
MATH10242 Sequences and Series:
Solutions to Exercises for Week 3 Tutorials

Question 1: Here you should justify a couple of formulas that we will often use. Prove:

(a) ∀x, y, |x− y| ≥| |x| − |y| |;
(b) ∀x, ℓ and ∀ǫ > 0, |x− ℓ| < ǫ ⇐⇒ ℓ− ǫ < x < ℓ+ ǫ.

Solution: (a) First proof: Try to use the triangle inequality. So, |x| = |x − y + y| ≤
|x− y|+ |y|. Rearranging gives |x− y| ≥ |x| − |y|.

In just the same way, |x − y| = |y − x| ≥ −( |x| − |y| ). Combining these two results
gives

|x− y| ≥ max{ |x| − |y|, −(|x| − |y| )} = ||x| − |y|| .

Second proof: Perhaps easier, though less elegant is to prove it directly, as I suggested
in some of the tutorials. In other words, look at four separate cases. If both x ≥ 0 and
y ≥ 0 or if both x ≤ 0 and y ≤ 0 then it is clear that |x − y| = ||x| − |y|| . On the other
hand, if x and y have different signs then you get |x− y| > ||x| − |y|| .

(b) ⇒ Suppose that |x− ℓ| < ǫ. Then (x− ℓ) < ǫ and (ℓ− x) = −(x− ℓ) < ǫ. The first
inequality gives x < ǫ+ ℓ while the second gives −x < ǫ− ℓ or x > ℓ− ǫ.
⇐ Here, as x < ǫ + ℓ, we get (x − ℓ) < ǫ. Similarly x > ℓ − ǫ is the same as

−(x− ℓ) = (ℓ− x)} < ǫ. As usual, these combine to give |x− ℓ| < ǫ.

Question 2: Let ǫ > 0 be given. For each of the following sequences (an), find a natural
number N such that ∀n ≥ N , one has |an| < ǫ (thereby showing that an → 0 as n→∞).

(a) an = 1
n2 .

(b) an = n+
√
n

n2+1
.

(c) an = cos(n)
n

;

(d) an =
√
n+ 2−√n

(e)∗ an = n
2n
.

Hints: In parts (b) and (c) find a nicer function f(n) with |an| < f(n). Most of part (d)
has already been seen on the Week 2 sheet.

Solution: In parts (a,b,d,e) as an > 0 for all n, we can drop the absolute value signs—
which does make things clearer. Note that (for some x) we often want an integer n with
n ≥ x. Clearly [x] + 1 works.

(a) Now, | 1
n2 | < ǫ ⇐⇒ n >

√

1
ǫ
. So, take N =

[√

1
ǫ

]

+ 1.

(b) Getting a good bound would be really messy here, so we first want to get an upper
bound for an that is easier to manipulate. With complicated expressions do always try to
do this. So,

an =
n+

√
n

n2 + 1
≤ n+ n

n2 + 1
≤ n+ n

n2
=

2

n
.

Now it is easy—we need 2
n
< ǫ or n > 2

ǫ
. So, take N = 1+

[

2
ǫ

]

.Then, going back through
the steps, if n ≥ N then

0 ≤ 2

n
≤ 2

N
< ǫ.
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(c) Here |an| = | cos(n)n
| ≤ 1/n, so simply take N = [1

ǫ
] + 1.

(d) Here the trick is to try replacing differences by sums:

√
n+ 2−√n =

(
√
n+ 2−

√
n)(
√
n+ 2 +

√
n)

(
√
n+ 2 +

√
n)

=
(
√
n+ 2

2 −
√
n
2
)√

n+ 2 +
√
n

=
(n+ 2)− n√
n+ 2 +

√
n

= 2√
n+ 2 +

√
n

Thus
√
n+ 2 −√n = 2√

n+ 2 +
√
n
≤ 2

2
√
n
. So, we need 1√

n
< ǫ or n > ǫ−2. So, take

N = 1 + [ǫ−2].
Then, again, tracing back through our computations, we see that if n ≥ N then

1√
n
< ǫ and so

√
n+ 2−√n < ǫ.

(e) There will be a few ways of doing this; here’s one. It’s based on the observation that

n

2n
= 2

( n/2

2n/2.2n/2

)

=
2

2n/2
· n/2
2n/2

.

