MATH10242 Sequences and Series: Exercises for Week 6, Solutions

Question 1. Calculate (if they exist) the following limits.

Note: In cases where the limit does not exist, the proof of this fact is a little harder so may be skipped at a first attempt.

(i)
$$\lim_{n \to \infty} (\frac{-7}{8})^n n^{1000};$$
 (ii) $\lim_{n \to \infty} \frac{n!}{10^n};$ (iii) $\lim_{n \to \infty} \frac{3^n + n^2}{n^5 + 3^n};$ (iv) $\lim_{n \to \infty} \frac{3!}{n^3};$ (v) $\lim_{n \to \infty} \frac{n^n + n!}{n^n + (-1)^n n!};$ (vi) $\lim_{n \to \infty} \frac{n! + n^n}{n! + (-1)^n n^n};$

(ii)
$$\lim_{n \to \infty} \frac{n!}{10^n};$$

(iii)
$$\lim_{n \to \infty} \frac{3^n + n^2}{n^5 + 3^n};$$

(iv)
$$\lim_{n \to \infty} \frac{3!}{n^3}$$

(v)
$$\lim_{n \to \infty} \frac{n^n + n!}{n^n + (-1)^n n!}$$
;

(vi)
$$\lim_{n \to \infty} \frac{n! + n^n}{n! + (-1)^n n^n}$$

Solutions: (i) Whenever one sees alternating terms (or even negative terms) the following a special case of Theorem 3.1.4(ii) may be useful: **Theorem** Suppose that $(a_n)_{n\in\mathbb{N}}$ is a sequence for which $\lim_{n\to\infty} |a_n| = 0$. Then $\lim_{n\to\infty} a_n = 0$.

Now, for our example, Lemma 4.1.6 gives $\lim_{n\to\infty} n^{1000} \cdot (\frac{7}{8})^n = 0$.

Hence, by the above-stated theorem, $\lim_{n\to\infty} n^{1000} \cdot (\frac{-7}{8})^n = \lim_{n\to\infty} (-1)^N \cdot n^{1000} \cdot (\frac{7}{8})^n = 0$.

- (ii) There is no limit. Indeed, by $4.1.4 \lim_{n\to\infty} \frac{10^n}{n!} = 0$ which means its reciprocal is unbounded/tends to infinity. This type of observation is generalised in Chapter 5, but here is the detailed proof. Given $\epsilon = \frac{1}{d}$ (for any fixed natural number d) there exists N such that $0 < \frac{10^n}{n!} < \frac{1}{d}$ for $n \ge N$. Hence $\frac{n!}{10^n} > d$ for such n and so the sequence is unbounded.
- (iii) The term with the highest order of growth is 3^n , so divide top and bottom by it. Then use 4.1.6 and the Algebra of Limits to get

$$\lim_{n \to \infty} \frac{3^n + n^2}{n^5 + 3^n} = \lim_{n \to \infty} \frac{1 + \frac{n^2}{3^n}}{\frac{n^5}{3^n} + 1} \to \frac{1 + 0}{0 + 1} = 1,$$

as $n \to \infty$.

- (iv) $\lim_{n\to\infty} \frac{3!}{n^3} = \lim_{n\to\infty} \frac{6}{n^3} = 0.$
- (v) **Remark.** Note that the sequence can only start with $a_2 = \frac{2^2 + 2!}{2^2 + 2!}$ since the a_1 term would be $\frac{2}{0}$ which is meaningless. But as we are hoping to understand the limit of a_n as $n \to \infty$, we can ignore the first few terms.

Since n^n is the fastest-growing term, divide by that to get

$$\lim_{n \to \infty} \frac{n^n + n!}{n^n + (-1)^n n!} = \lim_{n \to \infty} \frac{1 + \frac{n!}{n^n}}{1 + (-1)^n \frac{n!}{n^n}}.$$

Now, by 4.1.7(3) $\lim_{n\to\infty} (\frac{n!}{n^n}) = 0$ and hence by the Theorem after part (i) above we get that $\lim_{n\to\infty} ((-1)^n \frac{n!}{n^n}) = 0$. Now we can apply the Algebra of Limits to the last display and get

$$\lim_{n \to \infty} \frac{1 + \frac{n!}{n^n}}{1 + (-1)^n \frac{n!}{n^n}} = \frac{1 + 0}{1 + 0} = 1.$$

(vi) Here repeating the ideas of part (v) gives

$$\lim_{n \to \infty} \frac{n! + n^n}{n! + (-1)^n n^n} = \lim_{n \to \infty} \frac{\frac{n!}{n^n} + 1}{\frac{n!}{n^n} + (-1)^n}$$

3

For very large n the first term top and bottom gets very small so the display "looks like" $\frac{1}{(-1)^n} = (-1)^n$ which we know does not converge. So it looks as if it does not converge. We can prove that as follows.

