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1 Introduction

There are a number of introductions and surveys describing the model theory of
modules; I give some references later. This is intended to be largely supplemen-
tary to those, in that my imagined reader has seen a little bit, perhaps some
time in the past, about the model theory of modules. But let me give a little
introduction to set the context.

In order to apply model theory to modules, we fix a ring (unital, with 1) and
set up a language LR, described below, such that R-modules can be axiomatised
within LR. The atomic formulas of LR are the R-linear equations. A formula
is said to be pp (for “positive primitive”) if it is, or is equivalent modulo the
common theory of R-modules to, an existentially quantified system of R-linear
equations. A formula is pp precisely if its solution set in each module is a group
under the addition inherited from the module. The pp formulas are also the
key formulas in that there is a relative elimination of quantifiers result which
reduces every formula to an equivalent one which is simply constructed from
pp formulas. They are also the formulas whose solution sets are preserved by
arbitrary homomorphisms between R-modules.
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Thus model theory, algebra and category theory for R-modules are closely
linked through the pp formulas and, as might then be expected, through asso-
ciated ideas, especially that of purity.

The close links are preserved if we generalise beyond modules in the usual
sense. If we allow rings with enough idempotents but perhaps not with a global
1, the corresponding modules include a wide range of types of additive struc-
tures; this is discussed below. By an additive structure we mean a possibly
many-sorted structure each of whose sorts has an abelian group structure and
such that any additional structure on and between sorts preserves this struc-
ture (which we write additively). Concretely - for any function symbol f in the
language, we insist that it is additive (by an axiom like f(a+ b) = f(a) + f(b))
and for any relation symbol R of the language, we insist that its solution set be
a subgroup (R(a) ∧R(b)→ R(a− b)).

2 Modules

A module is an abelian group M with a specified set, which we may assume to
be a ring R, of endomorphisms. This can be treated as a 2-sorted structure, with
a sort for module elements and a sort for ring elements, but the resulting model
theory becomes very complicated; it contains the model theory of modules in
the sense that we will describe here but it also contains the highly complex
model theory of rings. Much more tractable, and useful, is what we obtain if we
fix the ring R by introducing a function symbol for each element of R, and then
consider the (1-sorted) abelian groups M on which that ring acts. This, and
its generalisations to many-sorted modules1 (treated in Section 21), is additive
model theory, a field with its own character, where elementary embeddings are
replaced by pure embeddings and where saturated structures are replaced by
the, far more numerous, pure-injective modules, where pp formulas are the
important ones and where the space of types is replaced by the lattice of pp-
types.

Let us, therefore, fix a ring R (associative, with 1) and set up a language
for R-modules. This language, denoted LR, is the language for abelian groups
(say with a binary function symbol for addition and a constant symbol for the
0 element) augmented by, for each element of r ∈ R, a unary function symbol
µr used to represent multiplication by r.

To axiomatise R-modules we, of course, write down some axioms for abelian
groups, but then have to decide whether we want to deal with left or right
R-modules, these being distinguished by the axioms:
∀x (µr(µs(x)) = µrs(x)) in contrast to ∀x (µr(µs(x)) = µsr(x)).
In practice we use the natural notation rx, respectively xr, instead of µr(x),

depending on whether we are dealing with left or right modules. And we also
use

∑
as a handy abbreviation in formulas.

In this paper, by R-module we will mean right R-module unless otherwise
specified (because that fits with writing homomorphisms between R-modules on
the left).

1That is, modules where there is no ring sort but there are many module sorts. For the
reader who knows representations of quivers - these are naturally many-sorted, with one sort
for each vertex of the quiver.
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Let TR denote the theory of (right) R-modules, or some suitable set of axioms
for that. So the LR-structures which are models of TR are the right R-modules.
Denote by Mod-R the category whose objects are the right R-modules and
whose arrows are the homomorphisms - R-linear maps - between R-modules.
We also denote by mod-R the full subcategory of finitely presented (that is,
finitely generated and finitely related) R-modules.

Already two features of additive model theory have just come into view. One
is that it applies to the full algebraic category, not just the category which has
the elementary embeddings as its arrows. The other is that, because Mod-R is
a finitely accessible category, in particular every module is a directed colimit of
finitely presented modules, the model theory of R-modules is strongly reflected
in the category of finitely presented modules.

Throughout the paper, we deal with first-order, finitary model theory (though
we mention infinitary languages in Section 28.9). In particular, formulas are fi-
nite strings.

I cite rather few original sources here and will mostly use [69], and to a lesser
extent the older but more model-theory-directed [63], as a reference for proofs
of results. There one can find references to the original papers (which, for some
results with complex histories, are numerous) as well as a good deal of related
material. There are a number of existing accounts, surveys and introductions,
for instance: [43, Appx. 1], [44, Chpts. 6-8], [68], [94, Chpt. 15], as well the
“Background” sections of many papers in the area.

3 Positive primitive (pp) formulas

A positive primitive, or just pp, formula is an existentially quantified con-
junction of atomic formulas. These are also referred to as regular formulas.
Modulo the theory TR of R-modules, an atomic formula can be written in the
form

∑n
i=1 xiri = 0, where the xi are variables and the ri are (function symbols

for multiplication by) elements of R. So a typical pp formula has the form

∃y1, . . . , yl
( m∧
j=1

n∑
i=1

xirij +

l∑
k=1

ykskj = 0
)
.

It is convenient to use matrix notation for this, writing x for the 1×n matrix
(x1 . . . xn) and similarly for y, writing A for the n ×m matrix (rij)ij and B
for the l ×m matrix (skj)kj . Then the formula above becomes

∃y (x y)

(
A
B

)
= 0

or, writing H for the block-matrix

(
A
B

)
,

∃y (x y)H = 0.

This makes it clear that a pp formula is simply an existentially quantified
system of homogeneous R-linear equations. Since the solution set, in a module
M , of a system of homogeneous R-linear equations is a subgroup of the relevant
power of M (Mn+l in the formula above), the solution set of any existentially
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quantified version of this system is, being a projection to some coordinates,
again a subgroup of the relevant power of M (Mn in the formula above). If we
write φ(x) for the pp formula above, then

φ(M) = {a ∈Mn : ∃b ∈M l such that (a b)H = 0}

is the solution set of φ in M . It is referred to as a pp-definable subgroup of
M (more accurately, as a subgroup of Mn pp-definable in M).2 Easy examples
show that, unless R is commutative or a division ring, such a solution set need
not be a submodule of Mn. It is, however, an End(M)-submodule of Mn, where
the endomorphism ring, End(M), of M has the diagonal action on Mn.

More generally, pp-definable subgroups are preserved by homomorphisms.

Lemma 3.1. (see [69, 1.1.7]) If f : M → N is a homomorphism between R-
modules and φ is a pp-formula with n free variables, then the diagonal extension
of f to a homomorphism Mn → Nn restricts to a homomorphism φ(M) →
φ(N). In particular fφ(M) is a subgroup of φ(N).

The diagonal extension of f is the homomorphism which takes (a1, . . . , an) ∈
Mn to (fa1, . . . , fan) and fφ(M) denotes the image of φ(M) under this map.
So the above is the implication M |= φ(a)⇒ N |= φ(fa).

The simplest examples of pp formulas in one free variable are annihilation
xr = 0 and divisibility r|x, that is ∃y (x = yr), formulas. Over R = Z, pp
formulas do not get much more complicated than this, the general form for 1-
variable pp formulas being (see [63, §2.Z]) a conjunction of those of the form
pn|xpm where p is a prime integer or 0, but, over general rings, one needs pp
formulas with conjunctions of arbitrarily many equations in arbitrarily many
quantified variables (see, e.g., [90], [69, §2.4.1] but also cf. [90] and [69, §2.4]).

Notice that if φ, ψ are pp formulas in the same free variables with ψ → φ
(modulo the theory of R-modules) then, in every (right R-)module M , ψ(M) is a
subgroup of φ(M). Therefore one may consider the quotient group φ(M)/ψ(M)
and, given any integer t, there is a sentence σ in LR such that M |= σ iff
|φ(M)/ψ(M)| ≥ t. That is, one can use sentences in the language of R-modules
to express conditions on the cardinalities of such quotients of pp-definable sub-
groups. Of course a single sentence can only express a restriction involving a
finite cardinality and even an infinite set of sentences can express that such
a cardinality is infinite, but nothing about how infinite it is. Boolean com-
binations of such simple sentences as above, that is sentences expressing finite
restrictions on cardinalities of finitely many quotients of pp-definable subgroups,
are referred to as invariants statements.

4 Pp-elimination of quantifiers and the lattice
of pp formulas

Theorem 4.1. (see [63, §2.4]) Any formula in LR is equivalent, modulo the
theory of right R-modules, to the conjunction of an invariants statement and a
finite boolean combination of pp formulas.

