MATH10242 Sequences and Series:
Revision: Extra Exercises, Solutions

I give, in square brackets, some references to results in the notes. These are to remind
you where to find the relevant results; you are not expected to memorise these numbers
for the exam! (But, of course, you should know the results.)

Question 1:
(a) Define what it means for a sequence (a,)nen to tend to —oo.

(b) Define what it means for a sequence (a,)nen to be bounded below.

(c) The following statement is not correct; modify it to a correct statement.
“Every sequence contains a convergent subsequence.”
(Adding “It is not true that” at the beginning is not what I have in mind.)

(d) Some students seem to believe that every sequence is convergent or tends to +o0o
or tends to —oo or switches between a finite number of values. Give an example of a
sequence which has none of these properties.

Solutions:

(a) (an)ney — —o0 as n — oo if, given any K € R [or, given any K < 0], there is N such
that, for all n > N, we have a,, < K [a, < K is also ok (the “N” might be different but
that’s accommodated by the form of the definition)].

(b) (@n)nen is bounded below if there is K € R such that K < a, [or K < a,] for all
n € N.

(¢) “Every bounded [that is, bounded above and bounded below] sequence contains a
convergent subsequence.”

(d) There are lots of possibilities. We could start with the sequence 1,—1,1,—1,... and
modify it to, say, 1 +1,-1— 3. 143, —1—1,..., that is, a, = (=1)""}(1 + 1).
The sequence sin(n) probably is an example but this might not be so easy to prove.

Question 2:

2n3 —In(n)

(a) Fix € > 0. Find a natural number N such that 2| <eforalln > N.

nfn—12+1
What have you (if you managed to answer the question) just shown about the sequence
2n3 —Inn
ap = —————1
" on(n—1)2+1

(b) Fix a real number K. Find a natural number N such that In(n) —n < K for all
n > N.
What does that prove?

Solutions: There will be more than one way of doing each of these. Remember that
you’re not looking for the least “/N” that works, just some N that will do the job.

o3 —1 2n® —1 —2n(n—1)2 =2
(a) This is the solution that I came up with: n—n(n) _o| = n(n) nin ) =
n(n—1)2+1 n(n—1)2+1
on® —1 —omi+4n? —2n —2 4n? —2n —1 -2 4n?
n n(n) —2n° + 4n n _|2n n —In(n) < i forn > 2. So it
n(n—1)2+1 n(n—1)2+1 (n—1)3
4n?

will be enough to have 5 <€ equivalently n — 1 > 5+ Note that if n > 4
c

_ 47 _ A
(n—1) (n—1)



2
8
then the fraction (nn—l)Q is < 2, so it will be enough to have N > 4 and also N —1 > —.
— €
8
So take N = max{4, [-] + 2}.
€

But here’s a quicker solution, slightly modified from one found by a student in one of the

. 2n3 — lll(n) 2n3 _ ln(n) _ 2n(n _ 1)2 ] 21’&3 _ ln(n) _ 2n3 + 4n2 9 —9
tutorials: | ————— — 2| = _ o
nin—1)2+1 nin—1)2+1 e S

4n% — 2n —In(n) — 2 An? An?
- = f; > 4. So, this will b
nd—3n?2+n+1 ‘ n3 — 3n2 n2(n — 3) n—3 orn =2 o, this will be

<eifn—3> -, sotake N =[] + 3.
€ ¢

9 lné;z)

i 1|~
(1-2)0+:=

n3

[Another possibility goes as follows: We have p =711

2n3 —1In(n) ‘ B

2 2n3 —In(n)
5 If we show that 71,(TL——1)2—|—1

(1-4)

2n3 — In(n 2 2-2+21_ 32

include here) then we will have n—n(n) -2 < 5 —2=—"""F5"
nn—1)2+1 (1-— 5)2 (1-— 5)2

4 2 4 _ 4 4 _ 1
n_on? o on on? o ”(1 ") = 4 _ 4 We want to make this < ¢, that
(-3 7 G=1p =i ai-h et |

is,n—1> —, thatisn > —+1, so choose N = [%] + 2. The computations can be reversed,

