
MATH10242 Sequences and Series:

Exercises for Week 10 Tutorials, Solutions

Question 1: Use the Integral Test to test the series below for convergence or divergence.
In (i) (ii) and (iii) is there some other test that would also work?

(i)
X

n�1

1

n2 + 1
, (ii)

X

n�1

n

n2 + 1
, (iii)

X

n�1

n2e�n, (iv)
X

n�2

1

n(lnn)p
, for p > 1.

Solutions: In each case we are clearly given
P

an where an = f(n) for a function f(x)
that is positive and continuous. In some cases it is not so clear whether it is decreasing,
so one needs to say something about that. However, what is true in each case is that
for some K the relevant function f(x) is decreasing for x � K, and by comments in the
notes, this su�ces.

So modulo this preamble, the Integral Test does indeed apply.

(i) Here we consider f(x) = 1
x2+1 which is certainly decreasing (and positive and contin-

uous). Now
R N

1
1

x2+1dx = tan�1(x)|N1 which is bounded above by ⇡/2� tan�1(1). So the
series converges. (Of course, it would be easier to use the comparison test with

P
n�2.)

(ii) Here use
R N

1
x

x2+1dx = 1
2 ln(x

2 + 1)
��N
1
. Now as ln(N2 + 1) ! 1 as N ! 1 the series

diverges. (Here one could also use the comparison test with
P

n�1.)

(iii) Here we use f(x) = x2e�x for which we do have to think a little about whether
it is eventually decreasing. The best way to do this is to find the max and min using
f 0(x) = (2x� x2)e�x to see that it has a local maximum only at x = 2. Thus it decreases
for x � 2.

Integrating by parts twice gives
R N

1 x2e�xdx = �(x2 + 2x+ 2)e�x|N1 ! 0 + (1 + 2 +
2)e�1 = 5e�1 as N ! 1 (by using results from Chapter 3). So the series converges. (Here
the Ratio Test would also work and is surely easier.)

(iv) Here
R N

2
1

x(lnx)pdx = 1
�p+1 ln(x)

�p+1
���
N

2
. Since p > 1, we have �p + 1 < 0 and so

ln(N)�p+1 ! 0 as N ! 1. So the improper integral is indeed finite and the series
converges.

Question 2: Test the series below for convergence or divergence

(i)
X

n�1

sin

✓
1

n2

◆
[Hint: first show that sin(x) < x for all x > 0. ]

(ii)
X

n�1

tan

✓
1

n2

◆
(iii)

X

n�1

cos

✓
1

n2

◆
(iv)

X

n�1

n!

(n+ 1)!
(v)

X

n�1

n!

(n+ 2)!

(vi)
X

n�1

n�2 cos(1/n)esin(1/n) (vii)
X

n�2

n3e�n4
(viii)

P
n�2

1
n(lnn) (ix)

X

n�2

1 + ln(n)

n(lnn)2

Solutions: (i) To check that sin(x) < x set y = sin(x) � x. Then y0 = cos(x) � 1  0
for all x and so y is a decreasing function. Since y(0) = 0 this implies that y(x)  0 for

3



x > 0. (With a little more work one can see that y is strictly decreasing for 0 < x < ⇡
and hence y(x) < 0 for all x > 0, but this is not necessary.)

So, we can compare 0  sin( 1
n2 )  1

n2 . (Note that the terms really are all positive
since 1

n2 < ⇡). Since
P

1
n2 converges, so does

P
n�1 sin(

1
n2 ).

(ii) tan( 1
n2 ) =

sin( 1
n2 )

cos( 1
n2 )

. But since 1
n2 < ⇡/3, we have cos(⇡3 ) < cos( 1

n2 ) < 1 for all n � 1.

So

0 < tan(
1

n2
) 

sin( 1
n2 )

cos(⇡3 )
 1

cos(⇡3 )

1

n2
.

Since
P

n�1
1

cos(⇡3 )
1
n2 converges by the AoL and a standard example (specifically 8.1.5 and

9.1.5),
P

n�1 tan(
1
n2 ) converges by the Comparison Test.

(iii) Since limn!1 cos( 1
n2 ) = 1,

P
n�1 cos(

1
n2 ) diverges (by the nth term test 8.1.4).

(iv)
P

n�1
n!

(n+1)! =
P

n�1
1

(n+1) which diverges.

(v)
X

n�1

n!

(n+ 2)!
=

X

n�1

1

(n+ 1)(n+ 2)
=

X

n�1

1

(n2 + 3n+ 2)


X

n�1

1

n2
. Since

X

n�1

1

n2
con-

verges, so does
X

n�1

n!