2These have also, reflecting the multiple roots of this subject, been termed sous-groupes de
définition finie - see [37] - and matrizielle Untergruppen (this latter term allowing infinitely-
definable subgroups) - see [104].
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This also applies to formulas with parameters, but note that a pp formula
with parameters will be an existentially quantified, possibly inhomogeneous,
system of R-linear equations, hence its solution set will be empty or a coset
of the pp-definable subgroup which is the solution set of the corresponding
existentially quantified homogeneous system of R-linear equations.

Therefore, in any module M , every definable set is a finite boolean combi-
nation of (cosets of) pp-definable subgroups and hence every type is determined
by specifying which pp formulas are in it.

Corollary 4.2. If M is a module and p is a type, possibly with parameters,
modulo the theory of M , then p is equivalent, modulo that theory, to p+ ∪ ¬p−,
where p+ denotes the set of pp formulas in p and ¬p− = {¬ψ : ψ is pp and ¬ψ ∈
p}.

A pp-type3 is a set of pp formulas of the form p+ where p is some type.
For any tuple a from M , the set of pp-definable subgroups to which it belongs
forms a filter (is upwards closed and closed under finite intersection) in the
lattice, ppn(M), of subgroups of Mn pp-definable in M .

Denote by ppnR the set of pp formulas4, for right R-modules, in n free vari-
ables x1, . . . , xn. These are ordered by implication (modulo the theory of R-
modules) with x = 0 at the bottom and x = x at the top. Indeed this is a
modular lattice - the lattice of pp formulas (in n free variables, for right
R-modules), with meet being given by conjunction and join being given by

ψ(x) + φ(x) = ∃x′ x′′ (ψ(x′) ∧ φ(x′′) ∧ x = x′ + x′′).

Given a module M and an n-tuple a from M , the pp-type of a in M is the
set of pp formulas

ppM (a) = {φ ∈ ppnR : a ∈ φ(M)}

and this is a filter in ppnR. It is the case that every filter of pp formulas occurs
as a pp-type of some tuple in some module (see [69, 3.2.5]), so the pp-types are
exactly the filters of pp formulas.

Note that there is a lattice homomorphism ppnR → ppn(M), the homomor-
phism being simply evaluation (of a pp formula on M).

There is a very explicit criterion for implication between pp formulas.

Theorem 4.3. ([63, 8.10], see also [69, 1.1.13]) Let φ(x) be the pp formula
∃y (x y)Hφ = 0, and let ψ(x) be the pp formula ∃z (x z)Hψ = 0. Then ψ ≤ φ iff

there are matrices G =

(
G′

G′′

)
and K such that

(
I G′

0 G′′

)
Hφ = HψK

where I is the n × n identity matrix, n being the length of x, and where 0 is a
zero matrix.

3Here we use the term for types without extra parameters but, of course, the notion makes
sense if we add parameters to the language, in which case “subgroup” is replaced by “coset”.

4More accurately, the set of equivalence classes (modulo the theory of right R-modules) of
pp formulas, but we identify equivalent pp formulas without further comment.
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Throughout, by a pp-type we will mean the set of pp formulas in some
complete type without parameters, equivalently a filter in the lattice ppnR of pp-
n-formulas for some n. We will also tend to use notation such as p for pp-types
rather than for complete types (from now we will seldom have reason to refer
to the latter).

5 Complete elimination of quantifiers

Complete elimination of quantifiers is a strong condition. The characterisation
of those rings over which all modules have complete elimination of quantifiers
was found independently by many people. A ring R is (von Neumann) reg-
ular if it satisfies the condition that, for every r ∈ R there is s ∈ R such that
r = rsr, equivalently every embedding between R-modules is pure (for purity
see Section 10). The conditions here are 2-sided: if they hold for, say, right
modules then they hold for left modules. For the largest theory of R-modules,
see Section 7.

Theorem 5.1. (see [63, 16.16]) Every complete theory of R-modules has elimi-
nation of quantifiers iff the largest complete theory of R-modules has elimination
of quantifiers iff R is von Neumann regular.

In fact (von Neumann) regularity of R is also equivalent to the theory of R-
modules having elimination of imaginaries ([73, §5]). Both elimination of quan-
tifiers and elimination of imaginaries are completely language-dependent: essen-
tially they are the question of what (definable or interpretable) sorts must be
added to the language in order that every formula be equivalent to a quantifier-
free one (elimination of quantifiers) or every interpretable sort be definably
isomorphic to the solution set of a formula (elimination of imaginaries).

6 Stability and chain conditions on pp formulas

In order to show that every (complete theory of a) module is stable, we must
count types, equivalently, by pp-elimination of quantifiers, we must count pp-
types. A pp-type is a filter of cosets of pp-definable subgroups and each pp-
definable subgroup can be represented at most once in such a filter (cosets of
a given subgroup being equal or disjoint). Therefore, if κ = |R| + ℵ0 is the
cardinality of the set of formulas of LR, the number of pp-types over any set A
of parameters is bounded above by |A| × 2κ. Thus we have the first statement
below. The other parts are proved by making somewhat similar counts of types,
equivalently pp-types.

Theorem 6.1. (see [63, §3.1]) (i) Every module is stable.
(ii) A module M is superstable iff, given any descending chain φ1(M) ≥ φ2(M) ≥
· · · ≥ φi(M) ≥ . . . of pp-definable subgroups of M , there is j such that, for ev-
ery i ≥ j, the group φi(M)/φi+1(M) is finite (it is enough to require this for pp
formulas in one free variable).
(iii) A module M is totally transcendental iff M has the descending chain condi-
tion on pp-definable subgroups (again, it is enough to require this for pp formulas
in one free variable).
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For instance, Z is, as a module over itself, superstable but not totally tran-
scendental, Z(ℵ0) is not superstable, and every Prüfer group Zp∞ (p prime) is
totally transcendental, as is the direct sum Q/Z of all the Prüfer modules.

It follows that, if M is superstable, then either M is totally transcendental
or M (ℵ0) (≡ Mℵ0) is not superstable. In particular if there are no pairs of
pp-definable subgroups with one of finite index in (and not equal to) the other,
then there is no distinction between superstability and total transcendentality.
For example, if R is an algebra over an infinite field, then every superstable R-
module is totally transcendental, because every pp-definable subgroup is a vector
space over that field. Forming the module M (ℵ0) from M is an algebraically
rather trivial operation, and this indicates that superstability per se is less
meaningful algebraically than, for instance, total transcendentality (which is
indeed equivalent to the algebraic condition of being Σ-pure-injective, for which
see Section 12).

In this additive context, an algebraically more meaningful refinement of sta-
bility is the Krull-Gabriel dimension of (the complete theory of) a module. This
is defined in terms of the lattice of pp formulas (as usual, pp formulas in one
variable suffice). The original dimension of this kind - elementary Krull di-
mension [26] - defines the modules of elementary Krull dimension 0 to be the to-
tally transcendental modules - those with the descending chain condition on pp-
definable subgroups - and then proceeds inductively and transfinitely. Precisely
(see [63, §10.5]), an interval in pp1(M) is defined to have Krull dimension 0 if it
has the descending chain condition. Then, inductively, an interval [φ(M), ψ(M)]
in pp1(M) has Krull dimension α (an ordinal) if it does not have Krull dimension
< α, but if, for every descending chain φ(M) ≥ φ1(M) ≥ φ2(M) ≥ · · · ≥ ψ(M),
there is i such that each subsequent subinterval [φi+j(M), φi+j+1(M)] has Krull
dimension < α. We say that the elementary Krull dimension of M is α if that is
the Krull dimension of the lattice pp1(M). If there is no such α - this happens
exactly if the lattice pp1(M) has a densely ordered subchain - then we say that
the elementary Krull dimension of M is ∞, or undefined.

For example, Z, and equally Zℵ0 , has elementary Krull dimension 1 and any
Prüfer group Zp∞ has elementary Krull dimension 0.

A refinement of this dimension was introduced in [103]. This is referred
to as m-dimension in [63] and it turned out to be equal to Krull-Gabriel
dimension [30] which is an algebraic dimension defined in terms of localising
an associated category of functors. This dimension is slower-growing than el-
ementary Krull dimension, because the intervals of m-dimension 0 are defined
to be those of finite length. An inductive definition of m-dimension can be
given as for elementary Krull dimension, but it can alternatively be given in
terms of forming the quotient lattice obtained from pp1(M) by identifying all
points in any interval of finite length, and continuing that process inductively
and transfinitely (see [69, §§7.1, 7.2]). These dimensions coexist in the sense
that, although they grow at different rates, if one is defined then so is the other.

For example, both Z and Zp∞ have Krull-Gabriel dimension 1. In fact, every
abelian group has Krull-Gabriel dimension ≤ 2.
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7 Theories of modules

It follows from the pp-elimination of quantifiers theorem that every complete
theory of modules can be axiomatised by sentences of the form |φ(−)/ψ(−)| ∗ t
where t is a positive integer, where ∗ denotes ≤ or ≥ and where φ/ψ is a pp-
pair - meaning that φ and ψ are pp formulas in the same free variables and
ψ → φ modulo the theory of R-modules.