> 2 (but that takes a bit more work, which I don’t

on3 —1
so they show that if n > N then 20— ln(n) 2| < el
n(n—1)2+1
. . 2n3 —In(n) 2n? In(n)
[Yet another approaCh 1s to write n(n——]_)Q—F]_ — 2‘ = ’ <m -2 - m >~
In(n)

2 3
(n(n——nll)?—i—l — 2> ‘ + n(n——l)?—H (by the triangle inequality) and then, for each

of the two terms, find an “N” after which it is < % and take the larger of the two “N”s

to make the sum < e. But I won'’t include the details.]
2n3 —Inn

n(n—1)2+1

(b) [We use the fact that n grows faster than In(n). We’ll split the n in two: one piece to

take care of the In(n), the other to go off to —c0.] Consider n —In(n) = g + (g —In(n)).

x
Note that the function 5~ Inx is > 0 at = 2 and has positive derivative from then on,

What all this shows is that the sequence converges to 2.

so is strictly increasing. Therefore, n — In(n) > g for n > 2. We want n — In(n) > — K,
so take N = —2K +1 (or N = 1if K > 0). We check that works.
1
So suppose n > —2K + 1. Then In(n) —n < —g < K- 3 < K, as required.

Since K was arbitrary, that proves that the sequence In(n)—n tends to —oo as n — oc.
Question 3: Find the limits of the following sequences.
3" —nt
@) | 5770
2" 4 nl neN
(b) ((n+n)

Solutions:

=
(SIS

—-n

)neN



(a) Among the functions appearing, that with the highest order of growth is n! [p.31,
n 4 3n 1’7,4

= nl Agn — oo, all terms apart

24! 4]
from the 1 go to 0 so, by the Algebra of Limits [3.2.1], the limit of the above as n — oo
0-0

4.1.4], so divide throughout by it, to get

is =
0+1
11 1 1 1
(1) (tnd)i—nt = (bt ont) AR _mr o
(n+mn2)7+n2  (n+n2)2+n7 (n+n2)7+n2
1 1 1
——————— which, by the Algebra of Limits, goes to ————— = — as n — oo.
1.1 1
(1+n®)2+1 (1+0)z+1 2

Question 4: Using L’Hopital’s Rule or otherwise, find
In(4nz — 2)
In(n + 1)
In(e®" — nb)

nl —nlo

(a) lim, 0o and

(b) lim,, o0

Solutions:
(a) Both top and bottom lines go to oo as n — oo (and both functions are, at least
for x > 1, differentiable with nonzero derivative) so we can apply L’Hopital to get

In(4ns — 2) 1 4oy M1 4 n+1

- mEnE — 2y I S V7 B S S0t
fimn oo In(n +1) im0 Ans — 9 3" 1 m o 3 4n —2n~2/3

, 4 1+1 4 1 1

limy, 00 b = = =

3 4-2m79B3 3 4 3
(b) If you try to use L’Hopital then you have the problem of trying to differentiate n!,
which is not defined at non-integer values, so continuity does not even make sense [there
are continuous interpolations but that’s getting unnecessarily complicated]. So we should
In(e” —n) _ In(e") e

n! —nl0 = pl—nl0  pl—plo
e'n

= 0
growing of these functions, so divide throughout by it to get N "!nm — 150
Tl

Algebra of Limits [3.2.1] so, by the Sandwich Theorem [3.1.1/3.1.4] (the original function
is sandwiched between 0 and this function which has limit 0) the original limit is 0.

and n! is the fastest-

proceed “otherwise”. Note that

= 0 by the

Question 5: Determine whether the following series converge. In each case you should
briefly justify your answer (for example by saying what test you are using).

(a) Z nl0pn (b) 2_: (c) c%l
(d) Z 2;: (e) Z (—nlg)” (f) Z tan(g — %)

> 3nt - —1)" L e 1
O i WX amy 0% mmr

Solutions: In some cases, other methods will also work.



