MATH10242 Sequences and Series:
Exercises for Week 6, Solutions

Question 1. Calculate (if they exist) the following limits.
Note: In cases where the limit does not exist, the proof of this fact is a little harder so
may be skipped at a first attempt.
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Solutions: (i) Whenever one sees alternating terms (or even negative terms) the following
a special case of Theorem 8.1.4(ii) may be useful: Theorem Suppose that (a,)nen is a
sequence for which lim,,_, |a,| = 0. Then lim,_, a, = 0.

Now, for our example, Lemma 4.1.6 gives lim,,_,,, n'%% (%)” =0.

Hence, by the above-stated theorem, lim,,_,, n'%-(=<F) N.pl000. (Zyn —

"= lim, o(—1)" 0

(ii) There is no limit. Indeed, by 4.1.4 lim, o 13—,” = 0 which means its reciprocal is
unbounded/tends to infinity. This type of observation is generalised in Chapter 5, but
here is the detailed proof. Given e = % (for any fixed natural number d) there exists N
such that 0 < % < i for n > N. Hence 178!" > d for such n and so the sequence is
unbounded.

(iii) The term with the highest order of growth is 3", so divide top and bottom by it.
Then use 4.1.6 and the Algebra of Limits to get
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(iv) limp oo 23 = limy 00 -3 = 0.

(v) Remark. Note that the sequence can only start with ay = g;ig'

would be % which is meaningless. But as we are hoping to understand the limit of a,, as
n — oo, we can ignore the first few terms.
Since n™ is the fastest-growing term, divide by that to get
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Now, by 4.1.7(3) lim, ,~(75%) = 0 and hence by the Theorem after part (i) above we get
that limnﬁx((—l)"%) = 0. Now we can apply the Algebra of Limits to the last display
and get
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For very large n the first term top and bottom gets very small so the display “looks like”

ﬁ = (=1)™ which we know does not converge. So it looks as if it does not converge.

We can prove that as follows.

Suppose, for a contradiction, that (a,) = 1% has a limit, say /. We will argue as
we did for (a],) = (—1)" to get a contradiction. So, to give us a little room take € = 1/4.
Then there exists N such that if n > N then |a, — £| < 1/4. Now, if n is even then the

smallest a,, can be is given by taking the smallest numerator and biggest denominator
oLyl
(=1

% =2/3 > 0. As ( has to be within 1/4 of this number, we get £ > 2/3 —1/4 > 0.

For odd n (and n > N) notice that a, < —1 So, again ¢ < —1 +1/4 < 0. Thus we
have a contradiction.

in In other words (for n > N) if n is even then the smallest a, can be is

Remark: The material of Chapter 6 will give an easier proof of non-convergence.
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S, 3 for n > 1.

Question 2. Define (a,)nen inductively by a; = 3, and a,41 =

(a) Show for all n € N, that a, > 2.
(b) Prove that (a,)nen is a decreasing sequence.

(c¢) Deduce that the sequence (ay,)nen converges and find its limit.

az —2

2a,, — 3
(a) Certainly a; > 2, so suppose by induction that that a, > 2 for some natural number
n > 1. Then

Solution: We are given that a; = 3, and a,,,1 = forn > 1.

29
Uiy = 2% ) >2 < (a®-2)>2(2a,—3) since (2a, —3) > 0 by hypothesis
a —
! <~ a®—4a,+4>0 by collecting terms
— (a,—2)?>0.

Now this last line is certainly true. Therefore, going backwards through the equivalences,
we see that a,,q1 > 2. Hence the inductive statement is true for all n > 1.

Remark: [t is important in such an argument that I have used <= not just = be-
tween cach statement. This is because we want to go back through the implications in the
computation.

2
-2
(n—2)2>0 = (a2 —2)>22ap —3) = ansy = 2“" S22
an —
(b) Now
a, — 2 2 2
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— 0<a’-3a,+2
— 0<(a,—2)(a, —1).

Again this last line is true as a, > 2. Thus, we see that a, 1 < a, for all n > 1.

(c) By (a) and (b) (ay) is decreasing and bounded below. Thus, by the Monotone Con-
vergence Theorem 2.4.3, lim a,, exists; say lim a, = . Now, we can use the Algebra of
n—oo

n—oo

4



2 _

2
Limits Theorem to see that the sequence <bn = ;"—3) also has a limit and that limit is
ap —
. ?—2 . .
lim b, = —. However, as (b,) = (ap+1), Lemma 4.1.3 says that lim b, = lim a, = £.
n—o0 20 — 3 n—o0 n—o0
2 . .
In other words, ¢ = gé—_é. Solving we get

20 30 =(* -2 = P —30+2=0 = ((—2)(t—1)=0.

Thus either £ = 1 or £ = 2. But, since a, > 2 for all n, Lemma 4.2.5 gives that ¢ > 2.
Hence ¢ = 2.

Question 3.

(a) Let (an)nen be a sequence of non-negative real numbers and assume that a,, — £ as
n — 0o. Set b, = \/a, for all n.

(i) Assume that (b,),en has a limit. Prove that b, — V£ as n — oc.

(ii) Assume that the limit of the sequence (a,), is 0. Prove that (b,)nen has a
limit and show that lim,,_,, b, = 0.