If φ is a pp formula and (Mi)i are modules then φ(
⊕

i Mi) =
⊕

i φ(Mi) and
similarly for products, so the invariants |φ/ψ| of a direct sum (or product) of
modules are the products of those of its components. In particular

|φ(M ⊕N)/ψ(M ⊕N)| = |φ(M)/ψ(M)| × |φ(N)/ψ(N)|.

So, if M is any module, then the invariants |φ(M (ℵ0))/ψ(M (ℵ0))| of the direct
sum M (ℵ0) of countably infinitely many copies of M are all either 1 (if φ/ψ is
closed on M , meaning if φ(M) = ψ(M)) or ∞ if φ/ψ is open (=not closed)
on M . It follows that, if every invariant of M is either 1 or ∞, then M ≡
M (ℵ0). Note also that the lattices of pp-definable subgroups of M and M (ℵ0)

are naturally isomorphic: ppn(M) ' ppn(M (ℵ0)), for every n. For such reasons,
it is, for many purposes, enough to know which pp-pairs are closed (and which
are open) on a module. That is, it is enough to work with theories satisfying
the condition that every invariant is 1 or∞ - this condition is denoted T = Tℵ0 .
For instance, if the ring R is an algebra over an infinite field, then every theory
of modules satisfies this condition.

Complete theories T satisfying T = Tℵ0 are naturally ordered by T ′ ≤ T
iff φ/ψ closed on T implies φ/ψ is closed on T ′. The theory of the module 0
is the least element in this ordering and the top element (that theory in which
every pp-pair open on some module is open, and the corresponding quotient is
infinite) is referred to as the largest (complete) theory of (right R-)modules.
This ordering is described algebraically by Th(M ′) ≤ Th(M) iff M ′ is a direct
summand of some M1 ≡M , see [63, §2.6]. So every module is a direct summand
of some model of the largest complete theory of modules. This ordering is also
the same as the ordering on supports of modules (for these see Section 12):
Th(M ′) ≤ Th(M) iff supp(M ′) ⊆ supp(M).

If M is any module then Add(M) - the class of modules which are direct
summands of direct sums of copies of M - is arguably the simplest class of mod-
ules constructed from M . We take account of forming direct sums (equivalently,
direct products5) by concentrating on theories satisfying T = Tℵ0 . We can take
account of direct summands by concentrating on those theories which specify
only which pp-pairs must be closed (in particular, which do not specify that
any pp-pairs must be open). Of course, such theories are incomplete, but the
classes of models of such theories - the definable subcategories (see Section 13)
- are algebraically more natural than the class of models of a complete theory
see, e.g. [18].

That is, to each complete theory T satisfying T = Tℵ0 we associate the
incomplete theory which is (the deductive closure of) the set of all sentences of
the form φ(−) = ψ(−) which are in T . Then the models of the latter theory are

5For any set {Mi : i ∈ I} of modules, the modules
⊕

i∈I Mi and
∏

i∈I Mi are elementarily
equivalent.

9



the direct summands of models of T . The inverse process is: given any set of
pp-pairs and the incomplete theory which is (the deductive closure of) the set of
sentences saying that all these pairs are closed, we take the largest theory (in the
sense above) of a model of these sentences. This puts in bijection the complete
theories with class of models closed under (finite, hence arbitrary) direct sums
and the incomplete theories with class of models closed under direct sums and
direct summands. Algebraically, and perhaps also from the viewpoint of regular
logic6, it is the latter which are more natural.

8 Classification of models

For totally transcendental modules there is a very simple classification theorem.

Theorem 8.1. (see [63, §4.6]) Suppose that M is a totally transcendental mod-
ule. Then M , and every model of Th(M), is a direct sum of indecomposable7

modules, the factors being uniquely determined up to isomorphism and multi-
plicity. These indecomposables fall into four sets:
1) those which occur (i.e. occur as direct summands in a direct-sum decomposi-
tion) a fixed and finite number of times in the decomposition of each model of
Th(M);
2) those which must occur at least once in each model of Th(M) but with no
other restriction;
3) those which must occur infinitely many times in each model of Th(M);
4) those which occur in some, but not every, model of Th(M).

The models of Th(M) are the direct sums of indecomposables in these sets
which conform with the requirements on each set.

For an example, we may take the abelian group Z3
2∞⊕Z

(ℵ0)
3 where the factor

Z2∞ is of the first type, the factor Z3 is of the third type and the module Q is of

the fourth type. Thus the models of this theory have the form Z3
2∞⊕Z(λ)

3 ⊕Q(κ)

where λ is any infinite cardinal and κ is any cardinal. And, over the polynomial
ring R = Q[x], the module M which is the injective hull of the module R/xR
is itself a factor of the second type (and the ring Q(x) of rational functions is a
factor of the fourth type for models of Th(M)).

For more general modules one can look for a classification result along these
lines but will find one only on the pp-saturated = pure-injective modules (Sec-
tion 10). That will be a generalisation since every model of a totally tran-
scendental theory of modules is pure-injective, indeed this characterises that
property. There is a general structure theorem for pure-injectives and, in the
best cases, in particular if M has Krull-Gabriel dimension, there will be no
superdecomposable8 pure-injective direct summands of models, yielding a clas-
sification result for the pure-injective models of Th(M) somewhat analogous to
the result above (see [63, 10.24], also Section 12 below).

As a consequence of these general structure theorems, most effort on clas-
sification is focussed on the Ziegler spectrum (Section 12): on describing its

6That is, the logic based on regular=pp formulas, see [14], [57].
7We say that a nonzero module M is indecomposable if M = M ′ ⊕M ′′ implies M ′ = 0

or M ′′ = 0.
8A nonzero module is superdecomposable if it has no indecomposable direct summand.
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points (the indecomposable pure-injective modules) and its topology (the clo-
sure relations between sets of pp-pairs). Description of the points is typically a
(highly non-trivial) extension, to infinite-dimensional modules, of existing alge-
braic classification projects, and description of the topology often fits well with
questions about morphisms between modules. Some examples are [21], [36],
[39], [56], [67], [78], [56], [86], [87], [93].

9 Finitely generated pp-types and finitely pre-
sented modules

A pp-type p is finitely generated if there is a pp formula φ such that p =
{ψ pp: φ → ψ} where → means implication modulo the theory of R-modules.
In this case one says that φ generates p. That is, a finitely generated pp-type
is a principal filter in the lattice ppnR of pp formulas (for some n). The pp-part
of any principal type will be finitely generated but the converse is far from being
true: for instance the pp-type of 1 ∈ Z is finitely generated but its complete
type is non-principal.

Note that, if a is a tuple from some module M , then, for the pp-type of a
in M , ppM (a) = {φ pp : M |= φ(a)}, to be finitely generated, it is not enough
that it be finitely generated modulo Th(M), that is, it is not enough that it be
a principal filter in ppn(M). For example, if R = Z, M = Q and a = 1 ∈ Q,
then pp1(Q) contains just two elements (all nonzero elements have the same
(pp-)type), so ppQ(1) is finitely generated modulo the theory of Q, but it is
not a finitely generated pp-type. One has to prove the latter but it follows, of
course, because this pp-type contains, and essentially consists of, the infinitely
many divisibility pp formulas ∃y (yn = x) for n ∈ Z, n 6= 0.

Proposition 9.1. (see [69, 1.2.6]) If M is a finitely presented module and a is
an n-tuple from M , then ppM (a) is a finitely generated pp-type.

The proof consists of taking any finite generating set for M , then choosing
a finite generating set of linear relations between these generators and writing
a as a linear combination of these generators. The resulting pp formula which,
modulo the theory of R-modules, generates ppn(a) has the form

∃y (θ(y) ∧ x = y · r),

where θ is a conjunction of R-linear equations, r is an n-tuple of elements of R
and y · r means

∑n
i=1 yiri.

Proposition 9.2. (see [69, 1.2.14]) If p is a finitely generated pp-type for the
theory of R-modules, then there is a finitely presented R-module M and a tuple
a of elements of M such that ppM (a) = p.

That is, every finitely generated pp-type is precisely realised in some finitely
presented module. A free realisation of a pp formula φ is (C, c) where C is
a finitely presented module and c is a tuple from C such that the pp-type of
c in C is generated by φ. So the above result says that every pp formula has
a free realisation. And the result before that says that, if a is a finite tuple
in a finitely presented module M , then (M,a) is a free realisation of any pp
formula which generates ppM (a). Free realisations are far from unique (though
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sometimes there is a minimal one) but they do have a nice universal property,
which explains the term “free realisation”.