10

. +1 10 n
(a) Let’s try the ratio test [9.1.7], so a, = n_n Then = (n+1) €
e

entl 10

Gp41
Qp,

1\ 1 1
(1 + —) -— —= —asn — oo. Since — < 1 we conclude, by the ratio test, that the series
n e e e

is convergent.
[Note that saying that " grows faster than n'? is not enough - all that tells you is that
the individual terms of the series tend to 0 as n — oco; the question here is what happens

when you add them together. This is a question about a series rather than a sequence.]
n

(b) You could apply the ratio test but you might also notice from the outset that — =
e

L\ ™ AL
(ﬁ) and, for n > 3, n > 1, so the sequence of terms (ﬁ) does not go to 0 as n — oo
e e e

[this also follows from the table on p.31]. Hence [by 8.1.4] the series is divergent.

n+1 n?
An+1 € € _ .
= . —— = ... = ¢~ which tends to

ap o e(n+1)?  on
0 <1 asn — oo, so the series is convergent.

(¢) Again the ratio test will work:

Gp41
Qn

gt e 3\ Ty

2n+1 1 3 3n 2 1 3
(d) And, yet again, the ratio test does the job: = (n+1) ( ) —

2

< 1 as n — o0, so the series is convergent.

(e) You can probably see in advance that the ratio test will give the value 1, hence no
conclusion can be drawn from it. But it is an alternating series with the nth term a,
going to 0 as n — oo so, it is convergent (in fact, it’s absolutely convergent by [9.2.3],
that is, the version with all terms positive is also convergent since the power % is <1.)

(f) This is divergent because the nth terms don’t converge to 0 - in fact they go off to co
(think of the graph of tan).

(g) The nth term is 5 which does not tend to 0 as n — oo (in fact it goes to oo as

3n
(1+%)
n — 00) so this diverges.
(h) The individual terms converge to 0 and the series is alternating, so this converges by
the alternating series test [10.1.1]. [The original question had the series going from n = 1
but we should start at n = 2 since In(1) = 0.]

1
z(In z)?
and we're looking at in on the interval [2, o) where it is continuous, positive and decreas-
ing [the original version of the question had the sum going from n = 1 but that doesn’t
make sense since the term is not defined at n = 1, hence the change to the sum from

(i) This looks amenable to the integral test; let’s check. The function is f(x) =

(o)
n = 2]. So we look at / ———— dx to determine whether or not it exists; that is,
9 z(ln x)?

1

K
whether or not limg_,o / ———— dx exists.
5 x(ln z)?

S I
We have (think of the substitution v = In(n)) / (l—dx = {——] =
5 z(In

, . (x))? In(z) ],
_M + m which tends to n(2) as n — oo. Thus, the integral converges and hence

[9.2.1] so does the infinite series.




1
n?—1

Question 6: (a) Using partial fractions or otherwise, find Z

n=2
(b) Show that the following series converge and show (use partial fractions) that they
have the same sum.

Z 2n+1)

n=1
Solutions: N N
1 1 1 1 ) 1 1 1
(a) 51" 3 <n—1 - n+1),sotheNthpart1alsumsN :;nZ—l =3 <;n— s

Ly Loy —11 L L 1 d thi d 3 N
2 ;_5_25 _5( +§_NN+1) an tlstenstozas - o0, 50
N
1 : 3
Zn2_1:]}1_{110081v=£—l.

[The following argument would get some of the marks but not all of them:

= 1 1 R
The problem with it is that at the second =7 mﬁmtely many terms of the series have

been rearranged and we saw, in Section 12.2, that can lead to nonsense. If you had
justified that step by saying that the series was absolutely convergent by comparison with

=~ 1

E — and hence rearranging infinitely many terms is justified, then you would get the
n

n=2

marks. But, if you go that route, rather than the first, recommended, route, make sure
that your justification is valid and that you say enough.]

