Leavitt path algebras are Bézout

Alberto Tonolo, Università di Padova

Conference in memory of Gena Puninski Manchester, April 2018

The key dates for Leavitt path algebras

late '50's: Leavitt and non-IBN rings

mid '60's: Cohn and a class of algebras that "... may be regarded as pathological rings"

mid '70's: Bergman and the monoid-realization theorem

late '70's: Cuntz and graph C*-algebras

2005: Abrams and Aranda Pino 2007: Ara, Moreno and Pardo

Abrams, Ara, Siles Molina: Leavitt path algebras, Lecture Notes in Mathematics Vol. 2191, Springer Verlag, 2017.

A graph and its extended graph

$$egin{aligned} oldsymbol{E} &= (oldsymbol{E}^0, oldsymbol{E}^1, oldsymbol{s}, oldsymbol{r}) \ \hat{oldsymbol{E}} &= (oldsymbol{E}^0, oldsymbol{E}^1 \cup oldsymbol{E}^{1*}, \hat{oldsymbol{s}}, \hat{oldsymbol{r}}) \end{aligned}$$

$$egin{array}{c} s: E^1
ightarrow E^0 \ e_1 \mapsto v_1 \end{array}$$

$$r: E^1 \rightarrow E^0$$
 $e_1 \mapsto v_2$

Leavitt path algebras

 $L_K(E) = \text{free } K\text{-algebra on the symbols } E^0 \cup E^1 \cup E^{1*}$ modulo the following five types of relations:

$$egin{aligned} oldsymbol{v}oldsymbol{v}' &= \delta_{oldsymbol{v},oldsymbol{v}'}oldsymbol{v} \ oldsymbol{s}(e)e &= eoldsymbol{r}(e) = e \ oldsymbol{s}'(e^*)e^* &= e^*r'(e^*) = e^* \end{aligned}$$

$$e^*e' = \delta_{e,e'}r(e)$$
 $e_1^*e_1 = v_2$ $e_1^*e_2 = 0$

$$rac{m{v}}{m{v}} = \sum_{\{m{e}: m{s}(m{e}) = m{v}\}} m{e}^{m{e}^*} \quad \text{if } 0 < |m{s}^{-1}(m{v})| < \infty \qquad e_1 e_1^* + e_2 e_2^* = v_1$$

$$(e_{1}e_{1}^{*} + e_{2}e_{2}^{*})(e_{1} - v_{2})e_{3}^{*}e_{4}^{*}(e_{3} + e_{4}) =$$
 $v_{1} = e_{1}e_{1}^{*} + e_{2}e_{2}^{*}$
 $= v_{1}(e_{1} - v_{2})e_{3}^{*}e_{4}^{*}(e_{3} + e_{4})$
 $v_{1}e_{1} = e_{1}$
 $v_{1}v_{2} = 0$
 $= e_{1}e_{3}^{*}e_{4}^{*}(e_{3} + e_{4})$
 $e_{4}^{*}e_{3} = 0$
 $e_{4}^{*}e_{4} = v_{2}$
 $= e_{1}e_{3}^{*}v_{2}$

$$v_1 = e_1 e_1^* + e_2 e_2^*$$
 $v_1 = e_1 e_1^* + e_2 e_2^*$
 $v_1 = e_1 e_1^* + e_2 e_2^*$
 $v_1 = e_1$
 $v_1 e_1 = e_1$
 $v_1 v_2 = 0$
 $v_1 e_2 = 0$
 $v_1 e_2$

Main Examples

$$A_n: \overset{\bullet}{v_1} \longrightarrow \overset{\bullet}{v_2} \longrightarrow \cdots \longrightarrow \overset{\bullet}{v_n}$$

$$L_K(A_n) = M_n(K)$$

$$A_{\mathbb{N}}: \overset{ullet}{v_1} \overset{ullet}{\longrightarrow} \overset{ullet}{v_2} \overset{ullet}{\longrightarrow} \overset{ullet}{v_3} \overset{\cdots}{\longrightarrow} \cdots$$

$$L_K(A_{\mathbb{N}}) = FM_{\mathbb{N}}(K)$$

$$R_1:$$
 •

$$L_K(R_1) = K[x, x^{-1}]$$

$$L_K(R_n) = L_K(1,n)$$

$$L_K(T) = K\langle X, Y | XY = 1 \rangle$$

 $L_K(E)$ has some specified algebraic property \Leftrightarrow E has some specified graph-theoretic property

 $oldsymbol{L}_K(oldsymbol{E})$ $oldsymbol{E}$ finite dimensional $oldsymbol{E}$ finite and acyclic

$L_K(E)$	$oldsymbol{E}$
simple	hereditary saturated subsets are trivial and every cycle has an exit
$V\subseteq E^0,$	$v \leftarrow v \Rightarrow u \in V$
$V\subseteq E^0,$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

 $oldsymbol{L}_{K}(oldsymbol{E})$ prime $oldsymbol{downward\ directed}$

 $L_K(E)$

one sided artinian

acyclic, row-finite, infinite paths end in a sink

 $L_K(E)$

one sided notherian

cycles has no exits, row-finite, infinite paths end in a sink or in a cycle

Ring theoretic properties of Leavitt path algebras

• Leavitt path algebras are isomorphic to their opposite.

• [Ara, Goodearl '12] Leavitt path algebras are hereditary.

• [Abrams, Ara, Siles Molina '17] Leavitt path algebras are semiprimitive.

Bézout rings

A ring R is Bézout in case every finitely generated onesided ideal is principal.

- Warfield showed that if R is Bézout, then so is $M_n(R)$
- The Bézout property need not pass to (full) corners. In particular it is not a Morita invariant.
- Intuitively, the Bézout property allows us to do some "Number Theory", since for each $a, b \in R$, there exists $c \in R$ for which Ra + Rb = Rc.

Bézout rings and Leavitt path algebras

- ullet $M_n(K), FM_{\mathbb{N}}(K)$ and $K[x,x^{-1}]$ are Bézout
- $L_K(1,n) \cong L_K(1,n)^n$ and hence it is Bézout
- $K\langle X, Y | XY = 1 \rangle$ is Bézout [Gerritzen, '00]

• [Abrams, Mantese, - '18] Leavitt path algebras are Bézout.

Proof: main ingredients

1) Reduction to unital Leavitt path algebras:

Theorem [Hazrat, Rangaswamy '16]. Any Leavitt path algebra is the direct limit of unital subalgebras, each one isomorphic to the Leavitt path algebra of a finite graph.

2) Reduction to Leavitt path algebras associated to graphs containing source vertices or source cycles:

Theorem [Abrams, Nam, Phus '15]. The Leavitt path algebra associated to a finite graph which contains neither source vertices nor source cycles is Bézout.

Proof: main ingredients

3) Induction on the number of vertices:

Principal ideal ring

• [Abrams, Mantese, - '18]

Let E be any graph. Then the associated Leavitt path algebra is a principal ideal ring if and only if E is finite and no cycle in E has an exit.

Structure of projective modules

Albrecht '61. Each projective left module over a left semi-hereditary unital ring is isomorphic to a direct sum of finitely generated left ideals.

• [Abrams, Mantese, - '18]

Let E be a finite graph and K any field. Any projective left $L_K(E)$ -module is isomorphic to a direct sum of principal left ideals.

Thank you for your attention!