(iii)* Now do as in part (ii) but for any value of ¢. That is, prove that (b,), does
converge and that lim, . b, = V2.
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(b) Hence find  lim vnt 1+ vn .
n—oo \/n + 3+ v/2n + 4

Solution: Write lim b, = t. Then we can use the Algebra of Limits to conclude that
n—oo

(@ = b?) has limit ¢2. Thus t*> = ¢ and ¢t = v/¢ as required.
(ii) Here lim a, = 0. Pick ¢ > 0. Then ¢ > 0 and so there exists N € N such that, if
n—0oo

n > N, then a, = |a, — 0| < €2. Taking square roots gives
b,| = by = Va, < Ve =e¢ for all n > N.

Aside. The proof of part (iii) will look a bit complicated, so let me begin by doing some
natural experiments that will give us a hint towards the proof. Suppose that lim a, = ¢ #
n—oo

0. Givenn > 0 pick N € N such that |a, — ¢| <n for alln > N. We want to prove that
b, = \/a,, tends to \/Z, so lets see what we can say about |\/a, — \/Z] We have seen the
trick for dealing with this before:

(v/@n + V)
(Van + V1)

(an - ﬁ)
(Van + V1)
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‘(\/a_n—l-\/z)’

Van - V| = ‘(@—m

Now, it is clearer. Notice that we do need ¢ # 0 since otherwise we could be dividing by

zero in (1). So, for £ > 0 the final term in (1) is < \/iz So the idea should be to take

n = Ve and reverse this argument.



So to the proof; we're assuming that lim a, = ¢ # 0, and notice that ¢ > 0 by
n—oo

Question 3 and hence ¢ > 0. In this case given € > 0 we set n = eVl > 0. So we can find
N € N such that |a, — (| < n for all n > N. Now (1) applies and gives

a1 Vi Vi .
(/o= VP = av| wmsva] - Vi -

(b) Now we can divide top and bottom by y/n and use part(a) and the Algebra of
Limits to get:
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Extra Questions (more practice; not particularly harder):

Question 4. Determine whether the following sequences converge or not and, in the case
of those which do converge, find their limit:
2 4 sin(n sin?(n
(a) ay = 2+ sin(n), (b) ),
n Vn
(c) nsin(mn): (d) v2r+i,

Question 5. Consider the Fibonacci sequence, defined by a1 = 1, as = 1, apio =
nt1. Assuming that the limit of the

Gy + ani1. Consider the sequence defined by b, =
(’L’n

sequence b, exists, find it.

Question 6. Define the sequence a,, by a1 = 2, an+1 = 3(ay, +4). Prove that a, <4 for
every n and that the sequence a,, is monotone increasing. Does this sequence converge?
If so, to what limit?



Solutions to Extra Questions (more practice; not particularly harder):

Question 4. Determine whether the following sequences converge or not and, in the case
of those which do converge, find their limit:
2 + sin(n) sin?(n)
(a) an =\ ———  (b) ;
n Vn
(c) nsin(mn): (d) v2r+i,
Solutions: (a) Using the Algebra of Limits (including the result of Question 3a above),
2 + sin(n) 2 sin(n)

. 1 .
we have: a, = {/—————= = {/— + ——= — 0 since the sequence — — 0 and since
n n n n

sin(n) is a bounded sequence (so 3.2.2 applies).

1
(b) Again, this is the product of a null sequence — and a bounded sequence sin?(n), so,
n

by 3.2.2, the sequence is null (= has limit 0).

(¢) sin(mn) = 0 for every integer n, so this is the constant sequence 0 (which has limit 0).
(d) V/2ntl = /2n/2 =2 2w. Using 4.1.1 this converges to 2.

Question 5. Consider the Fibonacci sequence, defined by a1 = 1, as = 1, apio =

a
a, + a,y1. Consider the sequence defined by b, = ntl Assuming that the limit of the

n

sequence b, exists, find it.
) a,, Ay, + Gy Qy,— 1 .
Solution: b, = USRS L [ . Since both b,, and b,,_1 converge
anp anp Ap, n—1

1
to the same limit, ¢ say, we have (by the Algebra of Limits) ¢ = 1 + 7 Multiplying up

1E05

and rearranging, we get /2 —(—1=10,s0 { = 7 Since all the terms a,, are positive,
1+ V5
2

so must be their limit (e.g. by 4.2.5), so we conclude that £ = (the Golden Ratio).

1
Question 6. Define the sequence a,, by a1 = 2, a,11 = 5(% +4). Prove that a,, < 4 for

every n and that the sequence a, is monotone increasing. Does this sequence converge?
If so, to what limit?

Solution: We use induction to show that a, < 4, the base case (n = 1) being given. So

1
assume, inductively, that a,, < 4. Then we have a,11 = §(an +4) = % +2 < 24 2since

a, < 4.
a a a
We don’t need induction for the next part now: we have a,,; = 7" +2 > 7" + 7"

. a .
(since 2 > 771), SO Gpy1 > Gy, as claimed.
Since the sequence is increasing and bounded above, it converges. Let £ be its limit.

1
By the Algebra of Limits we have ¢ = 5(6 +4), from which we see that ¢ = 4.