Proposition 9.3. (see [69, 1.2.17]) Suppose that (C, c) is a free realisation of
a pp formula φ. Then, given any module M and tuple a with M |= φ(a), there
is a homomorphism f : C →M with fc = a.

For instance, if R is any ring and r ∈ R, then (R, r) is a free realisation of the
formula r|x. If M is any R-module and a ∈Mr then there is a homomorphism
R→M taking r to a.

There is a somewhat analogous result, see Section 10, for arbitrary modules
in place of C but, for the conclusion there, we need to assume a complete-
ness/compactness property on M , namely that M is pure-injective.

10 Purity

Given the pp-elimination of quantifiers theorem, the following definition is a
natural analogue of that of elementary embedding.

A submodule M of a module N is pure if, for every tuple a from M , and
pp formula φ9, we have M |= φ(a) iff N |= φ(a). Clearly the direction ⇒ holds
for any inclusion, indeed for any homomorphism, so pure embeddings are the
morphisms that reflect pp-formulas. Note that an alternative formulation of the
condition is that ppM (a) = ppN (a). Of course we extend the terminology to
monomorphisms in the obvious way (f : M → N is a pure embedding if it is
monic and fM is a pure submodule of N).

This concept has many alternative and equivalent definitions, see e.g. [69,
§2.1]; it was defined for abelian groups by Prüfer [83] and over general rings by
Cohn [16].

A module N is pure-injective if, given any pure embedding f : M → M ′

and any homomorphism g : M → N , there is g′ : M ′ → N such that g′f = g.
A module N is algebraically compact if every pp-type with parameters in N
has a solution in N .

Theorem 10.1. (see [69, 4.3.11]) A module is pure-injective iff it is alge-
braically compact.

We will use the first term.

For example, any injective module is pure-injective. If R is a K-algebra
where K is a field, then any R-module which is finite-dimensional over K is
algebraically compact, hence pure-injective. The indecomposable pure-injective
abelian groups were determined by Kaplansky [45] and they are, as p ranges
over positive primes and n over positive integers: the indecomposable finite
abelian groups Zpn = Z/pnZ; the p-adic integers Z(p); the Prüfer groups Zp∞ ;
the rationals Q. The Pontryagin dual M∗ = HomZ(M,Q/Z) of any right R-
module M is a pure-injective left R-module.

Proposition 10.2. (see [69, 4.3.9]) Suppose that M is any module and a is a
finite tuple from M . If N is a pure-injective module and b a tuple from N such
that ppM (a) ⊆ ppN (b), then there is a homomorphism f : M → N with fa = b.

9In fact, it is enough to require this for pp formulas in one free variable.
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The pure-injective modules, being the pp-saturated ones, play a role in the
model theory of modules very similar to that played by saturated structures
in the general case. But there are many more pure-injective modules than
saturated modules.

We say that a pure-injective hull (or pure-injective envelope) of a
module M is a pure embedding into a pure-injective module H(M) which is
minimal in the sense that there is no proper direct summand ofH(M) containing
M . The same term is used for the module H(M).

Theorem 10.3. (see [69, 4.3.18]) Every module M has a pure-injective hull
H(M). Moreover, any two such hulls are isomorphic over M : if f : M → N
and f ′ : M → N ′ are pure-injective hulls of M , then there is an isomorphism
g : N → N ′ such that gf = f ′.

For instance the pure-injective hull of the localisation Z(p) of Z at a prime p

is its completion, Z(p), in the p-adic topology - the module of p-adic integers.

Theorem 10.4. ([95], see [63, 2.27]) Every module M is an elementary sub-
structure of its pure-injective hull: M ≺ H(M).

Thus every module has a minimal pp-saturated elementary extension.

11 Hulls of elements and pp-types

The hull of a pp-type is a minimal pure-injective module in which that pp-type
is realised. This is a somewhat subtle concept, not least because, a priori, it is
not clear that such a module will exist. The key algebraic result on which this
depends is the following.

Theorem 11.1. ([24], [46], see [69, 4.3.33]) Suppose that N is a pure-injective
module and that A is a submodule of N . Then there is a (necessarily pure-
injective) direct summand H(A) of N which is minimal such containing A.
If N ′ is any other direct summand of N which contains A, then there is an
endomorphism f of N which fixes A pointwise and such that fH(A) is a direct
summand of N ′.

In particular H(A) is unique up to isomorphism over A.

We refer to H(A) as the hull of A in N . This notation is compatible with
the earlier use of H(M) for the pure-injective hull of M since, if A is purely
embedded in N , then H(A) will be a copy of the pure-injective hull of A. But
this notion of hull of A does depend on the ‘context’ - the embedding of A in N
- not just on the isomorphism type of A. To obtain the pure-injective hull of A
we take the ‘context’ N to be any pure-injective in which A is purely embedded
(for instance the double dual A∗∗ of A).

In fact it can be checked that H(A) depends only on the pp-type, ppN (A),
of A in N , in the following sense.

Theorem 11.2. (see [69, 4.3.35]) Suppose that N and N ′ are pure-injective
modules (which we may assume to be equal), that A, A′ are subsets (without
loss of generality, submodules10) of N , N ′ respectively, and that there is a map

10Since each element of the submodule generated by a set is definable over that set.
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f0 : A → A′ such that ppN (A) = ppN
′
(A′) via this map (which must therefore

be a bijection, indeed an isomorphism if A,A′ are submodules).
Then there is an extension of f0 to a morphism f : N → N ′. If we choose

a copy of H(A) which is a direct summand of N and a copy of H(A′) which is
a direct summand of N ′, then there is such a morphism f which maps H(A)
isomorphically to H(A′).

Note that, in the above, we may assume that N = N ′ since we can replace
each by N ⊕N ′. That does not change the pp-types of A and A′; of course, in
general it changes their complete types but pp-types have less dependence on
‘context’ than complete types. This is a subtle point and perhaps contributes
to hulls of types being under-appreciated11.

Given the above, if p is any pp-type (possibly of an infinite tuple), we define
the hull of p to be a pure-injective module H(p) containing a realisation of p -
a tuple a in H(p) such that ppH(p)(a) = p - which is minimal such in the sense
that no proper direct summand of H(p) contains a. The above results imply
that this exists and is unique in that if a′ in N is another hull of p then there
is an isomorphism from H(p) to N taking a to a′. The extension of hulls to
pp-imaginaries (see Section 23) is described in [51].

We say that a pp-type is irreducible12 (or indecomposable) if its hull is
an indecomposable module. Since every indecomposable pure-injective is the
hull of at least one pp-type in 1 free variable, it follows that there is just a set
of indecomposable pure-injective R-modules up to isomorphism.

12 Pure-injectives and the Ziegler spectrum

There is a structure theorem for pure-injective modules.

Theorem 12.1. (see [69, 4.4.2]) If N is a pure-injective module then N =
H(
⊕

i Ni)⊕Nc where each Ni is indecomposable pure-injective and Nc is 0 or
a superdecomposable pure-injective - meaning that Nc has no indecomposable
direct summands.

Furthermore, this decomposition is essentially unique - the summands, with
multiplicities, are determined up to isomorphism.

We need the “H” in the above because a direct sum of infinitely many
pure-injectives need not be pure-injective. A pure-injective module N such that
N (ℵ0), and hence N (κ) for any cardinal κ, is pure-injective, is said to be Σ-
pure-injective. These are, in fact, the totally transcendental modules and, as
mentioned in Section 6, they are characterised as those having the descending
chain condition on pp-definable subgroups (see [63, 2.11], [69, §4.4.2]). Finite
direct sums of pure-injective modules are pure-injective, as are direct summands
of pure-injective modules.

Over many rings (in particular over Z) there are no superdecomposable pure-
injectives. In any case, there are always indecomposable pure-injectives, indeed
the indecomposables control the model theory.

11Judging by the strong results which have been proved using hulls of types compared with
the small number of people who have used these hulls.

12This term is chosen because pp-types generalise right ideals so this is the corresponding
generalisation of the notion of a (meet-)irreducible right ideal.
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Theorem 12.2. ([103], see [63, 4.36]) Every module is elementarily equivalent
to a direct sum of indecomposable pure-injectives.

This leads to the definition of the Ziegler spectrum ZgR for (right) R-
modules. This is the topological space whose points are the isomorphism classes
of indecomposable pure-injectives - let pinjR denote the set (it was noted above
that this is a set) of these - and whose open sets are the unions of sets of the
form

(φ/ψ) = {N ∈ pinjR : φ(N) > ψ(N)}

as φ/ψ ranges over pp-pairs (recall that these are pairs φ, ψ of pp formulas in
the same free variables with ψ → φ). In fact, pp-pairs in one free variable are
enough to give a basis of open sets for the topology.

To each module M , we associate its support:

supp(M) = {N ∈ pinjR : N is a direct summand of some M ′ ≡M}.

