MATH10242 Sequences and Series: Exercises for Week 7 Tutorials, Solutions

Question 1: Do the following sequences converge/diverge/tend to infinity or tend to minus infinity?

(These also appear in the course notes, at the end of Chapter 5.)

(a)
$$(\cos(n\pi)\sqrt{n})_{n\in\mathbb{N}}$$

(b)
$$\left(\sin(n\pi)\sqrt{n}\right)_{n\in\mathbb{N}}$$

c)
$$\left(\frac{\sqrt{n^2+2}}{\sqrt{n}}\right)_{n\in\mathbb{N}}$$

(d)
$$\left(\frac{n^3+3^n}{n^2+2^n}\right)_{n\in\mathbb{N}}$$

$$e) \left(\frac{n^2 + 2^n}{n^3 + 3^n}\right)_{n \in \mathbb{N}}$$

(f)
$$\left(\frac{1}{\sqrt{n} - \sqrt{2n}}\right)_{n \in \mathbb{N}}$$

Solutions:

(a) $a_n = \cos(n\pi)\sqrt{n} = (-1)^n\sqrt{n}$. Hopefully it is clear that this ought to diverge, but it also does not tend to ∞ or to $-\infty$. But we should prove it carefully.

None of our rules really applies directly, but what we do know is that $\sqrt{n} \to \infty$ by 5.1.4. In particular ($|a_n|$) is not bounded, and hence (a_n) is also not bounded. Thus it cannot converge by 2.3.9.

It also does not tend to ∞ simply because it is negative half the time. In other words, with K=0 or K=1 there cannot exist N such that $a_n>K$ for all $n\geq N$. Similarly it cannot tend to $-\infty$, so it just diverges.

(b) $\sin(n\pi)\sqrt{n} = 0$ for all n so the sequence converges (to 0).

(c) We have
$$\frac{\sqrt{n^2+2}}{\sqrt{n}} = \frac{\sqrt{n+2/n}}{\sqrt{1}} \ge \sqrt{n}$$
 for $n \ge 1$. By 5.1.4, $\sqrt{n} \to \infty$ and so $\frac{\sqrt{n^2+2}}{\sqrt{n}} \to \infty$ as $n \to \infty$ by the Sandwich Rule 5.1.8(ii).

(d) Note that
$$\frac{n^2 + 2^n}{n^3 + 3^n} = \frac{\frac{n^2}{3^n} + (2/3)^n}{\frac{n^3}{3^n} + 1} \to \frac{0+0}{0+1} = 0$$
 by the AoL and Chapter 4. Hence, by the Reciprocity Theorem 5.1.6, $\frac{n^3 + 3^n}{n^2 + 2^n} \to \infty$.

(e) By the work in (d) we see this has limit 0.

(f) Since
$$\sqrt{n} - \sqrt{2n} = \sqrt{n}(1 - \sqrt{2})$$
 (by the usual trick, see the Week 3 Example Sheet) $\rightarrow -\infty$, we deduce, by the $-\infty$ version of 5.1.6(i), that $\frac{1}{\sqrt{n} - \sqrt{2n}} \rightarrow 0$.

Question 2: Complete the proof of Theorem 5.1.8, by proving the following result:

Theorem: Suppose that $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ both are sequences that tend to infinity. Prove:

(i)
$$a_n + b_n \to \infty$$
 as $n \to \infty$;

(ii)
$$a_n \cdot b_n \to \infty$$
 as $n \to \infty$.

(iii) Let $M \in \mathbb{N}$. Assume that $(c_n)_{n \in \mathbb{N}}$ is a sequence such that $c_n \geq a_n$ for all $n \geq M$. Prove that $c_n \to \infty$ as $n \to \infty$.

Solution: (i) Given K > 0 we know, by definition, that there exists N_1 and N_2 such that $a_n > K$ for all $n \ge N_1$ and $b_n > K$ for all $n \ge N_2$. So certainly $a_n + b_n > 2K > K$ for all $n \ge \max\{N_1, N_2\}$.

- (ii) Let K > 0 and set $K_1 = \max\{K, 1\}$. Then, again, we know that there exists N_1 and N_2 such that $a_n > K_1$ for all $n \ge N_1$ and $b_n > K_1$ for all $n \ge N_2$. So certainly $a_n \cdot b_n > K_1^2 \ge K$ for all $n \ge \max\{N_1, N_2\}$.
- (iii) Given K > 0 we know that there exists N such that $a_n > K$ for all $n \ge N$. So certainly $c_n \ge a_n > K$ for all $n \ge \max\{N, M\}$.

Question 3: There are many variants on Question 1. Can you think of some? Here is one:

- (i) Suppose that $(a_n)_{n\in\mathbb{N}}\to\infty$ as $n\to\infty$ and that $(b_n)_{n\in\mathbb{N}}$ is a sequence of non-zero numbers that converges to $\ell>0$. Prove that $\frac{a_n}{b_n}\to\infty$ as $n\to\infty$.
 - (ii) What happens if $\ell = 0$ in part (i)?

