MATH10242 Sequences and Series: Exercises for Week 2 Tutorials (Exercises on Real Numbers and Convergence)

Have a go at these questions before your examples classes (= tutorials) in the week starting February 3rd. (You can find your tutorial group on Blackboard.) An asterisk indicates a problem that could be hard in some sense - it might involve an intricate argument, or an idea that doesn't arise directly from the notes or even a bit of inspiration. Don't spend too long on a question with an asterisk at the expense of spending enough time on the more straightforward problems.
Questions 1-4 are about working from axioms. Questions 6 and 7 are the most important on the sheet.

Question 1: Let $x \in \mathbb{R}$. Using just the axioms for ordered fields (A0-9) and (Ord 14) from Chapter 1 of the Notes, and breaking into the cases when x is either positive, negative or zero, show that $x^{2} \geq 0$.

Question 2: Show, using just the axioms for ordered fields, that if $x, y>0$ then $x>y$ $\Longleftrightarrow x^{2}>y^{2}$.

Question 3: Show, using just the axioms for ordered fields (including that $0 \neq 1$), that for all $x \in \mathbb{R}$ we have $x<x+1$.

Question 4: Show that for any $\delta>0$ there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<\delta$.
[Example 2.4.8 from the notes can be used here.]
Question 5:* I said in the lecture that, from the construction of the reals \mathbb{R} from the rationals \mathbb{Q}, it follows that \mathbb{Q} is dense in \mathbb{R} (meaning that, given any two real numbers $x<y$, there is a rational number, q, between them: $x<q<y$). Show that the set $\mathbb{R} \backslash \mathbb{Q}$ of irrationals is dense in \mathbb{R} i.e. show that for all $x, y \in \mathbb{R}$ if $x<y$ then there exists $t \in \mathbb{R} \backslash \mathbb{Q}$ such that $x<t<y$.

Question 6: For each of the following sequences $\left(a_{n}\right)$ and real numbers $\epsilon>0$, find a natural number N such that $\forall n \geq N$ we have $\left|a_{n}\right|<\epsilon$.
(a) $a_{n}=\frac{1}{n}, \epsilon=1 / 50$.
(b) $a_{n}=\frac{1}{n^{2}}, \epsilon=1 / 100$.
(c) $a_{n}=\frac{1}{n^{2}}, \epsilon=1 / 1000$.
(d) $a_{n}=\frac{1}{\sqrt{n}}, \epsilon=1 / 1000$.
(e) $a_{n}=\frac{\cos (n)}{n}, \epsilon=10^{-6}$.
(f) $a_{n}=\frac{\cos (n)}{n^{2}}, \epsilon=10^{-6}$.
(g) $a_{n}=\sqrt{n+2}-\sqrt{n}, \epsilon=10^{-6}$.

Question 7: For each of the following sequences $\left(a_{n}\right)$ and real numbers $\epsilon>0$, find a natural number N such that $\forall n \geq N$ we have $\left|a_{n}-2\right|<\epsilon$.
(a) $a_{n}=2-\frac{1}{2^{n}}, \epsilon=1 / 1000$.
(b) $a_{n}=2+\frac{\sin (n)}{n}, \epsilon=1 / 1000$.

