Attempt these questions before your tutorial in the week beginning 10th February. Questions 2 and 3 are important, so be sure to spend enough time on them. As usual, an asterisk indicates a significantly harder problem.

Question 1: Here you should justify a couple of formulas that we will often use. Prove:

(a)
$$\forall x, y, |x - y| \ge ||x| - |y||;$$

(b) $\forall x, \ell \text{ and } \forall \epsilon > 0, |x - \ell| < \epsilon \iff \ell - \epsilon < x < \ell + \epsilon.$

Question 2: Let $\epsilon > 0$ be given. For each of the following sequences (a_n) , find a natural number N such that $\forall n \ge N$, one has $|a_n| < \epsilon$ (thereby showing that $a_n \to 0$ as $n \to \infty$).

(a)
$$a_n = \frac{1}{n^2}$$
.
(b) $a_n = \frac{n + \sqrt{n}}{n^2 + 1}$.
(c) $a_n = \frac{\cos(n)}{n}$;
(d) $a_n = \sqrt{n+2} - \sqrt{n}$
(e)* $a_n = \frac{n}{2n}$.

Hints: In parts (b) and c) find a nicer function f(n) with $|a_n| < f(n)$. Most of part (d) has already been seen on the Week 2 sheet.

Question 3: Which of the following sequences converge and to what value? In each case you should properly justify your answers, making use of the formal definition of convergence to a limit, as we have been doing in class.

(a)
$$(1 + \frac{(-1)^n}{n})_{n \in \mathbb{N}}$$
;
(b) $(1 + \frac{3n^2 + n}{2n^2})_{n \in \mathbb{N}}$;
(c) $(1 + (-1)^n)_{n \in \mathbb{N}}$;
(d) $(\frac{n + 4(-1)^n}{2n})$.

Question 4^{*} (a) Let x > 0. Using the binomial theorem (or otherwise) prove that for all $n \in \mathbb{N}$, one has $(1 + x)^n \ge 1 + nx$.

- (b) By taking $x = \frac{y}{n}$ in (a), deduce that for all y > 0 and $n \in \mathbb{N}$, $(1+y)^{\frac{1}{n}} \le 1 + \frac{y}{n}$.
- (c) Hence show that for fixed c > 1, one has $c^{\frac{1}{n}} \to 1$ as $n \to \infty$.