Solution: (i) (First proof) As $a_n \to \infty$, certainly $a_n > 0$ for large n. Similarly, $b_n > 0$ for large n (for a detailed proof of this step see the next paragraph). Therefore by the Reciprocal Rule 5.1.6, it is enough to prove that $\lim_{n\to\infty} \frac{1}{a_n} \cdot b_n = 0$. But, by the Reciprocal

Rule, again, $\lim_{n\to\infty}\frac{1}{a_n}=0$ and $\lim_{n\to\infty}b_n=\ell$. Thus, by the Algebra of Limits Theorem $\lim_{n\to\infty}\frac{1}{a_n}\cdot b_n=0\cdot \ell=0$.

(Alternative proof) First, there exists N such that $b_n \geq \frac{1}{2}\ell$ and $b_n \leq \ell + \frac{1}{2}\ell \leq 2\ell$ for all $n \geq M$. (We have done this trick before, but if you need an extra hint try using the definition of convergence with $\epsilon = \frac{1}{2}\ell$.)

In particular $b_n > 0$ for $n \ge N$. Thus using $b_n \le 2\ell$ for $n \ge N$ we get that $\frac{a_n}{b_n} \ge \frac{a_n}{2\ell}$ for $n \ge N$. Finally $\frac{a_n}{2\ell} \to \infty$ by Question 2(ii) and hence $\frac{a_n}{b_n} \to \infty$ by Question 2(iii).

(ii) If $\ell = 0$ the sequence $(\frac{a_n}{b_n})$ either goes to infinity (for example if $b_n = \frac{1}{n}$) or to $-\infty$ (for example if $b_n = -\frac{1}{n}$) or it just diverges when the (b_n) oscillate; for example $b_n = (-1)^n \frac{1}{n}$.

Question 4: Use the subsequence test to show that:-

- (i) the sequence $\left(\frac{n}{8} \left[\frac{n}{8}\right]\right)_{n \in \mathbb{N}}$ does not converge;
- (ii) the sequence $\left(\left[\sin\left(\frac{n\pi}{4}\right)\right]-\sin\left(\frac{n\pi}{4}\right)\right)_{n\in\mathbb{N}}$ does not converge.

Solution: (i) If we take $k_n = 8n$ then $a_{k_n} = a_{8n} = n - [n] = 0$. On the other hand if $k_n = 8n + 1$

$$a_{k_n} = a_{8n+1} = \frac{8n+1}{8} - \left[\frac{8n+1}{8}\right] = \left(n + \frac{1}{8}\right) - \left[n + \frac{1}{8}\right] = \frac{1}{8}.$$

Since we have two subsequences with distinct limits, Theorem 6.1.3 says that the original sequence (a_n) cannot have a limit.

(ii) This is similar. For $k_n = 8n + 1$

$$a_{k_n} = a_{8n+1} = \left[\sin(\frac{\pi}{4} + 2n\pi)\right] - \sin(\frac{\pi}{4} + 2n\pi) = \left[\frac{1}{\sqrt{2}}\right] - \frac{1}{\sqrt{2}} = -\frac{1}{\sqrt{2}}.$$

But if $k_n = 8n$

$$a_{k_n} = a_{8n} = [\sin(2n\pi)] - \sin(2n\pi) = 0.$$

So, again Theorem 6.1.3 says that the original sequence (a_n) cannot have a limit.

Question 5: Assume that $n^{\frac{1}{\sqrt{n}}} \to \ell$ as $n \to \infty$.

Use the subsequence test to show that $\ell = 1$. [Hint: We do know $\lim_{m \to \infty} m^{\frac{1}{m}}$.]

Solution: Since the hint suggests thinking about $m^{\frac{1}{m}}$, we can try the subsequence (a_{k_n}) for $k_n = n^2$. Then

$$a_{k_n} = a_{n^2} = (n^2)^{\frac{1}{n}} = n^{\frac{2}{n}} = \left(n^{\frac{1}{n}}\right)^2.$$

Now 4.1.5 and the AoL says that this sequence has $\lim_{n\to\infty} a_{k_n} = 1^2 = 1$.

Finally, since we are told that the original sequence (a_n) has a limit ℓ , Theorem 6.1.3 gives $\ell = 1$.

What is harder, and not done here, is to show that the sequence does have a limit.

Question 6*: Prove that $(n!)^{-\frac{1}{n}} \to 0$ as $n \to \infty$. [Hint: Use 4.1.4 with $c = \frac{1}{\epsilon}$.]

Solution: Let $\epsilon > 0$ be given and (by the hint) apply 4.1.4. This implies that $\left(\frac{1}{\epsilon}\right)^n \frac{1}{n!} \to 0$ as $n \to \infty$. In particular there exists $N \in \mathbb{N}$ such that $\left|\left(\frac{1}{\epsilon}\right)^n \frac{1}{n!}\right| < 1$ for all $n \geq N$. Equivalently, $\frac{1}{n!} < \epsilon^n$ for all $n \geq N$.

Now we take n^{th} roots to get: For all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $\left(\frac{1}{n!}\right)^{\frac{1}{n}} < \epsilon$ for all $n \geq N$. Which is exactly what we need to prove.

Extra Questions for Week 7:

Question 7.