Suppose, for a contradiction, that $(a_n) = \frac{\frac{n!}{n^n}+1}{\frac{n!}{n^n}+(-1)^n}$ has a limit, say ℓ . We will argue as we did for $(a'_n) = (-1)^n$ to get a contradiction. So, to give us a little room take $\epsilon = 1/4$. Then there exists N such that if $n \geq N$ then $|a_n - \ell| < 1/4$. Now, if n is even then the smallest a_n can be is given by taking the smallest numerator and biggest denominator in $\frac{\frac{n!}{n^n}+1}{\frac{n!}{n^n}+(-1)^n}$. In other words (for $n \geq N$) if n is even then the smallest a_n can be is $\frac{0+1}{n^n}+(-1)^n$. As ℓ has to be within 1/4 of this number, we get $\ell \geq 2/3 - 1/4 > 0$.

For odd n (and $n \ge N$) notice that $a_n < -1$ So, again $\ell \le -1 + 1/4 < 0$. Thus we have a contradiction.

Remark: The material of Chapter 6 will give an easier proof of non-convergence.

Question 2. Define
$$(a_n)_{n\in\mathbb{N}}$$
 inductively by $a_1=3$, and $a_{n+1}=\frac{a_n^2-2}{2a_n-3}$ for $n\geq 1$.

- (a) Show for all $n \in \mathbb{N}$, that $a_n \geq 2$.
- (b) Prove that $(a_n)_{n\in\mathbb{N}}$ is a decreasing sequence.
- (c) Deduce that the sequence $(a_n)_{n\in\mathbb{N}}$ converges and find its limit.

Solution: We are given that $a_1 = 3$, and $a_{n+1} = \frac{a_n^2 - 2}{2a_n - 3}$ for $n \ge 1$.

(a) Certainly $a_1 \geq 2$, so suppose by induction that that $a_n \geq 2$ for some natural number $n \geq 1$. Then

$$a_{n+1} = \frac{a_n^2 - 2}{2a_n - 3} \ge 2 \quad \Longleftrightarrow \quad (a_n^2 - 2) \ge 2(2a_n - 3) \qquad \text{since } (2a_n - 3) > 0 \text{ by hypothesis}$$

$$\iff a_n^2 - 4a_n + 4 \ge 0 \qquad \text{by collecting terms}$$

$$\iff (a_n - 2)^2 \ge 0.$$

Now this last line is certainly true. Therefore, going backwards through the equivalences, we see that $a_{n+1} \geq 2$. Hence the inductive statement is true for all $n \geq 1$.

Remark: It is important in such an argument that I have used \iff not just \Rightarrow between each statement. This is because we want to go back through the implications in the computation.

$$(a_n - 2)^2 \ge 0 \implies (a_n^2 - 2) \ge 2(2a_n - 3) \implies a_{n+1} = \frac{a_n^2 - 2}{2a_n - 3} \ge 2.$$

(b) Now

$$a_{n+1} = \frac{a_n^2 - 2}{2a_n - 3} \le a_n \iff a_n^2 - 2 \le 2a_n^2 - 3a_n \text{ as } (2a_n - 3) > 0$$

 $\iff 0 \le a_n^2 - 3a_n + 2$
 $\iff 0 \le (a_n - 2)(a_n - 1).$

Again this last line is true as $a_n \ge 2$. Thus, we see that $a_{n+1} \le a_n$ for all $n \ge 1$.

(c) By (a) and (b) (a_n) is decreasing and bounded below. Thus, by the Monotone Convergence Theorem 2.4.3, $\lim_{n\to\infty} a_n$ exists; say $\lim_{n\to\infty} a_n = \ell$. Now, we can use the Algebra of

Limits Theorem to see that the sequence $\left(b_n = \frac{a_n^2 - 2}{2a_n - 3}\right)$ also has a limit and that limit is $\lim_{n \to \infty} b_n = \frac{\ell^2 - 2}{2\ell - 3}$. However, as $(b_n) = (a_{n+1})$, Lemma 4.1.3 says that $\lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n = \ell$. In other words, $\ell = \frac{\ell^2 - 2}{2\ell - 3}$. Solving we get

$$2\ell^2 - 3\ell = \ell^2 - 2$$
 \Rightarrow $\ell^2 - 3\ell + 2 = 0$ \Rightarrow $(\ell - 2)(\ell - 1) = 0.$

Thus either $\ell = 1$ or $\ell = 2$. But, since $a_n \geq 2$ for all n, Lemma 4.2.5 gives that $\ell \geq 2$. Hence $\ell = 2$.

