MATH10242 Sequences and Series: Exercises for Week 3 Tutorials

Attempt these questions before your tutorial in the week beginning 10th February. Questions 2 and 3 are important, so be sure to spend enough time on them. As usual, an asterisk indicates a significantly harder problem.

Question 1: Here you should justify a couple of formulas that we will often use. Prove:
(a) $\forall x, y, \quad|x-y| \geq||x|-|y||$;
(b) $\forall x, \ell$ and $\forall \epsilon>0,|x-\ell|<\epsilon \Longleftrightarrow \ell-\epsilon<x<\ell+\epsilon$.

Question 2: Let $\epsilon>0$ be given. For each of the following sequences (a_{n}), find a natural number N such that $\forall n \geq N$, one has $\left|a_{n}\right|<\epsilon$ (thereby showing that $a_{n} \rightarrow 0$ as $n \rightarrow \infty$).
(a) $a_{n}=\frac{1}{n^{2}}$.
(b) $a_{n}=\frac{n+\sqrt{n}}{n^{2}+1}$.
(c) $a_{n}=\frac{\cos (n)}{n}$;
(d) $a_{n}=\sqrt{n+2}-\sqrt{n}$
(e)* $a_{n}=\frac{n}{2^{n}}$.

Hints: In parts (b) and c) find a nicer function $f(n)$ with $\left|a_{n}\right|<f(n)$. Most of part (d) has already been seen on the Week 2 sheet.

Question 3: Which of the following sequences converge and to what value? In each case you should properly justify your answers, making use of the formal definition of convergence to a limit, as we have been doing in class.
(a) $\left(1+\frac{(-1)^{n}}{n}\right)_{n \in \mathbb{N}}$;
(b) $\left(1+\frac{3 n^{2}+n}{2 n^{2}}\right)_{n \in \mathbb{N}}$;
(c) $\left(1+(-1)^{n}\right)_{n \in \mathbb{N}}$;
(d) $\left(\frac{n+4(-1)^{n}}{2 n}\right)$.

Question 4^{*} (a) Let $x>0$. Using the binomial theorem (or otherwise) prove that for all $n \in \mathbb{N}$, one has $(1+x)^{n} \geq 1+n x$.
(b) By taking $x=\frac{y}{n}$ in (a), deduce that for all $y>0$ and $n \in \mathbb{N},(1+y)^{\frac{1}{n}} \leq 1+\frac{y}{n}$.
(c) Hence show that for fixed $c>1$, one has $c^{\frac{1}{n}} \rightarrow 1$ as $n \rightarrow \infty$.

