MATH10242 Sequences and Series: Exercises for Week 11 Tutorials, Solutions

Question 1: Find the radius of convergence R of the following power series. In parts (i) and (ii), what is the *interval of convergence* of the given power series?

$$\begin{aligned} (i) \sum_{n \ge 1} \frac{x^n}{8^n} & (ii) \sum_{n \ge 1} \frac{(-x)^n}{4n+1}, \qquad (iii) \sum_{n \ge 1} \frac{(2n)!}{(n!)^2} x^n, \qquad (iv) \sum_{n \ge 1} \frac{n^n}{n!} x^n, \\ (v) \sum_{n \ge 1} n! \cdot x^n & (vi) \sum_{n \ge 1} \frac{\sqrt{(2n)!}}{n!} x^n. \end{aligned}$$

[You will need to use the formula for $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ from a previous Exercise Sheet.]

Solutions: (i) $\sum_{n\geq 1} c_n = \sum_{n\geq 1} \frac{x^n}{8^n}$. Here the (Modified) Ratio Test gives

$$\left|\frac{c_{n+1}}{c_n}\right| = \left|\frac{x^{n+1}}{x^n}\frac{8^n}{8^{n+1}}\right| = \frac{|x|}{8}$$

Thus, (the limit as $n \to \infty$ of) $\left|\frac{c_{n+1}}{c_n}\right| < 1 \iff |x| < 8$ (in which case it converges absolutely) and (the limit as $n \to \infty$ of) $\left|\frac{c_{n+1}}{c_n}\right| > 1 \iff |x| > 8$ (in which case it diverges).

Thus, the radius of convergence is R = 8.

When x = 8, respectively x = -8 the series becomes $\sum 1$, respectively $\sum (-1)^n$ and clearly neither of these converges (use the nth term test). Thus the interval of convergence is (-8, 8).

(ii)
$$\sum_{n\geq 1} c_n = \sum_{n\geq 1} \frac{(-x)^n}{4n+1}$$
 Here the (Modified) Ratio Test gives
 $\left|\frac{c_{n+1}}{c_n}\right| = \left|\frac{x^{n+1}}{x^n} \frac{4n+1}{4(n+1)+1}\right| = |x|\frac{4n+1}{4n+7} = |x|\frac{(1+\frac{1}{4n})}{(1+\frac{7}{4n})} \to |x| \text{ as } n \to \infty.$

Thus, $\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| < 1 \iff |x| < 1$ (in which case it converges absolutely) and $\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| > 1 \iff |x| > 1$ (in which case it diverges). Thus, the radius of convergence is R = 1. When x = 1 the series $\sum_{n\geq 1} c_n = \sum_{n\geq 1} \frac{(-x)^n}{4n+1}$ becomes $\sum_{n\geq 1} \frac{(-1)^n}{4n+1}$, which converges by the Alternating Series Test.

When x = -1 the series $\sum_{n \ge 1} c_n = \sum_{n \ge 1} \frac{(-x)^n}{4n+1}$ becomes $\sum_{n \ge 1} \frac{(+1)}{4n+1}$, which diverges, for example by comparison with $\sum \frac{1}{n}$. Thus the interval of convergence is (-1, 1]. (iii) Here $\sum c_n = \sum \frac{(2n)!}{(n!)^2} x^n$. Thus

$$\left|\frac{c_{n+1}}{c_n}\right| = \left|\frac{x^{n+1}}{x^n}\frac{(2n+2)!}{(2n)!}\right| \cdot \left|\frac{(n!)^2}{((n+1)!)^2}\right| = |x|\frac{(2n+1)(2n+2)}{(n+1)^2} = |x|\frac{4+\frac{6}{n}+\frac{2}{n^2}}{1+\frac{2}{n}+\frac{1}{n^2}} \to 4|x|,$$

as $n \to \infty$. Thus, $\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| < 1 \iff |x| < \frac{1}{4}$ (in which case it converges absolutely) and $\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| > 1 \iff |x| > \frac{1}{4}$ (in which case it diverges). Thus, the radius of convergence is $R = \frac{1}{4}$. (iv) Here

$$\left|\frac{c_{n+1}}{c_n}\right| = \left|\frac{x^{n+1}}{x^n}\frac{(n+1)^{n+1}n!}{n^n(n+1)!}\right| = |x|\frac{(n+1)(n+1)^n}{n^n(n+1)} = |x|\frac{(n+1)^n}{n^n} = |x|\left(1+\frac{1}{n}\right)^n \to |x| \cdot e_{x}$$

as $n \to \infty$.

Thus, by the Ratio Test, again, the radius of convergence is $R = e^{-1}$.

