MATH10242 Sequences and Series:
Exercises for Week 8 Tutorials. Solutions

Question 1: Using L’Hopital’s Rule, or otherwise, find the limit of the sequences
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Solutions: (i) If f(z) = In(7zi —2) and g(z) = In(z + 1), then
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Clearly lim f(n) = oo = lim g(n) and g(xz) > 0 for « > 1, so the hypotheses of
L’Hé6pital’s rule are satisfied. Thus,
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Now the fastest-growing term is n so by dividing top and bottom by n and using the

AoL we get
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(i) Again f(z) = e” — oo and g(r) = €* — oo as & — oo and g is positive. So we can
apply L’Hopital’s rule to get
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(iii) If you're not careful, you might argue as follows: By L’Hopital’s rule, lim =
n—o0 — e
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lim oo = lim — = oco. But that’s not correct - what’s wrong with this argument?
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What is the correct value of the limit? See the last page for the answer.

(iv) Here, either by dividing top and bottom through by e?" (

which is valid here) one sees that the sequence has limit zero.

or using L’Hopital’s rule,
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uestion 2: (i) Use L'Hopital’s Rule to show that M — 0 asn — oco.
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(ii) Show by induction that for any k € N,
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Solution: (i) We take f(z) = (In(z))? and g(z) = z; thus a, = ( n(:)) = g(g Clearly
lim f(n) = oo = lim g(n) and g(z) > 0 for x > 0. Thus the hypotheses of L’'Hopital’s
n—oo n—oo

rule are satisfied. Thus,
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Now either by another application of L’Hopital’s rule or the notes (see 8.1.3), we get
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(ii) We show by induction that (In(n))
n
in the notes (and k = 2 above), so assume that the result holds for some integer & > 2.
Then by L'Hopital’s rule (which does again apply!) with f(z) = (In(x))**! and g(x) =
we get

= 0. We have already done the case & = 1
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But this final limit is zero by the inductive hypothesis. Hence lim = 0 and
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the inductive step is complete. In other words, lim &
n—oo

n
The observant reader may have noticed that we did not need to prove part (i) since it
is contained in part (ii).

= 0 for all integers m.
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Question 3: (i) Using the formula (z —y) = (= yQ)(x il xy;— v) = 2($ v) 5y Or
herice. find (22 +zy +y?) (22 + 2y + y?)
otherwise, fin
lim ¥/n3 4+ n? — n.
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(ii) Show that [¢/n3 +n2] = n.

(iii) Using subsequences show that [¢/n] — &/n does not have a limit.
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Solution: (i) Substituting 2 =¢/n3 +n? and y = n into (z —y) = [T
2?2+2y+y

gives
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(ii) Tt suffices to prove that n <¢/n3 +n2 < n+ 1. The left hand inequality is obvious
while the right hand inequality is equivalent to (n + n?) < (n+1)* = n3 +3n? + 3n + 1,
which is certainly true.
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(iii) We use subsequences. One subsequence is to take k, = n® in which case

ap, = [Vn3] —=¥n3 =n—n=0.
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Thus this subsequence (ay, ) = (0) has limit 0.

For the other subsequence we use (i) as the hint and try k, = n® + n2. In this case
ar, = [¥n3 +n?] —Ind+n?2 = n—Ynd+n2

By part (i) this subsequence has limit —%. Since the two subsequences have different
limits the original sequence cannot have a limit.

uestion 2(iii) cont. The problem, of course, is that neither f(z) = 1 — e nor
Q (iii) p ’ :

g(n) = 2—e 2" tends to zero (or infinity) and so L'Hopital’s rule cannot be applied. One
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should more simply note that AoL applies to give the correct limit, which is 50" 2