(b) The first series converges by comparison with Z 3 [more precisely with 1 Z E]

n=1 n=1

1 1
since m < T The second series converges since it is alternating and its terms
have limit 0 [10.1.1].
1 1 1
Also, ——— = — — , so the Nth partial sum of the first series =
om(2n+1)  2n  2n+1 partial = 15 o
N N N
1 1 1 1 1 1
— = —— =_———+—— = d that is the (2N
nz_; on(2n + 1) nz_; on ; nil 2 371 2N and that is the 21V +
) R SCIeS
I§ 1 t 3¢ f tl _— —
)t1 partial sum, 7on41 say, ol the series ; - 2 2n n 1 Nl_IgC SN
. L = (=D
n=
oo
[In this case, just writing everything in terms of the infinite series Z and not going via
n=2

partial sums would get comparatively fewer of the marks than doing the same in part (a)
because it is definitely needed here - one of the series involved is not absolutely convergent,
so rearranging infinitely many terms is not a priori valid. I've given full details of the
argument; you could get full marks with a bit less, as long as you make it clear that you
are considering the (finite) partial sums.|




Question 7: (a) Define what it means for a sequence (a,)nen to (i) converge to a limit
¢, (ii) tends to co as n — oo [the original wording said “converge to oo” but it’s not a

good idea to use the word “converge” next to a divergent series|.

(b) Given a sequence (an)nen, define a new sequence (a},)nen by afy = 3(an + ani1). Prove

direct from your definitions above that (i) if a, — ¢ as n — oo then a — ¢ as n — oo,
(i) if a,, — 0o as n — oo then a) — oo as n — oo.

(c) Show, by producing suitable examples, that the converse of each of (b)(i) and (b)(ii)
is false.

Solutions:

(a) (i) The sequence (ay,)nen converges to £ if, given any € > 0, there is N € N such that
| an — € |< € for all n > N. (ii) The sequence (a,),en tends to oo if, given any K € R,
there is N € N such that a,, > K for all n > N.

(b) (i) Given € > 0, choose N such that, for all n > N, we have | a,, — ¢ |< e. Then, for
n> N, we have | af —  |=| (an+ ans1) =0 |<| (3an — 30) + (3ans1 — 30) |<| (Fan—30) |
+ | Gang1 — 30 |= 3 | (an = O) | +3 | (ans1 — 0) |< e+ 3€ = € since both n,n +1 > N.
As required.

(b) (ii) Given K € R, choose N such that, for all n > N, we have a,, > K. Let n > N;
then a; = %an + %anﬂ > %K + %K = K since both n,n + 1 > N. As required.

(c) For a counterexample to the converse of (i) you could take a,, = (—1)". This does not
converge to a limit but the sequence a;, is the constant sequence 0, so converges. For a
counterexample to the converse of (ii), we could take the sequence a,, = n+ (—1)"n which
does not tend to oo whereas a, = 2n does tend to co as n — oo.

Question 8: Let b be a positive real number and define the sequence (a,)nen inductively
by

Qn

a1 =1 and ap1 = for n > 1.

(a) Prove by induction on n that a, > 0 for all n.
(b) Prove that if 0 < b < 1 then a,, > 1 — b for all n.

(¢) Deduce that, if b > 0, then the sequence (ay,)nen is a decreasing sequence and, by
quoting a suitable theorem, deduce that it converges.

(d) Prove that if 0 < b < 1 then a,, — 1 — b as n — oc.

(e) Calculate lim,, o a, in the case that b > 1.

Solutions:
(a) Certainly the statement a,, > 0 is true for n = 1, so assume it is true for some value
a
k. Then ag,y = ﬁ which is positive since both a; and b are (a; by the inductive
g
hypothesis).

(b) Assume 0 < b < 1. Then a; =1 > 1 — b, so we have the case n = 1. Assume that

ap > 1—>b. Then Ap41 > 1-0biff a ak b >1-biff a > (1—b)(ak+b) = ak—akb+b—62 =
k

(ar, + ) — (ar, +b)b = (1 — b)(ax, + ). But, by the inductive hypothesis a; +b > 1, so

(I —b)(ar +b) > 1 —b. Thus the condition has become ay > 1 — b, which is true by the

inductive hypothesis. So we do indeed have a1 > 1 — b and we conclude by induction
that a, > 1 — b for all n.