This is a closed subset of ZgR and every closed subset of ZgR has this form
for some M ([103], see [63, §4.7], also [69, §5.1]). Of course supp(M) is an
invariant of Th(M), so we may write supp(T ) for this, where T = Th(M) is the
complete theory of M . It is easy to show that supp(Tℵ0) = supp(T ), in fact
supp(T ) ⊆ supp(T1) iff every model of T is a direct summand of a model of Tℵ01

that is, if Add(Mod(T )) ⊆ Add(Mod(T1)).
Since every closed subset of ZgR is the support of some module, we have that

the association of complete theories to closed subsets of the Ziegler spectrum is a
bijection if we restrict to those complete theories T satisfying T = Tℵ0 (which,
over many rings, for instance algebras over an infinite field, is all complete
theories of their modules).

The closed subsets of ZgR also parametrise certain incomplete theories which,
as already discussed, are more algebraically natural than the class of models of
a complete theory of modules, namely they parametrise the elementary classes
of modules which are closed under direct sums and direct summands. These are
the definable subcategories (of the category of modules), which we discuss next.

13 Definable subcategories

Given a set Φ = {φi ≥ ψi : i ∈ I} of pp-pairs we consider the class

{M ∈ Mod-R : φi(M) = ψi(M)∀i ∈ I}

of modules where each of these pp-pairs is closed (meaning that the two pp-
formulas are equivalent on M , that is, the pair (φi, ψi) is in the kernel of the
evaluation map ppnR → pp(M) for appropriate n). A class of modules arising in
this way is referred to as a definable class of modules, and the full subcategory
of Mod-R on that class is a definable subcategory of the category of R-
modules. These classes of modules have various characterisations, including
those below, where, recall, if C is a class of modules, then Add(C) denotes the
closure of C under arbitrary direct sums and direct summands.

Theorem 13.1. (see [69, 3.4.7]) The following are equivalent for a class D of
R-modules which is closed under isomorphism.
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(i) D is definable;
(ii) D is an elementary class of modules satisfying D = Add(D);
(iii) D is closed in Mod-R under finite direct products, directed colimits and
pure submodules;
(iv) D is closed in Mod-R under arbitrary direct products, directed colimits and
pure submodules.

We denote by 〈M〉 the definable subcategory of Mod-R generated by M (the
full subcategory on the smallest definable subclass of Mod-R which contains
M). Every definable subcategory is generated in this sense by some module, for
instance by the direct sum of the indecomposable pure-injective modules in it.

The previously-mentioned natural bijection between the definable subclasses
of Mod-R and the closed subsets of the Ziegler spectrum is given by

D 7→ D ∩ pinjR

and
C ⊆ pinjR 7→ {M ∈ Mod-R : supp(M) ⊆ C}.

This is order-preserving (both sets being ordered by inclusion). We define the
Ziegler spectrum of D to be the corresponding closed subset of ZgR, con-
sisting of the indecomposable pure-injectives in D, with the induced topology,
denoting it by Zg(D). As remarked at the end of this section, this is an invariant
of the category D and does not depend on the embedding of D as a definable
subcategory of some module category.

Below are a few examples which hint at the breadth of this concept. It is
these definable subcategories - the full subcategories of Mod-R with objects the
modules in a definable subclass - which are algebraically more natural than the
classes of models of a complete theory (because forming direct sums and taking
direct summands of modules are useful and algebraically innocuous operations).
If one allows the ring R to be replaced by a skeletally small preadditive category
- equivalently a ring with many objects - that is, if we allow many-sorted R-
modules (see Section 21), then the examples are even broader.

Examples 13.2. 1) If M is any R-module of finite length over its endomorphism
ring then (see [69, 4.4.30]) the definable subcategory 〈M〉 of Mod-R that it
generates is exactly Add(M) - the direct summands of direct sums of copies of
M . Equivalently, if M = N1 ⊕ · · · ⊕Nt with each Ni indecomposable, then the

modules in Mod-R are those of the form N
(κ1)
1 ⊕· · ·⊕N (κt)

t for cardinals κi ≥ 0.
Indecomposable infinitely generated such modules (“generic modules”) play an
important role in the structure of module categories, see [17].

2) The torsionfree abelian groups form a definable subcategory of Mod-Z but the
torsion abelian groups do not (since they are not closed under direct products).

3) If p is a prime then the category of modules over the localisation Z(p) at
p is a definable subcategory of Mod-Z, but the category of modules over the
completion Z(p) is not, since it is not closed under pure submodules.

4) The category of reduced abelian groups (those Z-modules M satisfying the
condition

⋂
n∈Z+ Mn = 0) is not a definable subcategory since it is not closed

under directed colimits (Q is the colimit of a directed system of embeddings
between copies of Z).
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5) Under suitable finiteness conditions on a ring, various classes of homologically-
defined modules are definable. For instance, see [69, §3.4.3], the injective right
R-modules form a definable class iff R is right noetherian, the larger class of
absolutely pure = fp-injective modules13 is definable iff R is right coherent and
that is also exactly the condition for the class of flat left R-modules to be defin-
able.

6) If L is a finitely presented left module then there is a pp-pair φ/ψ such that,
for every right module M , we have M ⊗R L ' φ(M)/ψ(M). Here the isomor-
phism is actually a natural equivalence between the functor − ⊗R L and the
functor (see Section 23) from right R-modules to abelian groups which is given
on objects by M 7→ φ(M)/ψ(M). Similarly if A is a finitely presented right
R-module then M 7→ HomR(A,M) is given by a pp-pair. Each of these results
generalises to the derived functors TorRi (L,−) and ExtiR(A,−) provided L, A
satisfy a suitable strengthening (FPi+1 to be precise) of the finitely presented
condition (see [69, §4.4.6]). In particular the kernels of these homological func-
tors are, if the modules A and L are suitably nice, definable subcategories. This
is the basis (see [69, §18.2.3]) of applications in tilting (and related) theory.

In fact, but we do not detail this here, it is the definable categories which
are the natural contexts for additive model theory. In particular the natural
language and the theory of the modules in a definable subcategory D of Mod-R
is intrinsic to D, as therefore is its Ziegler spectrum Zg(D), in the sense that
all this can be recovered purely from the category-theoretic structure of D (see
[71, Chpt. 12]). From this point of view, the class of torsion abelian groups,
being finitely accessible (see Section 22) and having products, is a definable
category, though we have to use a multisorted language and realise it as a
definable subcategory of the category of modules over a ring with many objects.
But, of course, the embedding of the category of torsion abelian groups into
Ab = Mod-Z is not an embedding as a definable subcategory.

14 The largest theory of modules

A module M is a model of the largest theory of R-modules (see Section
7 above, also [63, §2.6]) if, for every pp-pair φ ≥ ψ with φ not equivalent
(modulo the theory of R-modules) to ψ, we have φ(M) > ψ(M) and the quotient
φ(M)/ψ(M) is infinite. Equivalently, supp(M) = pinjR and M ≡M (ℵ0).

Note that this largest theory of R-modules is indeed a complete theory by
pp-elimination of quantifiers. It is largest also in the sense that, for any module
M , there is a module M ′ such that M ⊕M ′ is a model of the largest theory of
R-modules.

If M is a model of the largest theory of modules, then M exhibits, in many
senses, the full complexity of the model theory of R-modules. For instance
the morphism ppnR → ppn(M) is an isomorphism. Therefore, if M has Krull-
Gabriel (or elementary Krull) dimension α then this is an upper bound on the
values of this dimension among all R-modules. In particular, if M is totally

13A module is absolutely pure if it is a pure submodule of an injective module, equivalently
if every embedding with it as domain is a pure embedding. As the alternative name suggests
there is an equivalent homological definition.
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transcendental, then so is every R-module14 and M attains the maximum value
of Morley rank for right R-modules.

The journey from the model theory of modules to more general additive
model theory begins by replacing the definable category generated by a model of
the largest theory of R-modules (that is, the category Mod-R) with the definable
category generated by an arbitrary module. Once in that smaller category, one
realises that all its model theory is intrinsic - there is no need to refer back to
the surrounding module category (though of course it might be convenient to do
so). The process of moving to the smaller category is localisation, figuratively
but in some senses also literally, see Section 24. If one also moves to a more
general starting point by allowing the ring R to be replaced by some skeletally
small preadditive category, that is a ‘ring with many objects’, then localising
gives the general notion of a definable category. One can argue that this is the
“correct” notion in the additive context on the basis of a 2-category equivalence
between, on the one hand, the 2-category of definable additive categories and
interpretation functors between them and, on the other hand, the 2-category of
skeletally small abelian categories and exact functors between these, see [72].