(n+ 2)!
by the comparison test.

(vi) Here one should note that
R N

1 x�2 cos(1/x)esin(1/x)dx = �esin(1/n)
���
N

1
. As n ! 1,

clearly esin(1/n) ! esin(0) = 1 < 1. So the sum converges by the integral test.
As usual, one should also check that the terms an = n�2 cos(1/n)esin(1/n) are positive—

which is clear—and that it is decreasing for large n—which is a little messier, but easy
enough. As often happens you could also use the Comparison test with

P
n�2.

(vii) Here we can use the integral test (and the 3 conditions are obviously satisfied for
large x. Thus:

Z N

n=2

x3e�x4
=

�1

4
e�x4

����
N

2

=
1

4
(e�24 � e�N4

) ! 1

4
e�24 < 1,

as n ! 1. So, our series also converges. (The ratio test would also work,)

(viii) In this case it is easy to check that the function 1
x ln(x) is positive and decreasing.

Moreover,
R N

2
1

x ln(x)dx = ln(ln(x))
���
N

2
! 1 as N ! 1. So, it diverges by the integral

test.
Remark This result should be compared with Question 1(iv); the “dividing line” between
convergent and divergent series really is quite subtle!

(ix) This is slightly less obvious. Here

X

n�2

1 + ln(n)

n(lnn)2
=

X

n�2

1

n(lnn)2
+
X

n�2

1

n(lnn).

Thus we get the sum of a convergent and a divergent series and so by Question 3 from
the previous exercise sheet, it is divergent. (Alternatively, you could just compare it to
X

n�2

1

n(lnn).
)

4



Question 3: Test the series below for convergence and for absolute convergence. Which
are conditionally convergent?

For this question, try first just writing down the answer with only a brief reason why it
is true—for example if one had the series

P
n2+1

n4+3n2 you might write “absolutely convergent
and hence convergent by comparison with

P
1
n2”. Then you can check some or all of them

by doing the details.

(i)
X

n�1

(�1)n
✓
n+ 1

n+ 2

◆
, (ii)

X

n�1

(�1)n
✓

n+ 1

n2 + 2

◆
, (iii)

X

n�1

(�1)n
✓

n+ 1

n3 + 1

◆

(iv)
X

n�1

(�1)n
cos(n)

n2
(iv)

X

n�1

1

(�2)n
.

Solutions: (i)
X

n�1

(�1)nan =
X

n�1

(�1)n
✓
n+ 1

n+ 2

◆
. Here an ! 1 as n ! 1 so the series

diverges, by Theorem 8.1.4.

(ii)
X

n�1

(�1)nan =
X

n�1

(�1)n
✓

n+ 1

n2 + 2

◆
. Here an ! 0 as n ! 1 and the an are positive,

so the Alternating Series Test says it converges. However,

X

n�1

����(�1)n
✓

n+ 1

n2 + 2

◆���� =
X

n�1

n+ 1

n2 + 2
=

X

n�1

1 + 1
n

n+ 2
n

and it is easy to see that this diverges by comparison with
P

1
n . In more detail,

1 + 1
n

n+ 2
n

� 1

n+ 2
n

� 1

n+ 2
for n � 1

Since
P

n�1

1

n+ 2
=

P
n�3

1

n
, it diverges (for example by 9.1.3). Thus our series

X

n�1

����(�1)n
✓

n+ 1

n2 + 2

◆����

diverges by the comparison test, and
X

n�1

(�1)n
✓

n+ 1

n2 + 2

◆
is conditionally convergent.

(iii)
X

n�1

|(�1)nan| =
X

n�1

����(�1)n
n+ 1

n3 + 1

���� =
X

n�1

1 + 1
n

n2 + 1
n

, which converges by comparison

with
P

1
n2 . Hence the series converges absolutely. (It is left to you to fill in the details of

how one explicitly does the comparison.)

(iv)
X

n�1

(�1)nan =
X

n�1

(�1)n
cos(n)

n2
. Here the cosine terms will be a mess, but at least

they have absolute value  1. Hence

|(�1)nan| =

����(�1)n
cos(n)

n2

����  1

n2
.

Hence the series converges absolutely by comparison with
P

1
n2 .

(iv)
X

n�1

(�1)nan =
X

n�1

1

(�2)n
=

X

n�1

(�1)n
1

2n
. We already know that the geometric series

P
n�1

1

2n
converges. Hence our given series converges absolutely.
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