MATH10242 Sequences and Series:
Exercises for Week 4 Tutorials. Solutions

Question 1: Which of the following sequences converge (and to what number)? Justify
yOUr answers.
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Solution: (a) It is a good idea to manipulate the messy function of n into something
nicer. The key idea is to divide top and bottom by n?,
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Now it is easy—if we pick N = [5] + 1 then (with the usual manipulation)) N > -
and ﬁ < €. For n > N the earlier computations show that
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In other words lim a,, = —1/2.
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Remark: By the time you read this we will have done the Algebra of Limits Theorem.
So you could use that and argue as follows:
We know from the lectures that lim,,_,, % = 0. Hence

(b) Have a look at the function to try to get an idea of it before just starting to compute.
3n*+n*  34+n 3 n

o2 5~ 3 + 5 which is certainly

is not bounded below. Thus, by

Dividing top and bottom by n, we have

not bounded above. Hence our sequence 1 —

Theorem 2.3.9 it is also not convergent.

(c¢) As we did on the previous sheet, we compute
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Next, we want to use the Sandwich Theorem, which means we can get a “nicer” upper
bound. Since (vVn?+1+n) > vn?+n = 2n, we get
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Finally, as we have seen before, (b,) = (%) is a null sequence, and so by the Sandwich
Theorem, so is (vVn? + 1 —n).

(d) This again looks like the sequence /2 + n — /n , but the behaviour is very different.
Indeed, in this case we can manipulate it to:

(V2n—vn) = (V2vn) = Vi) = (V2-1)vn.

Once again this is “clearly” not bounded (and it is fine if you finish the argument with
that comment). But if you want to go on to prove it more carefully: suppose, for a
contradiction, that the sequence is bounded above by, say, £. Then, for all n we have that
(V2 — 1)y/n < £ which, after manipulation, gives
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Since N is unbounded this is a contradiction.

for all n.

(¢) Maybe you noticed that 0 < 37 < 27". By Lemma 3.1.6 (or the solution to Ex-
ercise 2(e) on the Week 3 sheet), lim, ,,(27") = 0. Thus by the Sandwich Theorem
lim,, 0, (37™) = 0.

(f) This is like Example 3.1.8. Using 3.1.6,
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As usual, lim,, % = 0 and so by the Sandwich Theorem our given sequence has limit 0.

Question 2: Let (a,)nen be a bounded, decreasing sequence. Prove that (ay,)pen is
convergent.

Solution: This is the natural variant of Theorem 2.5.3 (which considered increasing
sequences). There are two obvious proofs. First, you could take the proof of that theorem
and replace > by < and supremum by infimum in all the appropriate places. Or, you
could take a new sequence {b, = —a,} and apply Theorem 2.5.3 to that. Either is fine.

First Proof: Since the set S = {a, : n € N} is bounded, it has an infimum, ¢ say, by
the notes (explicitly Theorem 2.4.11). We will show that ¢ = lim,,_,(a,).

So let € > 0 be given. Arguing as in Lemma 13.2.6 there exists z € {a, : n € N} such
that £ —e < x < £+ ¢. Consequently ¢ < x < £+ ¢ since £ is a lower bound for S. Note
that z = an for some N and hence ¢ < ay < ¢+ ¢.

For any n > N we have that a, < ay (since the sequence (a,) is decreasing) and
a, > ¢ ( since £ is a lower bound for S). Thus, for all n > N, ¢ < a,, < { + ¢, as required.

Second Proof: So, we are given a sequence (a,) that is both decreasing and bounded
below; thus a,, < a,_1 for all n and there exists £ with a,, > ¢ for all n. Now set b,, = —a,,.



Then these two hypotheses mean that b, = —a,, > —a,_1 = b,_1 and b, = —a, < —{. In
other words, (b,) is a bounded above, increasing sequence.

By Theorem 2.5.3 it therefore has a limit, say m and, for all € > 0 there exists /N such
that m — e < b, < m, for all n > N. Taking negatives we get

for all € > 0 there exists N such that —m +¢ > —b, > —m, for all n > N.

In other words, (a,) = (—b,,) has limit —m.

Remark. An important point here is that:

(a) If (an) is a bounded increasing sequence then, by Theorem 2.5.3 it has a limit €. This
{ satisfies £ > a,, for all n.

Proof: Just notice that ¢ was defined to be the supremum of {a,} and so must satisfy
{ > a, for each n.

(b) Similarly if (a,,) is a bounded decreasing sequence then, by Question 2 it has a limit
L. This ¢ satisfies £ < ay for all n.

Proof: Similar.

Question 3: The definition that we gave in the notes for “the sequence (a,), converges
to limit {” is (a). All of (b), (c¢) and (d) are equivalent definitions; prove that.

(a) Ve > 0, 3N € N such that Vn > N, | a, — [ |[< ¢
(b) Ve > 0, N € N such that Vn > N, | a, — [ |< ¢
(¢) Ve >0, N € N such that Yn > N, | a, — 1 |< ¢
(d) Given any positive integer k, there is N € N such that Vn > N, | a, — [ |< 1

Solution: First look at the differences: between (a) and (b) it’s just a case of replacing
N with N % 1; between (a)/(b) and (¢) we need to replace ¢ by a larger or smaller value
(say, halving or doubling); between (d) and the rest we use the fact that we can make %
smaller than any ¢ > 0.

The other thing to notice is that, in order to prove these four statements are equivalent,
we don’t need to consider every pair in turn: it’s enough to arrange them in a cycle of
implications, for example as follows.

We will prove (b)=-(a)=(d)=-(c)=-(b). The first two are “trivial” in that the second
condition is weaker than the first so certainly implied by the first.