(c) First assume that 0 < b < 1. Then we have a,1; =

an

a, +b
a, +b > 1. So the sequence (a,), is decreasing. But it is, by (a), bounded below (by

< a, since, by (b),

8



0), hence it converges by the Monotone Convergence Theorem [the decreasing sequence
version of 2.5.3].

Otherwise b > 1, so we can’t use part (b), but we do then have a,, +b > 1 since a,, > 0
by (a), so we still get a,4+1 < a, and deduce convergence as above.

(d) By (c) the sequence converges to a limit, ¢ say, which must be > 0 since a,, > 0 for

all n. We have £ = lim,,_, apy1 = lim, # = 0 by the Algebra of Limits. So

we have (2 + bl = (; rearrange to get £({ — (1 — b)) = 0. This is where we have to use
the assumption 0 < b < 1 (so far, everything needed just b > 0); because then we have,
by part (b), that £ > 1 — b > 0, in particular £ # 0 so we deduce ¢ = 1 — b. That is,
a, —1—>basn— .

(e) Now assume b > 1. Then, at the point in (d) above where we had the equation
(0 —(1—10)) =0, we see that £ must equal 0, which is the limit of the a, in this case.

Question 9:
(a) Find the radius of convergence for the series

Ve, & Ve,
(i) ; " (i) ; CE
(b) Find the interval of convergence for the series

0> ‘%n (i) Y —(_?};xn (i) Y ;;"f);

n=1 n=1

Solutions: Throughout, we use the Ratio Test to determine the radius of convergence
and, in part (b), we look separately at each end-point of the interval of convergence.

o | Ontl (2(n+1))! _ (2n—|—2)!' nl z |= n n .
WO = ary Ve Ty e w7 E e ey

| z |. As n — oo, this converges

! |x|:\/<2n+2)<2n+1>|$|:\/<2+%><2+%>

n+1 (n+1)? (14 1)

1
to V4 |x|=2]| x| Thisis <1 when |z |< 5505 is the radius of convergence.

1)!
(a)(ii) This is almost the same as (i); the only change in the calculation is that (n i 2;' =
n !
1 !
appears in place of n = and this does not affect the calculation of the
n+ 2 (n+1)! n+1

. . 1
limit, so we get the same radius of convergence, 3

(B)(0) |

examine what happens at x = £1.
o0

n+1

Init] _ | # |, which has limit | z | as n — oco. Therefore the RoC is 1. We
n

1
At z = 1, the series is E — which we know is divergent [p.50, 9.2.2].
n
5 o
At © = —1 the series is which convergent by the Alternating Series Test [10.1.1].
n=1

So the Interval of Convergence is [—1,1).

N 2n+1 1 1
(b)(ii) fntl] _ . Vi | 2 |=2 T |lz|—=2]xz]asn — oo So RoC= .
a, 2" n+1 1+ 2




3

n

o
-1 . . . .
E n which, being an alternating series
n

~—

1 o0
At o = =3 the series becomes Z:
with terms going to 0, is convergent.

~1 — (—2)"(—1)" 1
Atz = -5 the series becomes Z % Z T which is divergent [9.1.6/9.2.4].

n=1 n=1

So the ToC is (—1/2,1/2].
(b)(iif)

B m—>5
~ 7(n+1) =5

Ap+1
Qn

| | which tends to | x | as n — co. So RoC= 1.

0 _1\n
At z = 1 the series becomes Z (=1) which is convergent by the alternating series test.
n

— m—>5
=1 ¢ 1
At x = —1 the series becomes E - which is divergent by comparison [9.1.2] with
n f—
n=1

\IIP—‘
3IH

1
the divergent series Z — (or, more precisely, by comparison with
n

n=1
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