MATH10242 Sequences and Series: Solutions to Coursework Test

10th March 202011:05-11:40 (35 minutes duration)ALL questions should be attemptedNo calculators may be usedWeighting within course unit: 20%

- Fill in your details and answers on this cover sheet.
- Please put away all books, calculators, laptops, phones, etc.
- If you need more paper, we will provide it.

Name:

ID Number:

Put your answers in the boxes provided.

	a	b	с	d	e	Total Mark
1	Yes	No	Yes	No	Yes	
2	$\frac{23}{3}$	Х	Х	Х	Х	
3	$\frac{-5}{4}$	Х	Х	Х	Х	
4	Yes	No	Yes	Yes	Х	
5	Х	Х	Х	Х	Х	
Overall Mark					l Mark	

Answer to Question 5 (continue on the back of this page if necessary):

Write your answers to Questions 1–4 in the appropriate boxes on the answer grid. This will be "Yes" or "No" for Questions 1 and 4, a certain number or "No" for Question 2 and a certain number for Question 3.

Answer Question 5 in the space below the grid.

Question 1.

5 marks

(a) Suppose that $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ are convergent sequences. Does it follow that the sequence $(a_n^2 b_n)_{n \in \mathbb{N}}$ is convergent?

Solution: Yes. This follows directly from the Algebra of Limits Theorem.

(b) Let $(a_n)_{n \in \mathbb{N}}$ be a sequence with $a_n \neq 0$ for all n. Suppose that the sequence $(\frac{1}{a_n})_{n \in \mathbb{N}}$ is convergent.

Is the sequence $(a_n)_{n \in \mathbb{N}}$ necessarily bounded?

Solution: No. For instance take $a_n = n$.

(c) Suppose that $(a_n)_{n \in \mathbb{N}}$ is a null sequence and that $(b_n)_{n \in \mathbb{N}}$ is a bounded sequence. Is the sequence $(a_n b_n)_{n \in \mathbb{N}}$ necessarily convergent?

Solution: Yes, in fact this sequence $(a_n b_n)_{n \in \mathbb{N}}$ must be null.

(d) Suppose that $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ are strictly increasing sequences, with $\frac{b_n}{2} < a_n \leq b_n$ for all n. Is the sequence $\left(\frac{a_n}{b_n}\right)_{n \in \mathbb{N}}$ necessarily convergent?

Solution: No. For example, put $b_n = 2^n$ and $a_n = 2^{n-1} + 1$ if n is odd and $a_n = 2^n$ if n is even.

(e) Suppose that $(a_n)_{n \in \mathbb{N}}$ is an increasing sequence of negative real numbers and that $(b_n)_{n \in \mathbb{N}}$ is a decreasing sequence of positive real numbers. Is the sequence $(a_n + b_n)_{n \in \mathbb{N}}$ necessarily convergent?

Solution: Yes. Each sequence must be convergent - by the Monotone Convergence Theorem, so their sum is convergent (by the Algebra of Limits Theorem).

(very close to) seen [ILO 3, Med/High]

Question 2. Find the limit (if it exists) of the sequence If the limit does not exist, enter "No" in the box.

$$\left(\frac{(5n+3)^2(5n-3)^2-4n^4}{(3n+5)^2(3n-5)^2}\right)_{n\in\mathbb{N}}.$$

3 marks

Solution: Divide top and bottom by n^4 to get $\frac{(5n+3)^2(5n-3)^2 - 4n^4}{(3n+5)^2(3n-5)^2} = \frac{(5+\frac{3}{n})^2(5-\frac{3}{n})^2 - 4}{(3+\frac{5}{n})^2(3-\frac{5}{n})^2}$. Using that each of the fractional terms has limit 0 as $n \to \infty$ (3.2.3) and applying the Algebra of Limits Theorem, we deduce that the limit is $\frac{5^25^2 - 4}{3^23^2} = \frac{621}{81} = \frac{23}{3}$ (but it's ok to leave the fraction unsimplified).

similar to seen [ILO 4, Easy]

Question 3. Calculate $\lim_{n\to\infty} \left(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)}\right)$. 3 marks Solution: We have

$$\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)} = (\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)}) \cdot \frac{(\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}} = \frac{(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}} = \frac{(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}} = \frac{(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}} = \frac{(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}} = \frac{(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}} = \frac{(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}} = \frac{(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}} = \frac{(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}} = \frac{(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}} = \frac{(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}} = \frac{(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}} = \frac{(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}} = \frac{(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}} = \frac{(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}} = \frac{(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}} = \frac{(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}} = \frac{(\sqrt{4n^2 - n} - \sqrt{(2n-1)(2n+3)})}{\sqrt{4n^2 - n} + \sqrt{(2n-1)(2n+3)}}$$

$$\frac{(4n^2 - n) - (2n - 1)(2n + 3)}{\sqrt{4n^2 - n} + \sqrt{(2n - 1)(2n + 3)}} = \frac{(4n^2 - n) - (4n^2 + 4n - 3)}{\sqrt{4n^2 - n} + \sqrt{(2n - 1)(2n + 3)}} = \frac{-5n + 3}{\sqrt{4n^2 - n} + \sqrt{(2n - 1)(2n + 3)}}$$