The first term fairly obviously (but we’ll prove it) has limit 0, whereas the second is
bounded, so we should expect the product to have limit 0. (Later, when we have developed
some theorems in the Algebra of Limits, we can apply them to give a 2-line proof making
this argument precise. Since we haven’t done that yet, we have to work a bit...)

First, we have (by an easy induction, or calculus) that k < 2k for all integers k ≥ 1.
Because we’re going to need half-integer values in the computation below, use calculus
(computing the derivative of x/2x) to see that x < 2x, so x/2x < 1, for all x ≥ 1, in fact
for all x ≥ 1/2, which is what we will need on the next line.

Then
n

2n
=

2

2n/2
· n/2
2n/2

≤ 2

2n/2
. So, given ǫ > 0, we will have | n

2n
|< ǫ if

2

2n/2
< ǫ,

hence if 2n/2 > 2/ǫ hence if n/2 > log2 (2/ǫ), that is n > 2log2 (2/ǫ). So if we choose
N = [2log2 (2/ǫ)] + 1 then we will have n/2n < ǫ for all n ≥ N . Therefore the sequence
converges to 0.

And here’s another method. Recall (from last semester) that n2 < 2n for all n ≥ 5.

So, for n ≥ 5, we have
n

2n
<

n

n2
=

1

n
, which will be < ǫ if n >

1

ǫ
. So, if we take

N = max{5, [1/ǫ] + 1} then, for all n ≥ N , we will have
n

2n
< ǫ, as required.

And here’s yet another, even simpler, solution. Use the Binomial Theorem to expand

2n = (1+1)n = 1+n+
n(n− 1)

2
+ ... so 2n ≥ n(n− 1)

2
(since all terms are non-negative)

and hence
n

2n
≤ n

n(n− 1)/2
=

2

n− 1
which will be < ǫ if n >

2

ǫ
+ 1.

Question 3: Which of the following sequences converge and to what value? In each
case you should properly justify your answers, making use of the formal definition of
convergence to a limit, as we have been doing in class.

(a) (1 + (−1)n

n
)n∈N ;

(b) (1 + 3n2+n
2n2 )n∈N;

(c) (1 + (−1)n)n∈N;
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(d) (
n+ 4(−1)n

2n
).

Solution: (a) This sequence converges to 1. Likely this is clear intuitively, but we still
need to give a proper argument. So rather like in 2(c), given ǫ > 0 we try N = Nǫ =
[1/ǫ] + 1; thus N > 1/ǫ and so 1/N < ǫ.

Now for any n ∈ N with n ≥ N we get
∣

∣

∣

∣

(

1 +
(−1)n
n

)

− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

(−1)n
n

∣

∣

∣

∣

=
1

n
≤ 1

N
≤ ǫ.

(b) As in Question 2 it is a good idea to manipulate the messy function of n into something
nicer. The key idea is to divide top and bottom by n2,

3n2 + n

2n2 =
3 + n−1

2
=

3

2
+

1

2n
.

Thus 1 + 3n2 + n
2n2 = 5

2 + 1
2n.

Now it is easy—if we pick N =
[

1
2ǫ

]

+ 1 then (with the usual manipulation)) N > 1
2ǫ

and 1
2N

< ǫ. For n ≥ N the earlier computations show that

∣

∣

∣

∣

(

1 +
3n2 + n

2n2

)

− 5

2

∣

∣

∣

∣

=

∣

∣

∣

∣

(

5

2
− 1

2n

)

− 5

2

∣

∣

∣

∣

=

∣

∣

∣

∣

− 1

2n

∣

∣

∣

∣

=
1

2n
≤ 1

2N
< ǫ.

In other words lim
n→∞

an = 5/2.

In this sort of question, it is probably best to do the computations in the displayed equation

before getting the precise bound for N , as a kind of rough working. In other words, write

down the displayed equation up to the ≤ 2N . Then work out what is needed for this to be

< ǫ and write out the solution, or go back and fill in if you’ve left space in what you’ve

already written.