Question 3.

- (a) Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of non-negative real numbers and assume that $a_n\to \ell$ as $n\to\infty$. Set $b_n=\sqrt{a_n}$ for all n.
 - (i) Assume that $(b_n)_{n\in\mathbb{N}}$ has a limit. Prove that $b_n\to\sqrt{\ell}$ as $n\to\infty$.
 - (ii) Assume that the limit of the sequence $(a_n)_n$ is 0. Prove that $(b_n)_{n\in\mathbb{N}}$ has a limit and show that $\lim_{n\to\infty} b_n = 0$.
 - (iii)* Now do as in part (ii) but for any value of ℓ . That is, prove that $(b_n)_n$ does converge and that $\lim_{n\to\infty} b_n = \sqrt{\ell}$.
- (b) Hence find $\lim_{n\to\infty} \frac{\sqrt{n+1} + \sqrt{n+2}}{\sqrt{n+3} + \sqrt{2n+4}}$.

Solution: Write $\lim_{n\to\infty} b_n = t$. Then we can use the Algebra of Limits to conclude that $(a_n = b_n^2)$ has limit t^2 . Thus $t^2 = \ell$ and $t = \sqrt{\ell}$ as required.

(ii) Here $\lim_{n\to\infty} a_n = 0$. Pick $\epsilon > 0$. Then $\epsilon^2 > 0$ and so there exists $N \in \mathbb{N}$ such that, if $n \geq N$, then $a_n = |a_n - 0| < \epsilon^2$. Taking square roots gives

$$|b_n| = b_n = \sqrt{a_n} < \sqrt{\epsilon^2} = \epsilon$$
 for all $n \ge N$.

Aside. The proof of part (iii) will look a bit complicated, so let me begin by doing some natural experiments that will give us a hint towards the proof. Suppose that $\lim_{n\to\infty} a_n = \ell \neq 0$. Given $\eta > 0$ pick $N \in \mathbb{N}$ such that $|a_n - \ell| < \eta$ for all $n \geq N$. We want to prove that $b_n = \sqrt{a_n}$ tends to $\sqrt{\ell}$, so lets see what we can say about $|\sqrt{a_n} - \sqrt{\ell}|$. We have seen the trick for dealing with this before:

$$\left| \sqrt{a_n} - \sqrt{\ell} \right| = \left| (\sqrt{a_n} - \sqrt{\ell}) \frac{(\sqrt{a_n} + \sqrt{\ell})}{(\sqrt{a_n} + \sqrt{\ell})} \right| = \left| \frac{(a_n - \ell)}{(\sqrt{a_n} + \sqrt{\ell})} \right| < \frac{\eta}{\left| (\sqrt{a_n} + \sqrt{\ell}) \right|}. \tag{\dagger}$$

Now, it is clearer. Notice that we do need $\ell \neq 0$ since otherwise we could be dividing by zero in (\dagger) . So, for $\ell > 0$ the final term in (\dagger) is $< \frac{\eta}{\sqrt{\ell}}$. So the idea should be to take $\eta = \sqrt{\ell} \epsilon$ and reverse this argument.

So to the proof; we're assuming that $\lim_{n\to\infty} a_n = \ell \neq 0$, and notice that $\ell \geq 0$ by Question 3 and hence $\ell > 0$. In this case given $\epsilon > 0$ we set $\eta = \epsilon \sqrt{\ell} > 0$. So we can find $N \in \mathbb{N}$ such that $|a_n - \ell| < \eta$ for all $n \geq N$. Now (†) applies and gives

$$\left| \left(\sqrt{a_n} - \sqrt{\ell} \right) \right| = \frac{|a_n - \ell|}{\left| \left(\sqrt{a_n} + \sqrt{\ell} \right) \right|} < \frac{\epsilon \sqrt{\ell}}{\left| \left(\sqrt{a_n} + \sqrt{\ell} \right) \right|} \le \epsilon \frac{\sqrt{\ell}}{\sqrt{\ell}} \le \epsilon. \quad \Box$$

(b) Now we can divide top and bottom by \sqrt{n} and use part(a) and the Algebra of Limits to get:

$$\frac{\sqrt{n+1}+\sqrt{n+2}}{\sqrt{n+3}+\sqrt{2n+4}} \ = \ \frac{\sqrt{1+\frac{1}{n}}+\sqrt{1+\frac{2}{n}}}{\sqrt{1+\frac{3}{n}}+\sqrt{2+\frac{4}{n}}} \ \to \ \frac{\sqrt{1+0}+\sqrt{1+0}}{\sqrt{1+0}+\sqrt{2+0}} \ = \ \frac{2}{1+\sqrt{2}}.$$