(v) Here

$$\frac{c_{n+1}}{c_n} \bigg| = \bigg| \frac{x^{n+1}}{x^n} \bigg| \frac{(n+1)!}{n!} = (n+1)|x| \to \infty, \quad \text{as } n \to \infty.$$

So, by the Ratio Test there is no value of x for which the series converges (except of course for x = 0) and so the Radius of Convergence is R = 0.

(vi)
$$\sum_{n\geq 1} c_n = \sum_{n\geq 1} \frac{\sqrt{(2n)!}}{n!} x^n$$
. Thus
 $\left| \frac{c_{n+1}}{c_n} \right| = \left| \frac{\sqrt{(2n+2)!}}{(n+1)!} x^{n+1} \cdot \frac{n!}{x^n \sqrt{(2n)!}} \right| = \left| \frac{\sqrt{(2n+2)(2n+1)(2n)!}}{(n+1)!} x^{n+1} \cdot \frac{n!}{x^n \sqrt{(2n)!}} \right|$
 $= \frac{\sqrt{(2n+2)(2n+1)}}{(n+1)} \cdot |x| = \frac{\sqrt{(2+2/n)(2+1/n)}}{(1+1/n)} \cdot |x| \to 2|x| \quad as \quad n \to \infty.$

Thus the radius of convergence is $R = \frac{1}{2}$.

Question 2: Let r > 0. Using Question 1(i) as a guide, find a series $\sum_{n=1}^{\infty} a_n x^n$ with radius of convergence r.

Solution: Replacing 8 by r in Question 1(i) we should guess that the series we want is $\sum \frac{x^n}{r}$.

$$\sum_{n\geq 1} r^n$$

And, this does indeed work since using the Ratio Test again we see that:

$$\left|\frac{c_{n+1}}{c_n}\right| = \left|\frac{x^{n+1}}{x^n}\frac{r^n}{r^{n+1}}\right| = \frac{|x|}{r}$$

Thus, $\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| < 1 \iff |x| < r$ (in which case it converges absolutely) and $\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| > 1 \iff |x| > r$ (in which case it diverges). Thus, the radius of convergence is R = r.

Question 3: Let $\sum_{n\geq 1} a_n$ be a series. We define two new series $\sum_{n\geq 1} a_n^+$, consisting of all the positive terms of the original series and and $\sum_{n\geq 1} a_n^-$, consisting of all the negative terms. To be specific, set

$$a_n^+ = \frac{a_n + |a_n|}{2}$$
 and $a_n^- = \frac{a_n - |a_n|}{2}$,

and notice that if $a_n > 0$ then $a_n^+ = a_n$ and $a_n^- = 0$. Conversely, if $a_n < 0$ then $a_n^- = a_n$ and $a_n^+ = 0$.

(a) Prove that, if $\sum_{n\geq 1} a_n$ is absolutely convergent, then both $\sum_{n\geq 1} a_n^+$ and $\sum_{n\geq 1} a_n^-$ are convergent. Moreover, prove that

$$\sum_{n \ge 1} a_n = \sum_{n \ge 1} a_n^+ + \sum_{n \ge 1} a_n^-.$$

(b*) Prove that, if $\sum_{n\geq 1} a_n$ is only conditionally convergent, then both $\sum_{n\geq 1} a_n^+$ and $\sum_{n\geq 1} a_n^-$ are divergent.

Solution: We always use the description $a_n^+ = \frac{a_n + |a_n|}{2}$ and $a_n^- = \frac{a_n - |a_n|}{2}$, (a) (This is really the same as the proof of Theorem 10.2.2, but let's prove it directly.) Suppose first that $\sum a_n$ is absolutely convergent: thus $\sum |a_n|$ converges. Hence by the

Suppose first that $\sum a_n$ is absolutely convergent; thus $\sum |a_n|$ converges. Hence by the Algebra of Infinite Sums (Theorem 8.1.5),

$$\frac{1}{2}\sum_{n\geq 1}a_n + |a_n|$$

also converges. By definition this is exactly $\sum_{n\geq 1} a_n^+$. The argument for $\sum_{n\geq 1} a_n^-$ is similar.

Finally, as $a_n = a_n^+ + a_n^-$ for all n, Theorem 8.1.5 then implies that

$$\sum_{n \ge 1} a_n = \sum_{n \ge 1} a_n^+ + \sum_{n \ge 1} a_n^-.$$

(b) Now suppose that $\sum_{n\geq 1} a_n$ is only conditionally convergent; thus $\sum |a_n|$ diverges. In this case, $\sum_{n\geq 1} \frac{1}{2}a_n$ is still convergent while $\sum \frac{1}{2}|a_n|$ diverges. Thus by Question 3(a) on the Week 9 Exercises Sheet,

$$\sum_{n\geq 1}\frac{1}{2}a_n + \frac{1}{2}|a_n|$$

also diverges. By definition this is exactly $\sum_{n\geq 1} a_n^+$. The argument for $\sum_{n\geq 1} a_n^-$ is similar.