(c) The sequence is 0, 2, 0, 2, 0, 2, ... Just like 1,−1, 1,−1, ... this does not converge.
Here is the formal proof. Let an = 1 + (−1)n and suppose that (an) does converge

to, say, x. Take ǫ = 1/2. Then there exists N such that |an − x| < 1/2 for all n ≥ N .
Now for n even (and bigger than N) an = 2, so |2 − x| < 1/2 which certainly forces
x > 2− 1/2 = 3/2. On the other hand for n odd, an = 0 and now x < 0 + 1/2 = 1/2. A
contradiction.

(d) First, we see that

an =
n+ 4(−1)n

2n
=

1 + 4
n
(−1)n
2

=
1

2
+ (−1)n 2

n
.

So we might guess that the limit is 1
2
. So, let’s prove it. Let ǫ > 0. Notice that

|an −
1

2
| < ǫ ⇐⇒ |1

2
+ (−1)n 2

n
− 1

2
| < ǫ ⇐⇒ 2

n
< ǫ ⇐⇒ n >

2

ǫ
.

So, take N = [2
ǫ
] + 1. Then for n ≥ N , and going back through these computations, we

see that |an − 1
2
| < ǫ.

Question 4∗ (a) Let x > 0. Using the binomial theorem (or otherwise) prove that for all
n ∈ N, one has (1 + x)n ≥ 1 + nx.
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(b) By taking x = y
n
in (a), deduce that for all y > 0 and n ∈ N, (1 + y)

1

n ≤ 1 + y
n
.

(c) Hence show that for fixed c > 1, one has c
1

n → 1 as n→∞.

Solution: (a) To prove that (1 + x)n ≥ 1 + nx, just use the binomial theorem—which
says that

(1 + x)n = 1 + nx+ (lots of positive terms).

(b) It seems natural to take nth roots, which gives1 (1 + x) ≥ (1 + nx)1/n. This does not
look quite right, but it also holds for x = y

n
giving (1 + y

n
) ≥ (1 + y)1/n, which is what we

wanted to prove.

What we needed above is the fact:

if 0 < α < β then 0 < α1/n < β1/n.

You could reasonably assume that, the general rule being that “standard” results of
arithmetic can be assumed. What is never entirely clear is what “standard” means. So,
since we have been careful about the proofs of a number of such results, let’s prove this
one as well.

If it is false, then α1/n ≥ β1/n. Now we have earlier proved that if 0 < x ≤ y then
x2 ≤ y2 and by an easy induction (can you write out the details?) it follows that xn ≤ yn

for all n ≥ 1. So, apply this for x = α1/n and y = β1/n. Then you get α = xn ≤ yn = β,
giving a contradiction.

(c) For any c > 1 we can write c = 1+y for y > 0. Now we choose N >
y
ǫ , so that

y
N < ǫ.

Then
∣

∣c1/n − 1
∣

∣ = c1/n − 1 since clearly c1/n > 1 by the footnote
= (1 + y)1/n − 1
≤ (1 + y

n
)− 1 by the first part of the question

=
y
n

≤ y
N

< ǫ.

As before, a way to write out such an argument is to write out the first five lines of the

display, and then go back and work out the relationship between N and ǫ.

1See the comment at the end of the solution
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Extra Question (on continued fractions) for Week 3

What is
1

1 +
1

1 +
1

1 +
1

1 +
1

. . .
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Solutions to Extra Question (on continued fractions) for Week 3

What is
1

1 +
1

1 +
1

1 +
1

1 +
1

. . .

Solution: The question means, what is the limit of the sequence
1

1
,

1

1 +
1

1

,
1

1 +
1

1 +
1

1

,

1

1 +
1

1 +
1

1 +
1

1

,
1

1 +
1

1 +
1

1 +
1

1 +
1

1

, . . . , that is, the sequence
1

1
,
1

2
,
2

3
,
3

5
,
5

8
,

8

13
, . . .

(notice the Fibonacci Sequence there!).
If we assume that the limit exists (and there are ways to justify that), call it ℓ say,

then we get, note, the equation ℓ =
1

1 + ℓ
. Solving the resulting quadratic, we get two

roots, one of which is negative so can’t be the limit of a sequence of positive numbers.

Therefore ℓ =
−1 +

√
5

2
= the inverse of the Golden Ratio.
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