15 Interpretations and interpretation functors

In the context of modules and other additive structures, it is natural to require
that the addition should be preserved when interpreting one structure within
another. That condition forces the interpreting formulas to be pp formulas (for
the precise result see [13, 2.1]). In particular if R and S are rings and we want
to interpret (some) S-modules within (some) R-modules, then the data of an
interpretation are as follows:
• a pair φ(x) ≥ ψ(x) of pp formulas in LR in, say, n free variables;
• for each s ∈ S a pp formula ρs(x, x

′) with x and x′ being tuples of length n.
Then, given M ∈ Mod-R, we consider the abelian group φ(M)/ψ(M). For

each s ∈ S the condition that ρs(x, x
′) well-define a total function (necessarily

an additive homomorphism) from φ(M)/ψ(M) to itself is the condition that a
certain pp-pair in LR be closed. If we let D denote the definable subcategory of
Mod-R given by closure of all these pp-pairs, then every M ∈ D interprets an
S-module, namely that with underlying abelian group φ(M)/ψ(M) and with
the action of s ∈ S being given by ρs.

Thus the above data define an interpretation of certain S-modules within
certain R-modules, namely each R-module M ∈ D interprets an S-module, as
above (see, e.g., [71, Chpt. 25] or [66] for more detail).

In fact the assignment from M to the interpreted S-module is an additive
functor from D to Mod-S. (The image of this functor need not be a definable
subcategory of Mod-S but its closure under pure submodules will be defin-
able, [72, 3.8].) It turns out that such interpretation functors have a purely
algebraic characterisation; we state this is a somewhat general form (in the for-
mulation below C is Mod-S or, if we prefer, we could take C to be the definable

14This is equivalent to the condition that every right R-module is pure-injective. It is an
open question - the pure-semisimplicity conjecture - whether this implies that every left R-
module is totally transcendental, equivalently whether it implies that every right R-module
has finite Morley rank.
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subcategory of Mod-S which is the closure of the image of the interpretation
functor under pure submodules).

Theorem 15.1. ([71, 25.3]) Suppose that C and D are definable categories and
that I : D → C is an additive functor. Then I is an interpretation functor (in
the sense above) iff I commutes with direct products and directed colimits.

This is actually part of the more general theory of regular categories and
categories of models of regular theories (for which see, for instance, [57], [14]).

Given a pp-pair φ/ψ in the language for right R-modules, the functor M 7→
φ(M)/ψ(M) is an interpretation functor from Mod-R to Ab. If R is commuta-
tive, then each pp-definable subgroup is naturally an R-module so, in this case,
such a functor is actually an endofunctor of Mod-R.

Many, many interpretation functors occur in the representation theory of
algebras; see, for instance, [35], [75, §8], [69, 18.2.4], [71, Chpt. 25], [77, §6]
for some examples which are presented as such; there are many more, for in-
stance representation embeddings, in the literature which are presented purely
algebraically but which are clearly interpretation functors.

16 Rings of definable scalars

If M is an R-module, then the action of each element r ∈ R is, of course,
definable by a pp formula ρ(x, y) (namely y − xr = 0) but there may be other
pp-definable actions. For instance, if M is the Prüfer group Zp∞ , and n is an
integer coprime to p, then multiplication by n is invertible on M and clearly the
inverse map is pp-definable. Indeed this Prüfer group has the natural structure
of a module over the localisation Z(p) of Z at p and the action of each element
of this ring is pp-definable on M . (There is also a natural action of the p-adic
integers but those actions are definable using pp-types rather than pp formulas.)

The ring of definable scalars of an R-module M is the ring of pp-definable
(in LR) actions on M ; more formally, it is the set of equivalence-on-M classes of
pp formulas which well-define a total function on M . The addition is pointwise
addition and the multiplication is composition of functions. Note that this
depends only on Th(M), indeed, each of these actions is pp-definable (by the
same formula) on every module in the definable subcategory 〈M〉 generated by
M . Thus, to every closed subset X of the Ziegler spectrum ZgR, we have a ring
RX , indeed a ring homomorphism R → RX , such that every module M with
support contained in X is naturally and definably (by formulas of LR, modulo
the theory of right R-modules) a right RX -module.

If this looks a little like localisation (of a ring), then that impression is
correct. Indeed every classical localisation of a ring R occurs in this way, see
[69, §6.1.3]. More generally every epimorphism of rings from R occurs in this
way, see [69, 6.1.8]; but not every R → RX need be an epimorphism of rings,
see [69, 6.1.13]. To be clear, this means that if R → S is an epimorphism of
rings15 then the model theory of S-modules is contained in the model theory
of R-modules. In particular universal localisations are ring epimorphisms and,
for instance, Herzog showed in [41] that the ring of definable scalars associ-
ated to the finite-dimensional representations of the Lie algebra sl2(k), for k an

15Which is much more general than a surjection of rings!
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algebraically closed field of characteristic 0, is von Neumann regular and is a
universal localisation of the enveloping algebra of sl2(k).

Here is a general result relating rings of definable scalars to localisation.

Theorem 16.1. (see [69, 4.3.44]) Suppose that N is an indecomposable pure-
injective right module over the ring R. Let Z(R) denote the centre of R. Then
the set P = {r ∈ Z(R) : r acts non-invertibly on N} is a prime ideal in Z(R)
and N is naturally and pp-definably a right module over the central localisation16

of R at P .
In particular, if R is commutative, then every indecomposable pure-injective

R-module is a module over a localisation of R at some prime ideal.

17 Elementary duality

If the ring R is commutative then the categories Mod-R and R-Mod of right and
left modules are equivalent. If R is not commutative, they may be very different;
for example a ring might be right artinian but not even left noetherian, so the
structure of its right and left (even finitely generated) modules will be very
different.

There are, however, various kinds of dualities that connect left and right
modules. In particular, if we define, for any module M , its (character-, or
Pontryagin-) dual module to be

M∗ = HomZ(M,Q/Z)

then, ifM is a right, respectively left, R-module, M∗ has a natural left, resp. right,
R-module structure. Certainly not every module is a dual - in fact every mod-
ule of the form M∗ is pure-injective (see [69, 4.3.29]) - but the natural map
M →M∗∗ is a pure, indeed elementary, embedding, so M and M∗∗ are elemen-
tarily equivalent.

For example (Zp∞)∗ = Z(p) and (Z(p))
∗ = Zp∞ ⊕Q(2ℵ0 ).

Model-theoretic duality between left and right modules works at various
levels. First, at the level of formulas.

Let φ(x) be a pp formula for right R-modules, say

∃y (x y)

(
G
H

)
= 0.

We define the (elementary) dual of φ to be the pp formula Dφ(x) which is

∃z
(
In G
0 H

)(
x
z

)
= 0

for left R-modules (where, of course, x now should be read as a column vec-
tor). In the other direction, from pp formulas for left modules to their dual pp
formulas for right modules, we just use the transpose of this definition.

Theorem 17.1. (see [69, §1.3]) For every pp formula φ, DDφ is equivalent
to φ (modulo the theory of R-modules). Moreover, ψ → φ iff Dφ → Dψ,
D(φ ∧ ψ) = Dφ+Dψ and D(φ+ ψ) = Dφ ∧Dψ.17

16That is, invert all elements of Z(R) \ P .
17Here, “=” means “are equivalent”.
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That is, for every n, elementary duality is a lattice anti-isomorphism between
ppnR and ppnRop (the latter denotes the lattice of pp formulas in n free variables for
left R-modules = right Rop-modules). Therefore, for example, the largest theory
of right R-modules has Krull-Gabriel dimension α iff this is so for the largest
theory of left R-modules (because the Krull-Gabriel dimension of a lattice, as
opposed its elementary Krull dimension, is equal to that of the opposite lattice).
Note that this gives us an alternative standard form for pp formulas: if φ(x) is

∃y (x y)

(
G
H

)
= 0

then its dual has the form

∃z (x = Gz ∧Hz = 0).

Since every pp formula is a dual pp formula, a typical pp formula can be written
in the form

∃y (x = yG ∧ yH = 0),

that is, every pp formula is a ‘generalised divisibility formula’.
There is the following nice criterion (“Herzog’s criterion”), in terms of pp

formulas and their duals, for an element of the tensor product of a right and a
left module to be 0.

Theorem 17.2. ([40], see [69, 1.3.7]) Let M be a right R-module, L a left
R-module, a ∈ Mn, l ∈ Ln. Then a ⊗R l = 0 (that is

∑n
i=1 ai ⊗ li = 0) in

M ⊗R L iff there is a pp formula φ(x) such that M |= φ(a) and L |= Dφ(l).

Related to this is the next result which connects this model-theoretic duality
with the algebraic duality seen before.

Theorem 17.3. (see [69, 1.3.12]) Suppose that M is a right R-module and let
M∗ be its dual left R-module. Let φ be a pp formula for left R-modules, with n
free variables. Then

φ(M∗) = annM∗(Dφ(M))

where, for X ⊆Mn,

annM∗(X) = {f ∈ (M∗)n :

n∑
i=1

fi(ai) = 0 for every a ∈ X}.

Elementary duality extends further.