- (a) Does every bounded increasing sequence converge?
- (b) Does every increasing sequence of negative terms converge?
- (c) Does every decreasing sequence of negative terms converge?
- (d) Is every bounded sequence convergent?
- (e) Is the limit of an increasing, convergent sequence necessarily equal to the supremum of the set of its terms?
- (f) Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of nonzero terms. If $\frac{1}{a_n}\to l$ as $n\to\infty$ and $l\neq 0$, does it necessarily follow that the sequence $(a_n)_{n\in\mathbb{N}}$ converges?
- (g) Let (a_n) be a convergent sequence and let (b_n) be a bounded sequence. Is $(a_nb_n)_{n\in\mathbb{N}}$ necessarily a convergent sequence?

Question 8.

- (a) Suppose that the sequences $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ converge to a and b respectively. Show that the sequence $(a_n b_n)_{n\in\mathbb{N}}$ converges to a b.
- (b) Suppose that the sequence $(a_n)_{n\in\mathbb{N}}$ converges to a limit ℓ . Suppose also that, for every $n, a_n \leq r$. Prove that $\ell \leq r$.
- (c) Suppose that the sequence $(a_n)_{n\in\mathbb{N}}$ converges to a limit ℓ . Suppose also that there is an integer M such that, for every $n\geq M$, $a_n\leq r$. Is $\ell\leq r$? If so, give a proof; if not, give a counterexample.

Solutions to Extra Questions for Week 8:

Question 7.

- (a) Does every bounded increasing sequence converge? Yes
- (b) Does every increasing sequence of negative terms converge? **Yes** [Note that 0, or 1 or... is an upper bound, so this is a special case of (a).]
- (c) Does every decreasing sequence of negative terms converge? No [For instance $(-n)_n$.]
- (d) Is every bounded sequence convergent? No [Standard example: $(-1)^n$.]
- (e) Is the limit of an increasing, convergent sequence necessarily equal to the supremum of the set of its terms? **Yes** [For example, one of the main points in the proof of the Monotone Convergence Theorem.]
- (f) Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of nonzero terms. If $\frac{1}{a_n} \to l$ as $n \to \infty$ and $l \neq 0$, does it necessarily follow that the sequence $(a_n)_{n\in\mathbb{N}}$ converges? **Yes** [Follows from the Algebra of Limits Theorem (vi).]
- (g) Let (a_n) be a convergent sequence and let (b_n) be a bounded sequence. Is $(a_nb_n)_{n\in\mathbb{N}}$ necessarily a convergent sequence? No [Take $a_n=1, b_n=(-1)^n$.]

Question 8.

(a) Suppose that the sequences $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ converge to a and b respectively. Show that the sequence $(a_n-b_n)_{n\in\mathbb{N}}$ converges to a-b.

Proof: Choose $\epsilon > 0$. There is N_1 such that $|a_n - a| < \epsilon/2$ for all $n \ge N_1$. Similarly there is N_2 such that $|b_n - b| < \epsilon/2$ for all $n \ge N_2$. Set $N = \max\{N_1, N_2\}$. Then, for $n \ge N$, we have $|(a_n - b_n) - (a - b)| = |(a_n - a) - (b_n - b)| \le |a_n - a| + |b_n - b|$ (by the triangle inequality) $< \epsilon/2 + \epsilon/2 = \epsilon$, as required.

(b) Suppose that the sequence $(a_n)_{n\in\mathbb{N}}$ converges to a limit ℓ . Suppose also that, for every $n, a_n \leq r$. Prove that $\ell \leq r$.

Proof: Argue by contradiction. If not, then $\ell > r$ so $\ell - r > 0$; set $\epsilon = \ell - r$. Since $a_n \to \ell$, there is N such that, for all $n \ge N$, we have $|a_n - \ell| < \epsilon$. So, for $n \ge N$, $a_n > \ell - \epsilon = \ell - (\ell - r) = r$ - a contradiction, as required [Of course, you don't need to introduce the notation ϵ , and can just write $r - \ell$ all the way through.]

[An alternative way of finishing off (if you don't notice the faster argument above) from the point where we have $|a_n - \ell| < \epsilon$: $|a_n - \ell| = |\ell - a_n| = |(\ell - r) + (r - a_n)| = (\ell - r) + (r - a_n)$ (both terms are ≥ 0 since $\ell > r$ and $r \geq a_n$). That is, $(\ell - r) + (r - a_n) < \epsilon = \ell - r$, so $r - a_n < 0$, that is $r < a_n$, contradiction, as required.

(c) Suppose that the sequence $(a_n)_{n\in\mathbb{N}}$ converges to a limit ℓ . Suppose also that there is an integer M such that, for every $n\geq M$, $a_n\leq r$. Is $\ell\leq r$? If so, give a proof; if not, give a counterexample.

Yes. Proof: The proof is almost the same as (b). Just replace the last sentence by: "So, for $n \ge N$, $a_n > \ell - \epsilon = \ell - (\ell - r) = r$. So if $n \ge \max\{M, N\}$ then we have both $a_n > r$ and $a_n \le r$, a contradiction, as required."