For (d)=(c), given ¢ > 0, choose an integer k such that k > 1/¢, so 1/k < e. Then
apply condition (d) for this value of k to get N such that for all n > N we have | a, — [ |<
1/k, hence for all n > N we have | a,, — [ |< ¢ - condition (c), as required.

For (c¢)=(b), given ¢ > 0, we feed ¢/2 into condition (c), obtaining N such that, for
all n > N we have | a, — 1 |< ¢/2, hence for all n > N we have | a, — [ |< € and, in
particular, for all n > N, we have | a,, — [ |< ¢, as required.



First Extra Question for Week 4: Show that v/2 € R; that is, show that R contains
an element a > 0 such that s> = 2. You will need to use the Completeness Property of
R, so choose a suitable set to take the sup of. Even after that, it’s not a straightforward
argument.

Second Extra Question for Week 4: Suppose that p(z) and ¢(z) are polynomials
with real coefficients, and ¢(z) # 0. What is the limit of the sequence a,, = p(n)/q(n) as
n — 007



Solution to First Extra Question for Week 4: Show that v/2 € R; that is, show that
R contains an element a > 0 such that s> = 2. You will need to use the Completeness
Property of R, so choose a suitable set to take the sup of. Even after that, it’s not a
straightforward argument.

Solution: Consider S = {r € R : r> < 2}. This is bounded above, for example by 1.5
since (1.5)? > 2, so, by the Completeness Property of R (4.2.6), it has a supremum, a say.
We have to show that a®> = 2 (note that a > 0, for example since 1 € S and a > 1). We
show a? > 2 and a* < 2 separately. (There’s a similar, but slightly different, argument in
the notes at 4.2.7.)

a? < 2: Assume, for a contradiction, that a®> > 2. Set ¢ = (a* —2)/3 > ¢ > 0. By 2.4.3
thereisr € Switha—e<r<a,soa—r <e. Thena®>—r*=(a—r)(la+r) < (a—7)3
(since r < a < 1.5) < 3¢ = a* — 2. So r? > 2, contradicting that r € S, as required.

a® > 2: If not, then a®> < 2,50 2 —a?> > 0. Set t = a + (2 — a”)/3; note that ¢t < 2
(since 1 <a<15),s0t+a<4 Thent>—a®>=(t—a)(t+a)=2—-0a*)/4-(t+a) <
(2—a?)/4-4=2—a? sot? < 2. But that means that ¢ € S, yet ¢t > a, contradicting
that a is an upper bound for S. Therefore a®> > 2 which, combined with the first part,
gives a? = 2, proving the result.

Solution to Second Extra Question for Week 4: Suppose that p(z) and ¢(x) are
polynomials with real coefficients, and ¢(x) # 0. What is the limit of the sequence
=p(n)/q(n) as n — co?

Solution: First, let’s get rid of a small point: there could be integer values n such that
g(n) = 0, so then a, is not defined. So either disqualify all ¢ with a positive integer
solution. Alternatively, use the fact that ¢ can have only finitely many solutions so, for
large enough n, we do have a, well-defined, so just ignore the finitely many undefined
values (after all, finitely many terms make no difference to the limit of a sequence).

Next, “it depends” is a correct answer, but a rather lazy one; surely you can do better
than that! So look at some particular examples to get an idea of what can happen. You
will probably see that if the degree of p is strictly bigger than that of ¢ then the sequence
is not convergent, if the degrees of p and ¢ are equal then the sequence converges to a
nonzero value (the leading coefficient (l.c.) of p divided by the leading coefficient of q),
and if the degree of p is strictly smaller than that of ¢ then the sequence converges to 0.

Once you see that, it’s kind of obvious, but can you prove it? You might come up with
a proof based on the procedure of dividing top and bottom by 2z where d is the degree
of g, let’s write d = deg(q(z)) for degree.

You could (but don’t have to) use the division theorem for polynomials: divide p(z)
by g(x) to get a quotient and remainder: p(z) = g(z)a(x) + r(x) where a(z) and r(x)
are polynomials and the degree of r(z) = 0 is strictly smaller than the degree of ¢(x).
p) _ g 1 7C0)
q(n) q(n)
deg(p(x)) < deg(q(x))), so a(z) = 0;
deg(p(x)) = deg(q(z))), so a(z) is a constant (the l.c. of p divided by the l.c. of q)
deg(p(x)) > deg(q(z)), so a(z) is a polynomial of degree > 1, hence a,, — 0o as n — oo.

If we decide to go for a proper proof that the three cases converge / don’t converge as
stated above, then we can argue as follows. ™

p(n

Claim: if p(z), ¢(x) are polynomials with deg(p(x)) < deg(g(z) then —= — 0 as n — oc.

q(n)

Therefore a,, = . Then divide into the cases:



Proof: Say p(z) = Y 1", aiz’, q(z) = Z?:o b;x', with the a;,b; € R, a,, # 0, b, # 0 and

deg(p(xz)) = m < k = deg(q(z)). Consider I% and divide top and bottom by ¥, to
q(z
mo ik
get r(n) = Lizo 4T (x). For the rest of the argument we substitute the integer

g(n)  Sh ) bih
variable n for z. Note that every term in this expression is a negative power of n except
the leading term on the bottom line, which is by. By the Algebra of Limits Theorem
applied (a number of times) to (x) and the already-proved-in-the-notes/easy-to-prove fact

p(n)

that n? — 0 as n — oo whenever j is a negative integer, we deduce that the limit of —=

. q(n)
as n — oo is — = 0. As claimed.
The other two cases are dealt with similarly or, note that the case we’ve just done shows

that the “fractional part” @, of the quotient @
n q(n)

on the other term, a(n), which is either a constant (which will therefore be the limit)
or a nonconstant polynomial (which is therefore unbounded, hence the sequence is not

has limit 0, so you can concentrate

convergent).



