
MATH10242 Sequences and Series:
Solutions to Exercises for Week 2 Tutorials

Question 1: Let x ∈ R. Using just the axioms for ordered fields (A0–9) and (Ord 1–
4) from Chapter 1 of the Notes, and breaking into the cases when x is either positive,
negative or zero, show that x2 ≥ 0.

Solution: We break into three cases. If x = 0 then x2 = 0 · 0 = 0 ≥ 0 (we showed in the
lectures that x.0 = 0 for every x.

If x > 0 then (Ord 4) gives x2 = x · x > x · 0 = 0.
Finally, by (Ord 1), the only remaining possibility is that x < 0. But if x < 0 then,

adding −x to each side and using (Ord 3), we get x + (−x) < −x, that is, using (A4),
0 < −x. The first paragraph then gives 0 < (−x)2. We need to show that we can “pull the
minus signs out the the brackets”. (Note that (−x)2 means “the negative of x, squared”,
whereas, −(−(x2)) means “the negative of the negative of x2” and it’s not obvious that
these are equal, or that the latter is equal to x2.)

So: first we prove the rule (−a)b = −(ab): we have (−a)b+ ab = (−a+ a)b = 0.b = 0
(using (A6), (A9) and what’s already been proved) so, by (A4), (−a)b = −(ab). Therefore
using this twice (and (A6)), we get (−a)(−b) = ab. In particular, (−x)2 = x2, which is
what we needed to finish off this third case, and therefore the proof.

Question 2: Show, using just the axioms for ordered fields, that if x, y > 0 then x > y
⇐⇒ x2 > y2.

Solution: Suppose that x > y. Then by (Ord 4) x2 = x·x > x·y and similarly y ·x > y ·y.
Combining them (with (A6)) gives x2 > y2.

The same argument shows that, if x < y then x2 < y2 (hence, by (Ord 1), y2 6< x2)
and if x = y then (by what “=” means) x2 = y2 (so, again, y2 6< x2). That is (again using
(Ord 1)), if x 6> y then x2 6> y2. So we have shown x2 > y2 ⇔ x > y.

Question 3: Show, using just the axioms for ordered fields (including that 0 6= 1), that
for all x ∈ R we have x < x+ 1.

Solution: By (Ord 3) it will be enough to prove that 0 < 1, so let’s do that first.
I’ll argue by contradiction, so suppose that 0 < 1 is false. Then, by (Ord 1), either

0 = 1 - which contradicts our assumption that 0 6= 1 - or 1 < 0. So assume, aiming for
a contradiction, that 1 < 0. That is, −(−1) < 0 (we did the argument for that in the
lectures). By (Ord 3) we deduce −(−1) + (−1) < 0 + (−1) which, by (A4) and (A3),
gives 0 < −1. Then apply (Ord 4) to get 0.(−1) < (−1).(−1). The left-hand side is 0 (we
showed this in the lecture) and, see the solution to Question 1, (−1)(−1) = −(−1) = 1.
That is, 0 < 1 - contradicting, by (Ord 1), the assumption that 1 < 0.

Thus we deduce that 0 < 1. Now add x to both sides and (Ord 3) gives us x < x+ 1.
[There will be many ways of proving this, maybe some more direct than the argument
I’ve given.]

Another solution, found by a student: Take any x 6= 0; by Question 1, x2 ≥ 0, in
fact, x2 > 0 because, if x2 = 0 then, multiplying both sides by 1

x2 , we’d deduce 1 = 0,
contradiction. Since also 1

x
6= 0 (otherwise, multiplying both sides by x, we’d again have

the 0 = 1 contradiction), we also have
(

1
x2 )

2 > 0. Next note that
(

1
x

)2
= 1

x2 (because both
multiply x2 to 1 so, by uniqueness of multiplicative inverse (A8), they’re equal). Now
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apply (Ord 4) to the inequality x2 > 0, multiplying both sides by 1
x2 (which we’ve just

shown is positive), to deduce 1 > 0. Then add x to both sides to finish.

Question 4: Show that for any δ > 0 there exists n ∈ N such that 1
n
< δ.

[Example 2.4.8 from the notes can be used here.]

Solution: Note that 1
δ
exists by (A8). We have 1

δ
> 0 (if we had 1

δ
< 0 then we’d

deduce 1 < 0, which contradicts the result of Question 1 since 1 = 12) and so by the
unboundedness of N (Example 2.4.8) there exists n ∈ N such that n > 1

δ
. Now (Ord 4)

shows that dn > 1
δ
d for any d ∈ R+. Take d = 1

n
δ - this is positive by (Ord 4) and (Ord

2) since δ and (by (Ord 2)) n are, hence (as in the first paragraph) so is 1
n
. With this

value of d we get
1

n
< δ.

Question 5:∗ I said in the lecture that, from the construction of the reals R from the
rationals Q, it follows that Q is dense in R (meaning that, given any two real numbers
x < y, there is a rational number, q, between them: x < q < y). Show that the set R \Q
of irrationals is dense in R i.e. show that for all x, y ∈ R if x < y then there exists
t ∈ R \Q such that x < t < y.