Extra Questions (more practice; not particularly harder):

Question 4. Determine whether the following sequences converge or not and, in the case of those which do converge, find their limit:

(a)
$$a_n = \sqrt{\frac{2 + \sin(n)}{n}};$$
 (b) $\frac{\sin^2(n)}{\sqrt{n}};$ (c) $n \sin(\pi n);$ (d) $\sqrt[n]{2^{n+1}}.$

Question 5. Consider the Fibonacci sequence, defined by $a_1 = 1$, $a_2 = 1$, $a_{n+2} = a_n + a_{n+1}$. Consider the sequence defined by $b_n = \frac{a_{n+1}}{a_n}$. Assuming that the limit of the sequence b_n exists, find it.

Question 6. Define the sequence a_n by $a_1 = 2$, $a_{n+1} = \frac{1}{2}(a_n + 4)$. Prove that $a_n < 4$ for every n and that the sequence a_n is monotone increasing. Does this sequence converge? If so, to what limit?

Solutions to Extra Questions (more practice; not particularly harder):

Question 4. Determine whether the following sequences converge or not and, in the case of those which do converge, find their limit:

(a)
$$a_n = \sqrt{\frac{2 + \sin(n)}{n}};$$
 (b) $\frac{\sin^2(n)}{\sqrt{n}};$

(c) $n \sin(\pi n)$; (d) $\sqrt[n]{2^{n+1}}$.

Solutions: (a) Using the Algebra of Limits (including the result of Question 3a above), we have: $a_n = \sqrt{\frac{2+\sin(n)}{n}} = \sqrt{\frac{2}{n} + \frac{\sin(n)}{n}} \to 0$ since the sequence $\frac{1}{n} \to 0$ and since $\sin(n)$ is a bounded sequence (so 3.2.2 applies).

(b) Again, this is the product of a null sequence $\frac{1}{\sqrt{n}}$ and a bounded sequence $\sin^2(n)$, so, by 3.2.2, the sequence is null (= has limit 0).

(c) $\sin(\pi n) = 0$ for every integer n, so this is the constant sequence 0 (which has limit 0).

(d) $\sqrt[n]{2^{n+1}} = \sqrt[n]{2^n} \sqrt[n]{2} = 2 \cdot 2^{\frac{1}{n}}$. Using 4.1.1 this converges to 2.

Question 5. Consider the Fibonacci sequence, defined by $a_1 = 1$, $a_2 = 1$, $a_{n+2} = a_n + a_{n+1}$. Consider the sequence defined by $b_n = \frac{a_{n+1}}{a_n}$. Assuming that the limit of the sequence b_n exists, find it.

Solution: $b_n = \frac{a_{n+1}}{a_n} = \frac{a_n + a_{n-1}}{a_n} = 1 + \frac{a_{n-1}}{a_n} = 1 + \frac{1}{b_{n-1}}$. Since both b_n and b_{n-1} converge to the same limit, ℓ say, we have (by the Algebra of Limits) $\ell = 1 + \frac{1}{\ell}$. Multiplying up and rearranging, we get $\ell^2 - \ell - 1 = 0$, so $\ell = \frac{1 \pm \sqrt{5}}{2}$. Since all the terms a_n are positive, so must be their limit (e.g. by 4.2.5), so we conclude that $\ell = \frac{1 + \sqrt{5}}{2}$ (the Golden Ratio).

Question 6. Define the sequence a_n by $a_1 = 2$, $a_{n+1} = \frac{1}{2}(a_n + 4)$. Prove that $a_n < 4$ for every n and that the sequence a_n is monotone increasing. Does this sequence converge? If so, to what limit?

Solution: We use induction to show that $a_n < 4$, the base case (n = 1) being given. So assume, inductively, that $a_n < 4$. Then we have $a_{n+1} = \frac{1}{2}(a_n + 4) = \frac{a_n}{2} + 2 < 2 + 2$ since $a_n < 4$.

We don't need induction for the next part now: we have $a_{n+1} = \frac{a_n}{2} + 2 > \frac{a_n}{2} + \frac{a_n}{2}$ (since $2 > \frac{a_n}{2}$), so $a_{n+1} > a_n$, as claimed.

Since the sequence is increasing and bounded above, it converges. Let ℓ be its limit. By the Algebra of Limits we have $\ell = \frac{1}{2}(\ell + 4)$, from which we see that $\ell = 4$.

8