memory of Gena Puninski

Overview

I. Baer's Criterion for injectivity, and Faith's Problem on its dual.

II. The Dual Baer Criterion for small modules.

1st set-theoretic interlude: III. Shelah's Uniformization and the vanishing of Ext.

IV. The algebra of eventually constant sequences.

2nd set-theoretic interlude: V. Jensen's Diamond, and the independence of Faith's Problem of ZFC.

I. Baer's Criterion for injectivity, and Faith's Problem on its dual.

Baer's Criterion for Injectivity

[Baer 1940]

The injectivity of a module M is equivalent to its R-injectivity, for any ring R and any module $M \in Mod-R$.

Definition

M is *R*-injective, if for each right ideal *I*, all $f \in \text{Hom}_R(I, M)$ extend to *R*:

$$0 \longrightarrow I \xrightarrow{f \xrightarrow{k}} R \xrightarrow{R} R/I \longrightarrow 0$$

Corollaries for the stucture theory

Definition

Let *R* be an integral domain. A module *M* is divisible, if M.r = M for each $0 \neq r \in R$. Equivalently, $\text{Ext}_{R}^{1}(R/rR, M) = 0$ for each $0 \neq r \in R$.

Corollaries of Baer's Criterion

- injectivity = divisibility for R a Dedekind domain.
- Let R be a right noetherian ring. Then each injective module is uniquely a direct sum of modules isomorphic to E(R/I) for some ideals I of R such that R/I uniform.
- (Matlis) Let R be a commutative noetherian ring. Then each injective module is uniquely a direct sum of modules isomorphic to E(R/p) for some prime ideals p of R.

Faith's Problem

Original formulation

Algebra II - Ring Theory, Springer GMW 191, 1976. Notes for Chapter 22 on p.175:

Sandomierski [64] showed that over a perfect ring R, that R is a "test module" for projectivity in a sense dual to the requirement for injectivity of a module M that maps of submodules of R into M can be lifted to maps of $R \rightarrow M$ (Baer's Criterion for Injectivity 3.41 (I, p. 157)). The characterization of all such rings is still an open problem.

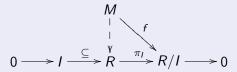
Faith's problem in short

For what rings R does the Dual Baer Criterion hold, i.e., when is projectivity equivalent to R-projectivity for all modules?

Notation

Definition

M is *R*-projective, if for each right ideal *I*, all $f \in \text{Hom}_R(M, R/I)$ factorize through π_I :



Equivalently, $\text{Hom}_R(M, \pi_I)$ is surjective for each right ideal I of R.

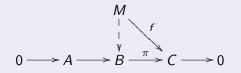
Definition

The rings R such that projectivity of a module $M \in Mod-R$ is equivalent to its R-projectivity are called right testing.

II. The Dual Baer Criterion for small modules.

Definition

Let *M* and *B* be modules. Then *M* is projective relative to *B*, or *B*-projective, if for each short exact sequence $0 \rightarrow A \rightarrow B \xrightarrow{\pi} C \rightarrow 0$, all $f \in \operatorname{Hom}_R(M, C)$ factorize through π :



Basic properties of relative projectivity

Lemma

- Assume that *M* is B_i -projective for each i < n. Then *M* is *B*-projective, where $B = \bigoplus_{i < n} B_i$.
- Assume *M* is *N*-projective and *P* ⊆ *N*. Then *M* is both *P*-projective and *N*/*P*-projective.
- *M* is *R*-projective, iff *M* is *F*-projective for each finitely generated module *F*.
- The class of all right testing rings is closed under Morita equivalence and finite ring direct products.

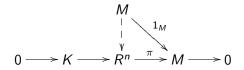
The Dual Baer Criterion holds for all finitely generated modules

Corollary

Assume $M \in Mod-R$ is finitely generated. Then M is R-projective, iff M is projective.

Proof: By the above, the *R*-projectivity implies R^n -projectivity for each $n < \omega$.

Assume *M* is *n*-generated. Then the identity map $1_M : M \to M$ factorizes through π in the free presentation of *M*:



i.e., the free presentation splits.

R-projectivity of divisible modules

Lemma

Let R be an integral domain and M be a divisible module. Then M is R-projective.