18 Duality of theories and Ziegler spectra

The right and left Ziegler spectra of any ring R are homeomorphic at the level
of topology, meaning that the complete Heyting algebra of open subsets of ZgR
is isomorphic to that of RZg (= ZgRop) ([40], see [69, §5.4]). The isomorphism
takes the basic open subset (φ/ψ) of ZgR to the basic open subset (Dψ/Dφ)
of RZg. It is not known whether there is always a homeomorphism at the level
of points. That is, can we, canonically or otherwise, associate to any indecom-
posable pure-injective right R-module N an indecomposable pure-injective left
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R-module DN such that N ∈ (φ/ψ) iff DN ∈ (Dψ/Dφ)? For countable rings
(see [69, 5.4.6]), for rings whose largest theory of modules has Krull-Gabriel di-
mension (see [69, 5.4.20]), and under various other conditions (see [69, 5.4.11]),
this is so, but it is not known in general.

If R is commutative then this gives an endo-homeomorphism, at the level of
topology (that is, on the lattice of open sets) and often at the level of points,
on ZgR. In the case R = Z, this interchanges the p-Prüfer group and p-adic
integers for each prime p and fixes every other point.

Since definable subcategories correspond bijectively to closed subsets of the
Ziegler spectrum, this means that there is a natural, inclusion-preserving, bijec-
tion between definable subcategories of Mod-R and those of R-Mod. We denote
the dual definable subcategory of D by Dd; we have Ddd = D. Algebraically,
Dd is the class of pure submodules of modules of the form M∗ with M ∈ D, see
[69, 3.4.17].

For instance, if R is right coherent, then the classes of right absolutely pure
modules and left flat modules are dual definable subcategories (see [69, 3.2.24])

In fact, [40], this duality can be refined to give a natural bijection between
complete theories of right R-modules and complete theories of left R-modules
(supports of modules correspond as just described and, in fact, finite indices also
correspond, the axiom |φ(−)/ψ(−)| ≥ k corresponding to |Dψ(−)/Dφ(−)| ≥ k.)
Of course, we denote the dual of a (complete) theory T by DT .

As one might anticipate, the theories of the p-Prüfer group and the p-adic
integers are dual.

19 Elementary cogenerators

An elementary cogenerator for a definable category D is a module N such
that every module in D purely embeds in a power of N . Thus an elementary
cogenerator for D generates D algebraically in a relatively simple way, and
this can be useful when trying to understand the actions of functors between
definable categories.

Theorem 19.1. (see [63, §9.4], [69, 5.3.52, 5.2.54]) Every definable category
D has an elementary cogenerator. In fact, if N is a pure-injective module which
realises every irreducible 1-type (for the largest theory of a module supported on
D) then N is an elementary cogenerator of D.

If D = 〈N〉 and N is a pure-injective module which is weakly saturated
(or which just realises enough irreducible pp-types) then N is an elementary
cogenerator of D.

If D = 〈M〉 with M totally transcendental, then M is an elementary cogen-
erator for D.

20 Discrete and indiscrete rings

The Ziegler spectrum ZgR of a ring is a compact space, that is, every open cover
has a finite subcover, [103], see [69, 5.1.23], so, if discrete, it must be finite. Any
ring R of finite representation type18 has discrete Ziegler spectrum. The

18Meaning that every R-module is a direct sum of indecomposable modules and that there
are, up to isomorphism, just finitely many indecomposable R-modules. The condition on, say,
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converse is not known, though it is true if we make the, rather weak and perhaps
empty, assumption that R satisfies the “isolation condition”, see [69, 5.3.26].

The ring R is of finite representation type iff each pp-lattice ppnR is of finite
length, equivalently if the theory of (right, equivalently left) R-modules has
finite Morley rank.

At the other extreme are the indiscrete rings - those whose Ziegler spectrum
has the indiscrete topology. By elementary duality this is a two-sided property
of rings - the right Ziegler spectrum has the indiscrete topology iff this is true
of the left Ziegler spectrum. Of course division rings have this property, having
1-point spectra. But there are more interesting examples of indiscrete rings,
necessarily with many points in ZgR (2ℵ0 if R is countable - [81, 2.2(b)], also
see [69, 7.2.12-14]). Every simple von Neumann regular ring which is not a
division ring is an example - a specific example is the endomorphism ring of a
countably infinite-dimensional vector space V over a field, factored by its ideal
consisting of the endomorphisms of finite rank. For a while it was open whether
there were examples which are not von Neumann regular (and hence whose
theory of modules does not have complete elimination of quantifiers). Such
examples were constructed in [81].

A ring R is indiscrete iff, given any two right R-modules M and N , we have
M (ℵ0) ≡ N (ℵ0). Indeed, if R is indiscrete and not a finite field, then every two
nonzero modules are elementarily equivalent.

21 Multisorted modules

The model theory of modules was largely developed for modules as usually
defined: an abelian group with a ring acting on it as additive endomorphisms.
But the model theory of multisorted modules hardly differs from that of 1-sorted
modules, yet encompasses many more examples, so we give a quick introduction
to these; for a fairly thorough exposition, see [76]. First we have to introduce
multisorted rings = rings with many objects. These are actually the same
thing as (skeletally small) preadditive categories, equivalently Z-path algebras
of (possibly infinite) quivers19.

We will define a multisorted ring R to be given by:
• a set Sorts (which will index the sorts of R and of its modules);
• for every pair (i, j) ∈ Sorts2 an abelian group R(i, j) (the union of these is
the set of elements of R);
• for every triple (i, j, k) ∈ Sorts3, a bilinear map R(j, k)×R(i, j)→ R(i, k); this
is the multiplication in R so we write gf for the image of (g, f) ∈ R(j, k)×R(i, j)
in R(i, k).

We require associativity for these bilinear maps: h(gf) = (hg)f for all f ∈
R(i, j), g ∈ R(j, k), h ∈ R(k, l) and also require, for each i ∈ Sorts, that there is
an identity ei ∈ R(i, i) at i: ejf = f = fei for all f ∈ R(i, j).

Note that, for each i ∈ Sorts, R(i, i) is an abelian group with an associative
(“multiplication”) operation R(i, i) × R(i, i) → R(i, i) for which there is an
identity; that is, R(i, i) is a ring in the usual, 1-sorted sense. In particular if

right modules implies the same condition on left modules.
19Under the preadditive categories view, a (normal) ring is a preadditive category with just

one object (up to isomorphism); under the quivers view it is the path algebra of a quiver with
just one vertex (but possibly many arrows).
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Sorts is a singleton, then we have the usual notion of ring. What is extra in the
general case is the multitude of sorts and also the ring elements that go between
sorts.

Example 21.1. The definition above is equivalent to that of rings without iden-
tity but with enough idempotents. Let R be such a ring. Define Sorts to be
the elements of a maximal direct-sum-independent set of idempotents, and set
R(e, f) = fRe for e, f ∈ Sorts.

The ring R is fixed by incorporating it into the language LR, which we define
next.20 The R-modules are then certain LR-structures.

So, given a multisorted ring R, we take Sorts to index the sorts of LR.
For each sort σ of LR we have a binary function symbol for addition in that
sort, and a constant symbol for the zero element of that sort (of course we
can introduce symbols for subtraction and negative if we wish). And for each
element r ∈ R(i, j) we introduce a unary function symbol with domain sort i
and codomain sort j.

Then we axiomatise R-modules just as in the 1-sorted case. So a (multi-
sorted) R-module consists of a collection (Mi)i∈Sorts of abelian groups with the
interpretations of the various function symbols corresponding to the elements of
R, all satisfying the obvious axioms. The next section gives some examples. The
main point is that the model theory of these structures is essentially no different
from that of 1-sorted modules. The only point to bear in mind is that any single
formula can involve only finitely many sorts21, so the Ziegler spectrum will not,
in general, be compact, just locally compact.

22 Model theory in finitely accessible and pre-
sentable categories

A category C is finitely accessible (see [1]) if it has directed colimits, if there is
just a set, up to isomorphism, of finitely presented objects22 and if every object
of C is a directed colimit of finitely presented objects. The categories of groups,
of rings, of R-modules, ... all are finitely accessible, in fact these are locally
finitely presented in that they also have all limits and colimits.

The categories we are interested in here are the additive finitely accessible
categories C which have direct products. Such a category is a definable subcat-
egory of a category of multisorted modules (see [71, 10.1]).23 The multisorted
ring is just the category Cfp of finitely presented objects of C (or, at least, some
small version thereof). Then an object C of C becomes a (right) module over
Cfp, with its objects of sort A ∈ Cfp being the morphisms of C from A to C.24

20Languages which have the ring as a sort, so which allow it to vary, have been considered
- see [96], [44, Chpt. 9] for instance. The model theory of such (ring,module)-structures is,
however very different from the additive model theory that we consider here.