Solution: Here are a couple of, rather different, solutions. There may well be more.
[1]: Given x < y in R, first choose rational x′, y′ with x ≤ x′ < y′ ≤ y - we can do that
using density of Q in R twice (if both x, y are irrational). So it will be enough to show
that there is an irrational strictly between x′ and y′. We know from Foundations of Pure
Maths that

√
2 is irrational; so (note), for every positive integer n,

√
2
n

is irrational. If we

choose n large enough that
√
2
n

< y′ − x′ (the distance between x′ and y′) then we’ll have

x′ < x′ +
√
2
n

< y′, as required since x′ +
√
2
n

must be irrational (if it were rational, we’d

quickly deduce, subtracting the rational x′ and multiplying up by n, that
√
2 is rational

- contradiction).
[2]: We could use the ideas around countable and uncountable sets that were discussed
in Foundations of Pure Maths. Recall that the interval (0, 1) is uncountable. Then scale
it into the interval (x, y) by applying the bijection z ∈ (0, 1) 7→ x + z

y−x . Since that is a

bijection, it follows that the interval (x, y) is uncountable (as, indeed, is every non-empty
open interval in R). But recall also that the set Q is countable, so its subset Q∩ (x, y) is
countable. Hence (R \Q) ∩ (x, y) must be uncountable (if it were countable then (x, y)
would be the union of two countable sets, hence countable, contradiction). In particular
(R \Q) ∩ (x, y) is non-empty, which is exactly what we wanted to prove.

Question 6: For each of the following sequences (an) and real numbers ǫ > 0, find a
natural number N such that ∀n ≥ N we have |an| < ǫ.

(a) an = 1
n
, ǫ = 1/50.

(b) an = 1
n2 , ǫ = 1/100.

(c) an = 1
n2 , ǫ = 1/1000.

(d) an = 1√
n
, ǫ = 1/1000.

(e) an = cos(n)
n

, ǫ = 10−6.

(f) an = cos(n)
n2 , ǫ = 10−6.

(g) an =
√
n+ 2−√n, ǫ = 10−6.
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Solution: (a) We want 1/n < 1/50, equivalently n > 50, so we can choose N = 51.
(b) We need 1/n2 < 1/100, equivalently 100 < n2. So we can choose N = 11.
(c) Similarly we need to have 1000 < n2. So we can choose, say, N = 50 (there’s no
requirement to choose the “best” value of N).
(d) We need 1/

√
n < 1/1000, equivalently 1000 <

√
n. So we can choose N = 106 + 1.

(e) We want to have | cos(n)
n

|< 10−6, that is |cos(n)|
n

< 10−6. Since the maximum value of
| cos(n) | is 1, it will be enough to choose N = 106 + 1; let’s just check that.

(Notice that, so far, we’ve kind of worked backwards to find the right value of N ,
and that’s been enough since it’s been obvious that the chosen value of N works. More
commonly, you work backwards, or maybe even semi-guess, a value of N that will work,
but then you do have to check that it really does work. So let’s do that now, in this
example.)

Suppose n ≥ 106 + 1, so 1
n
≤ 1

106+1
< 1

106
, then | cos(n)

n
|≤ 1

n
< 10−6 = ǫ. As required.

(f) We want | cos(n)
n2 |< 10−6 and, as in part (d), it will be enough to have 1

n2 < 10−6, that
is n > 103, so take, say, N = 104 (N = 103 + 1 is the minimum choice). We check: if

n ≥ 104, then n2 > 106, so 1
n2 < 10−6, hence | cos(n)

n2 |< 1
n2 < 10−6, as required.

(g) We need to get a “nice” estimate of the difference
√
n+ 2−√n between these square

roots. Multiply by
√
n+2+

√
n√

n+2+
√
n
and simplify to get

√
n+ 2 − √n = (

√
n+2−√n)(

√
n+2+

√
n)√

n+2+
√
n

=
2√

n+2+
√
n
. Now, since

√
n+ 2 >

√
n, we have

√
n+
√
n+ 2 >

√
n+
√
n > 0, so 1√

n+
√
n+2

<
1√

n+
√
n
, so 2√

n+2+
√
n
< 2

2
√
n
= 1√

n
. Therefore we should choose N such that 1√

N
≤ 10−6,

equivalently, N ≥ 1012. So take N = 1012 (we don’t need to check directly because the
estimates we made had the form “it’s enough to ...” and the final part of the estimation
for N was “iff”).

Question 7: For each of the following sequences (an) and real numbers ǫ > 0, find a
natural number N such that ∀n ≥ N we have | an − 2 |< ǫ.

(a) an = 2− 1
2n
, ǫ = 1/1000.

(b) an = 2 + sin(n)
n

, ǫ = 1/1000.

Solution: (a) We want | 2− 1
2n
− 2 |< ǫ, that is 1

2n
< ǫ, equivalently 2n > 1

ǫ
so, putting

ǫ = 1/1000, we need 2n > 1000, so take N = 10, say. (For a general ǫ, we’d take
N = log2

1
ǫ
.)

(b) We want | 2− sin(n)
n
− 2 |< ǫ, that is | sin(n)

n
|< ǫ. Since | sin(n) |≤ 1, so | sin(n)

n
|≤ 1

n
, it

will be sufficient to have 1
n
< ǫ, equivalently n > 1

ǫ
. In the case ǫ = 1/1000, this becomes

n > 1000, so take N = 1001, say. (For a general ǫ, we could take N = 1
ǫ
+ 1.)
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Extra Question for Week 2 Prove, from the axioms, that (−1).x = −x.
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Solution to Extra Question for Week 2 Prove, from the axioms, that (−1).x = −x.

Solution: By (A4) we have x + (−x) = 0; in particular 1 + (−1) = 0. So 0.x =
(1+(−1))x = 1.x+(−1).x (by (A6) and (A9)) = x+(−1).x (by (A7)). And 0.x = (0+0).x
(by (A3)) = 0.x+0.x ((A6),(A9)) so, adding −(0.x) to each side, we get, using (A4) and
(A1), 0 = 0.x.

Now we have both x + (−x) = 0 and 0 = x + (−1).x so, by the uniqueness part of
(A4), we deduce −x = (−1).x.

There will be other proofs, maybe some shorter.
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