MATH10242 Sequences and Series:
Exercises for Week 11 Tutorials, Solutions

Question 1: Find the radius of convergence R of the following power series.
In parts (i) and (ii), what is the interval of convergence of the given power series?
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Solutions: Z Cp = Z —. Here the (Modified) Ratio Test gives
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Thus, (the limit as n — oo of)
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<1 <= |z| < 8 (in which case it converges
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absolutely) and (the limit as n — oo of) > 1 <= |z| > 8 (in which case it

diverges).

Thus, the radius of convergence is R = 8.

When x = 8, respectively © = —8 the series becomes ) 1, respectively > (—1)" and
clearly neither of these converges (use the n'® term test). Thus the interval of convergence
is (—8,8).
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(Modified) Ratio Test gives
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Thus, lim, <1 <= |z| < 1 (in which case it converges absolutely) and

limy, 00 )c’;—:l‘ >1 <= |z| > 1 (in which case it diverges).
Thus, the radius of convergence is R = 1
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When x = 1 the series ; Cn = ; o becomes ; in—jt)l’ which converges by the
Alternating Series Test. -
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When x = —1 the series ;cn nz;l s becomes nz;l 45;:_)1, which diverges, for
example by comparison with > . Thus the interval of convergence is (—1, 1].

(iii) Here > ¢, = > En,)gx Thus
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as n — 0.

Thus, lim,,_,. |2

<1 <= |z| < (in which case it converges absolutely) and
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lim,, 00 >1 <= |z| > ; (in which case it diverges). Thus, the radius of conver-
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gence is R = 7.

(iv) Here
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Thus, by the Ratio Test, again, the radius of convergence is R = e .
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So, by the Ratio Test there is no value of = for which the series converges (except of course
for x = 0) and so the Radius of Convergence is R = 0.

(vi) Z Cp = Z —'Ein)'x” Thus
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Thus the radius of convergence is R =

sl — 2|zl as n — oo.
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Question 2: Let r > 0. Using Question 1(i) as a guide, find a series ), a,z™ with
radius of convergence r.

Solution: Replacing 8 by r in Question 1(i) we should guess that the series we want is
xn
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And, this does indeed work since using the Ratio Test again we see that:
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Thus, lim, < 1 <= |z| < r (in which case it converges absolutely) and

lim,, o )C'CL“ ‘ >1 <= |z| > r (in which case it diverges).
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Thus, the radius of convergence is R = r.

Question 3: Let ) -, a, be a series. We define two new series ) ., a}, consisting of
all the positive terms of the original series and and 2@1 a,,, consisting of all the negative
terms. To be specific, set
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and notice that if a,, > 0 then a} = a,, and a, = 0. Conversely, if a, < 0 then a;, = a,
and af = 0.

(a) Prove that, if ) ., a, is absolutely convergent, then both > -, a; and ) ., a, are
convergent. Moreover, prove that

Zan = Za:—i—Za;.
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(b*) Prove that, if ) ., a, is only conditionally convergent, then both »_ . a} and
2@1 a, are divergent.
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(a) (This is really the same as the proof of Theorem 10.2.2, but let’s prove it directly.)
Suppose first that > a, is absolutely convergent; thus ) |a,| converges. Hence by the
Algebra of Infinite Sums (Theorem 8.1.5),
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Solution: We always use the description a; = and a, =

also converges. By definition this is exactly > ., a}. The argument for ) ., a, is
similar. - -

Finally, as a,, = a; + a,, for all n, Theorem 8.1.5 then implies that

Zan = Za:{—l—Za;.
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(b) Now suppose that ) -, a, is only conditionally convergent; thus ) |a,| diverges. In
this case, Y, -, 30, is still convergent while 7 $|a,| diverges. Thus by Question 3(a) on
the Week 9 Exercises Sheet,
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also diverges. By definition this is exactly Y ., af. The argument for )" ., a, is similar.