Divide top and bottom by n to get
$$\frac{-5 + \frac{3}{n}}{\sqrt{4 - \frac{1}{n}} + \sqrt{(2 - \frac{1}{n})(2 + \frac{3}{n})}} \text{ which } \rightarrow \frac{-5}{\sqrt{4 - 0} + \sqrt{(2 - 0)(2 + 0)}} = -5$$

$$\frac{0}{4}$$

similar to seen [ILO 4, Med]

Question 4. Do the following sequences converge?

4 marks

(a)
$$\left(\frac{n^5+2^n}{n^2+5^n}\right)_{n\in\mathbb{N}}$$

Solution: The fastest-growing term is 5^n so divide top and bottom by it to get $\frac{\frac{n^5}{5^n} + \frac{2^n}{5^n}}{\frac{n^2}{5^n} + 1}$. Since each of $\frac{n^5}{5^n}$, $\frac{2^n}{5}$ and $\frac{n^2}{5^n}$ goes to 0 as $n \to \infty$, we deduce that the limit is $\frac{0+0}{0+1} = 0$ as $n \to \infty$. So this sequence converges.

(b)
$$\left(\frac{(n+2)!}{n!+n+2}\right)_{n\in\mathbb{N}}$$

Solution: We have $\frac{(n+2)!}{n!+n+2} = \frac{(n+2)(n+1)n!}{n!+n+2}$ divide top and bottom by n! to see that this equals $\frac{(n+2)(n+1)}{1+\frac{n}{n!}+\frac{2}{n!}}$ which $\to \infty$ as $n \to \infty$ so the sequence is not convergent.

(c)
$$\left(n^{-\frac{2}{n}}\right)_{n\in\mathbb{N}}$$

Solution: $n^{-\frac{2}{n}} = \left(\frac{1}{n^{\frac{1}{n}}}\right)^2 \to \frac{1}{1}^2 = 1$. So the sequence converges.

(d)
$$\left(\frac{3\ln(n)}{\ln(2n)}\right)_{n\in\mathbb{N}}$$

Solution: We have $\frac{3\ln(n)}{\ln(2n)} = \frac{3\ln(n)}{\ln 2 + \ln n} = \frac{3}{\frac{\ln 2}{\ln n} + 1}$ which $\rightarrow \frac{3}{0+1} = 3$ as $n \rightarrow \infty$. So the sequence is convergent.

similar to seen [ILO 4, Med]

Question 5.

5 marks, distributed as shown

(a) Define what it means for a sequence $(a_n)_{n \in \mathbb{N}}$ to converge to a limit ℓ .

Solution: $(a_n)_{n \in \mathbb{N}}$ converges to ℓ iff, for every $\epsilon > 0$ there is $N \in \mathbb{N}$ such that, for all $n \ge N$, we have $|a_n - \ell| < \epsilon$ 1 mark

(b) Suppose that $a_n \ge 0$ for all n and that the sequence $(a_n)_{n\in\mathbb{N}}$ converges to 0. Prove, using your definition from part (a) that the sequence $(\sqrt{a_n})_{n\in\mathbb{N}}$ is convergent.

Solution: Given $\epsilon > 0$, choose N such that $|a_n| < \epsilon^2$ for all $n \ge N$. Then, for $n \ge N$ we have $|\sqrt{a_n}| = \sqrt{|a_n|} < \sqrt{\epsilon^2} = \epsilon$. Therefore the sequence $(\sqrt{a_n})_n$ is convergent (to 0). 3 marks

(c) Give an example of two non-convergent sequences $(a_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}}$ such that the sequence $(a_n b_n)_{n \in \mathbb{N}}$ is convergent.

Solution: For instance take $a_n = b_n = (-1)^n$. 1 mark

(very close to) seen [ILOs 1,2, Med/High]

ILOs Tested

On successful completion of this course unit students will be able to:

1. express correctly the definitions of the basic concepts from the course unit, for example the definition of the limit of a sequence;

2. write short simple proofs involving those definitions and apply the Completeness property of the Reals where needed;

3. decide on the correctness or otherwise of statements, providing justifications or counterexamples as appropriate;

4. find the limit of a wide class of sequences;

Comments on student solutions

Q1: Q2, Q3: Q4: Q5(a): Q5(b): Q5(c):