Proof: Assume *M* is divisible and let *I* be a non-zero ideal of *R* such that $0 \neq \text{Hom}_R(M, R/I)$. Then *R*/*I* contains a non-zero divisible submodule of the form *J*/*I* for an ideal $I \subsetneq J \subseteq R$. Let $0 \neq r \in I$. The *r*-divisibility of *J*/*I* yields Jr + I = J, but $Jr \subseteq I$, a contradiction. So $\text{Hom}_R(M, R/I) = 0$ for each non-zero ideal *I* of *R*, and *M* is *R*-projective.

Corollary

 $\mathbb Q$ is a countable $\mathbb Z\text{-projective, but not projective, }\mathbb Z\text{-module.}$ So the Dual Baer Criterion fails for countably generated modules in general.

Perfect versus non-perfect rings

Definition

A ring R is right perfect, if R contains no infinite strictly decreasing chain of principal left ideals. E.g., each right artinian ring is right perfect.

The positive case [Sandomierski 1964]

Each right perfect ring is right testing. That is, the Dual Baer Criterion holds for all modules.

Some negative cases

- [Hamsher 1966] If R is commutative and noetherian, then R is testing, iff R is artinian.
- If R is an integral domain, then R is testing, iff R is a field.
- [Puninski et. al. 2017] Let *R* be a semilocal right noetherian ring. Then *R* is right testing, iff *R* is right artinian.

An example in ZFC

Let K be a skew-field, κ an infinite cardinal, and R the endomorphism ring of a κ -dimensional left vector space over K. Then the Dual Baer Criterion holds for all $\leq \kappa$ -generated modules.

Proof: Since κ is infinite, R contains a right R-independent set of elements $\{r_{\alpha} \mid \alpha < \kappa\}$ such that r-ann $(r_{\alpha}) = 0$ for each $\alpha < \kappa$. Then the right ideal $I = \sum_{\alpha < \kappa} r_{\alpha}R$ is free of rank κ . Assume M is R-projective and $\leq \kappa$ -generated. Then M is $R^{(\kappa)}$ -projective, and hence M is projective.

III. Shelah's Uniformization and the vanishing of Ext.

1st set-theoretic interlude

Ladders

Let κ be an uncountable cardinal of cofinality ω and $E \subseteq E_{\omega}$, where $E_{\omega} = \{\alpha < \kappa^+ \mid cf(\alpha) = \omega\}$. A sequence $(n_{\alpha} \mid \alpha \in E)$ is a ladder system, if for each $\alpha \in E$, n_{α} is a ladder, i.e., a strictly increasing countable sequence $(n_{\alpha}(i) \mid i < \omega)$ consisting of non-limit ordinals such that $\sup_{i < \omega} n_{\alpha}(i) = \alpha$.

Stationary sets

Let κ be a regular uncountable cardinal.

- A subset C ⊆ κ is called a club provided that C is closed in κ (i.e., sup(D) ∈ C for each subset D ⊆ C such that sup(D) < κ) and C is unbounded (i.e., sup(C) = κ).
- $E \subseteq \kappa$ is stationary provided that $E \cap C \neq \emptyset$ for each club $C \subseteq \kappa$.

Example: E_{ω} is stationary in κ^+ .

Shelah's Uniformization Principle (UP)

Uniformization of colorings

 (UP_{κ}) There exist a stationary set $E \subseteq E_{\omega}$ and a ladder system $(n_{\alpha} \mid \alpha \in E)$, such that for each cardinal $\lambda < \kappa$ and each sequence $(h_{\alpha} \mid \alpha \in E)$ of maps (local λ -colorings) from ω to λ there exists a map (global λ -coloring) $f : \kappa^+ \to \lambda$, such that for each $\alpha \in E$, $f(n_{\alpha}(i)) = h_{\alpha}(i)$ for almost all $i < \omega$.

(UP) UP_{κ} holds for each uncountable cardinal κ of cofinality ω .

Theorem (Eklof-Shelah 1991)

UP is consistent with ZFC + GCH.

Faith's problem under Shelah's uniformization

[T. 1996]

Let *R* be a non-right perfect ring and κ an uncountable cardinal of cofinality ω , such that card(*R*) < κ and UP_{κ} holds. Then there exists a κ^+ -generated module M_{κ} of projective dimension 1 such that Ext¹_R(M_{κ} , I) = 0 for each right ideal I of *R*.

[Puninski et al. 2017]

The module M_{κ} is *R*-projective, but not projective.

Proof: Hom_R(M_{κ}, R) $\xrightarrow{\text{Hom}_R(M_{\kappa}, \pi_I)}$ Hom_R($M_{\kappa}, R/I$) \rightarrow Ext¹_R(M_{κ}, I) = 0 is an exact sequence. So Hom_R(M_{κ}, π_I) is surjective for each right ideal I of R, and M_{κ} is R-projective.

Corollary

Assume UP. Then right testing rings coincide with the right perfect ones.

Jan Trlifaj (Prague)

The construction of the module M_{κ}

 M_{κ} is defined by a free presentation

$$(*) \qquad 0 o G \xrightarrow{
u} F o M_{\kappa} o 0,$$

where $F = \bigoplus_{\alpha < \kappa^+} F_{\alpha}$, $F_{\alpha} = R^{(\omega)}$ for $\alpha \in E$, and $F_{\alpha} = R$ otherwise.

Let 1_{α} be the canonical free generator of F_{α} for $\alpha \notin E$, and $\{1_{\alpha,i} \mid i < \omega\}$ the canonical free basis of F_{α} for $\alpha \in E$.

Let $R \supseteq Ra_0 \supseteq Ra_1a_0 \supseteq \cdots \supseteq Ra_n...a_0 \supseteq Ra_{n+1}a_n...a_0 \supseteq \cdots$ be a strictly decreasing chain of principal left ideals of R.

For $\alpha \in E$ and $i < \omega$, we define $g_{\alpha,i} = 1_{\nu_{\alpha(i)}} - 1_{\alpha,i} + 1_{\alpha,i+1} \cdot a_i$, and $G = \bigoplus_{\alpha \in E, i < \omega} g_{\alpha,i} R$.

Lemma

The presentation (*) above is free, but non-split, whence the projective dimension of $M_{\kappa} = F/G$ equals 1.

Recall that $\operatorname{Ext}^{1}_{R}(M, I) = 0$, iff $\operatorname{Hom}_{R}(G, I) = \operatorname{Im}(\operatorname{Hom}_{R}(\nu, I))$, iff each homomorphism $\varphi \in \operatorname{Hom}_{R}(G, I)$ extends to some $\psi \in \operatorname{Hom}_{R}(F, I)$.

Let $\lambda = \operatorname{card}(I)$. Then $\lambda < \kappa$, and *h* defines a local λ -coloring from ω to λ by $h_{\alpha}(i) = \varphi(g_{\alpha,i})$.

The global λ -coloring $f : \kappa^+ \to \lambda$ provided by (UP_{κ}) can be used to define $\psi \in Hom_R(F, I)$ so that $\varphi = \psi \upharpoonright G$, i.e., prove that $Ext^1_R(M_{\kappa}, I) = 0$. \Box

Remark: The global coloring f coincides with each of the local colorings h_{α} almost everywhere, while we need ψ to restrict to φ everywhere. This can be fixed using the extra space provided by F_{α} (recall that for $\alpha \in E$, F_{α} has rank \aleph_0 rather than 1).

IV. The algebra of eventually constant sequences.

The algebra of eventually constant sequences

Let K be a field. Denote by E(K) the unital K-subalgebra of K^{ω} generated by $K^{(\omega)}$. In other words, E(K) is the subalgebra of K^{ω} consisting of all eventually constant sequences in K^{ω} .

Basic properties

Let R = E(K).

- R is a commutative von Neumann regular hereditary semiartinian ring of Loewy length 2 with Soc(R) = K^(ω).
- R is not perfect.
- A module M is R-projective, if each f ∈ Hom_R(M, Soc(R)) factors through the canonical projection π : R → R/Soc(R).
- If M ∈ Mod−R is countably generated, then M is R-projective, iff M is projective.

V. Jensen's Diamond, and the independence of Faith's Problem of ZFC.

2nd set-theoretic interlude

Jensen's functions

Let κ be a regular uncountable cardinal.

- Let A be a set of cardinality $\leq \kappa$. An increasing continuous chain, $\mathcal{A} = (A_{\alpha} \mid \alpha < \kappa)$, consisting of subsets of A of cardinality $< \kappa$, such that $A_0 = 0$ and $A = \bigcup_{\alpha < \kappa} A_{\alpha}$, is called a κ -filtration of the set A.
- Let *E* be a stationary subset of *κ*. Let *A* and *B* be sets of cardinality ≤ *κ*. Let *A* and *B* be *κ*-filtrations of *A* and *B*, respectively. For each α < *κ*, let *c_α* : *A_α* → *B_α* be a map. Then (*c_α* | *α* < *κ*) are Jensen-functions provided that for each map *c* : *A* → *B*, the set *E*(*c*) = {*α* ∈ *E* | *c* ↾ *A_α* = *c_α*} is stationary in *κ*.

Theorem (Jensen 1972)

Assume Gödel's Axiom of Constructibility (V = L). Let κ be a regular uncountable cardinal, $E \subseteq \kappa$ a stationary subset of κ , and A and B sets of cardinality $\leq \kappa$. Let A and B be κ -filtrations of A and B, respectively. Then there exist Jensen-functions ($c_{\kappa} \mid \alpha < \kappa$). Jan Trilfaj (Prague) Faith's problem is independent Puninski Memorial Conference 24/29

Theorem (T. 2017)

Assume V = L. Let K be a field of cardinality $\leq 2^{\omega}$, and R = E(K). Then $M_n(R)$ is right testing for each n > 0. **Sketch of proof:** Let M be an R-projective module and κ be the minimal number of R-generators of M. The proof is by induction on κ :

I. For κ countable, use the basic properties of E(K) mentioned above.

II. For κ regular and uncountable, we express M as the union of a continuous chain of its $< \kappa$ -generated submodules $\mathcal{M} = (M_{\alpha} \mid \alpha < \kappa)$. W.l.o.g., we can assume that if M_{β}/M_{α} is not R-projective, then $M_{\alpha+1}/M_{\alpha}$ is not R-projective, too.

Using Jensen-functions, one proves that the set $E = \{ \alpha < \kappa \mid M_{\alpha+1}/M_{\alpha} \text{ is not } R\text{-projective } \}$ is not stationary in κ .

Then we can select a continuous subchain \mathcal{M}' of \mathcal{M} such that $M'_{\alpha+1}/M'_{\alpha}$ is R-projective for each $\alpha < \kappa$. By the inductive premise, $M'_{\alpha+1}/M'_{\alpha}$ is projective, and hence $M'_{\alpha+1} = M'_{\alpha} \oplus P_{\alpha}$ for a $< \kappa$ -generated projective module P_{α} . Then $M = M'_0 \oplus \bigoplus_{\alpha < \kappa} P_{\alpha}$ is projective.

III. For κ singular, we use a version of Shelah's Compactness Theorem pro projective modules. $\hfill \Box$

Jan Trlifaj (Prague)

Faith's problem is independent of ZFC + GCH

The statement 'There exists a right testing, but non-right perfect ring' is independent of ZFC + GCH.

Proof: Assuming UP, we get that each right testing ring is right perfect, but V = L implies that the non-right perfect ring of all eventually constant sequences E(K) is right testing.

Chronology of references

F.Sandomierski, Relative Injectivity and Projectivity, Penn State U. 1964.

C.Faith, Algebra II. Ring Theory, GMW 191, Springer-Verlag, Berlin 1976.

P.C.Eklof, S.Shelah, On Whitehead modules, J.Algebra 142(1991), 492-510.

J.Trlifaj, Whitehead test modules, TAMS 348(1996), 1521-1554.

H.Q.Dinh, C.J.Holston, D.V.Huynh, *Quasi-projective modules over prime hereditary* noetherian V-rings are projective or injective, J.Algebra 360(2012), 87-91.

H.Alhilali, Y.Ibrahim, G.Puninski, M.Yousif, *When R is a testing module for projectivity?*, J.Algebra 484(2017), 198-206.

J.Trlifaj, Faith's problem on R-projectivity is undecidable, arXiv:1710.10465v1.

An invitation ...

Workshop and 18th International Conference on Representations of Algebras

ICRA 2018

Workshop: August 8-11 Conference: August 13-17

Venue: Prague, Czech Republic www.icra2018.cz Charles University and Czech Technical University

Jan Trlifaj (Prague)

Faith's problem is independent