21To be clear, each variable of the language has a specified sort.
22In a general category an object X is said to be finitely presented if the representable

functor (X,−) commutes with direct colimits. This is equivalent to X being finitely generated
and finitely related in categories where the latter terms make sense.

23The converse, however, is not true, definable categories need not be finitely accessible
although, by downwards Löwenheim-Skolem, they will be κ-accessible for some κ. For instance
the definable category of divisible abelian groups has no nonzero finitely presented objects.

24This generalises the observation that every module M over a ring (in the usual, 1-sorted,
sense) R can be identified with the R-linear homomorphisms from the right module R to M ,
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Details of all this can be found, for instance in [71] or [69, Chpt. 16].
Examples of multisorted modules, and hence of structures to which the model

theory of modules applies, include: chain complexes of modules; comodules over
coalgebras [19]; sheaves over nice enough ringed spaces [79], [82]; quasicoherent
sheaves over nice enough schemes [82]; categories of additive functors.

23 Pp formulas as functors

Given a ring R (which could be multisorted) and a pp formula φ = φ(x)
in LR, we have the (additive) functor Fφ : Mod-R → Ab which assigns to
each right R-module M , the group φ(M). Every module M is a directed col-
imit M = lim−→λ

Mλ of a directed system
(
(Mλ)λ, (fλµ : Mλ → Mµ)λ<µ

)
of

finitely presented modules, and pp formulas commute with directed colimits:
φ(M) = lim−→λ

φ(Mλ). So the functor Fφ is determined by its restriction to the

category mod-R of finitely presented modules (we will use the same notation
for the functor and for its restriction). We remark that the functor category
(mod-R,Ab), being finitely accessible with products, indeed locally finitely pre-
sented, is itself a definable category.

Furthermore, the functor Fφ is a finitely presented object of the category
(mod-R,Ab) of all functors25 from mod-R to Ab. Therefore the functor Fφ/ψ =
Fφ/Fψ associated to any pp-pair φ/ψ also is finitely presented. Indeed this gives
all the finitely presented functors.

Theorem 23.1. (see [69, 10.2.30]) The category (mod-R,Ab)fp of finitely pre-
sented functors on finitely presented right R-modules is equivalent to the category
Leq+
R of pp-pairs for right R-modules and pp-definable maps between these.

The pp-definable maps from sort φ/ψ to sort φ′/ψ′ are just those described
by the name (generalising the definition of rings of definable scalars). Namely,
those given by a pp formula ρ(x, x′) satisfying φ(x) ∧ ρ(x, x′) → φ′(x′) and
ψ(x) ∧ ρ(x, x′)→ ψ′(x′). This category Leq+

R is referred to as the category of
pp-pairs or pp-imaginaries for right R-modules. It is an abelian category, in
fact the free abelian category on Rop (for which see [2], [25]), and its opposite
is the category of pp-imaginaries for left R-modules.

Theorem 23.2. (see [69, 10.2.30]) The category of pp-imaginaries for left mod-
ules is opposite to that for right modules: Leq+

Rop ' ((Leq+
R ))op.

In this form, this appears in [40] and, in the equivalent functor category form
in [4] and [38]. The categories were shown to be equivalent in [12].

The equivalence between pp-pairs and finitely presented functors in the first
result above has been enormously useful and, as one might expect, the second
result is part of elementary duality.

These results refer to the whole module category - to the largest theory of
modules if one prefers to express it this way. Everything may be relativised
to any definable subcategory - to any complete theory T of modules satisfying
T = Tℵ0 . The process involved is a kind of localisation.

via f ∈ (R,M) 7→ f(1) ∈M .
25Throughout this paper, “functor” will mean “additive functor”.
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24 Localisation

Localisation here is the process of moving from the model theory of a definable
category D to the model theory of a definable subcategory C. The process can
be thought of as moving from the complete theory of a module which definably-
generates D, to that of a direct summand which definably-generates C. We
have already seen something of this in the surjective homomorphism from ppnR
to ppn(M) where M ∈ Mod-R; more generally we have such a homomorphism
from ppn(M) to ppn(M ′) for any M ′ ∈ 〈M〉. This process is very broadly
expressed through the corresponding categories of pp-imaginaries as follows.

Let D be a definable subcategory of Mod-R. We define its category Leq+(D)
of pp-imaginaries to have objects the pp-pairs φ/ψ (so just as in LR) and mor-
phisms the pp-definable, modulo Th(D) maps - equivalence-modulo-D classes of
pp formulas which, on D, well-define a total map from φ/ψ to φ′/ψ′. So, for
example, the ring of definable scalars of a module M is the endomorphism ring
of the “home sort” x = x/x = 0 in Leq+(〈M〉).26

If C is a definable subcategory of D then we may consider the set of pp-
pairs - i.e. objects of Leq+(D) - which are closed on, that is which are 0 when
evaluated on, C. These form a Serre subcategory27 of Leq+(D), so we may
form the quotient abelian category Leq+(D)/S. Then Leq+(D)/S ' Leq+(C);
thus the category of pp-imaginaries of a definable subcategory is obtained as a
localisation, see, e.g., [69, §12.3].

There is much more that could be said here. For instance a definable cat-
egory may be recovered as the category of exact functors on its category of
pp-imaginaries; so an R-module is just an exact functor from the category of pp-
imaginaries for R-modules to the category of abelian groups, see [48], [75]. That
result leads to the previously mentioned 2-category equivalence between the 2-
category of (skeletally small) abelian categories with exact functors between
them and the 2-category of definable categories with interpretation functors be-
tween them, see [71], [72]. But this could take us a long way from classical
model theory (though not from regular model theory), so we don’t say more
about it here.

25 Pp-types as functors

Here again we give just an indication of a large topic.
We saw that pp formulas can be seen as certain functors (indeed, when

restricted to finitely presented modules, they are the functors of projective di-
mension ≤ 1, with the quantifier-free formulas being the projective functors,
[12], see [69, 10.2.5, 10.2.6]). It is not so obvious how to conceive of pp-types
in functor-category terms - they are filters of finitely presented functors but it
would be better to associate pp-types with single algebraic objects rather than
sets of such. Moving to the dual functor category gives a nice solution.

Let us consider, for simplicity, a pp-1-type p for right R-modules. Each pp
formula φ ∈ p gives a finitely presented subfunctor Fφ of the forgetful functor

26We remarked earlier that the model theory of D is intrinsic so, in fact, we could define
this without reference to an embedding of D as a definable subcategory of a module category,
see [71, Chpt. 12].

27A Serre subcategory S of an abelian category A is one which is such that, for every
short exact sequence 0→ A→ B → C → 0 in A, we have B ∈ S iff A,C ∈ S.
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(RR,−), that is HomR(RR,−), in (mod-R,Ab)fp, and these, for φ ∈ p, form
a filter in the lattice of finitely presented = finitely generated28 subfunctors
of (RR,−). If we apply elementary duality, then this filter maps to an ideal
{FDφ : φ ∈ p} of finitely generated subfunctors of (RR,−) - the forgetful functor
for left R-modules. So we have the subfunctor, not necessarily finitely generated,
of (RR,−) which is the sum, we denote it FDp, of all these. Conversely, if G is
any subfunctor of (RR,−) then it has the form FDp for some pp-1-type p for
right R-modules.

That is, stating the result for general n, pp-n-types for right R-modules are
equivalent to subfunctors (not necessarily finitely generated) of the nth power
of the forgetful functor for left R-modules, [69, 12.2.1].

This allows one to reconceive many results and techniques in the model the-
ory of modules. For example, the hullH(p) of a pp-n-type is characterised by the
functor H(p)⊗R (−) being the injective hull in (R-mod,Ab) of (RR

n,−)/FDp
([69, 12.2.6]). This also allows a flexibility of method in that one may easily
mix model-theoretic and functor-category methods.

26 Other topologies

There are other natural topologies, which we just point to here, on the set pinjR
of isomorphism classes of indecomposable pure-injective (right) R-modules.

1) Dual-Ziegler = rep-Zariski topology: this is more or less the Hochster
dual of the Ziegler topology. We take the compact open sets - the (φ/ψ) - of
the Ziegler topology to be a generating family of closed sets in the new, dual-
Ziegler, topology. Hochster’s definition [42] was made for spectral spaces, which
the Ziegler spectrum is not: even for Z-modules it is T0 but the intersection
of two compact open sets need not be compact. Nevertheless, this leads us to
an interesting space which can be seen as a noncommutative Zariski spectrum
associated to the category of right R-modules [69, §14.1.2]. Over a commuta-
tive noetherian ring, the subset of pinjR which consists of the indecomposable
injective modules is a closed subset of the Ziegler spectrum which, if given the
dual-Ziegler topology, is exactly the Zariski spectrum of the corresponding alge-
braic variety [69, §§14.1.1, 14.1.3]. Over rather more general rings it coincides
[29] with the Thomason topology [100] which is used in various parametrisations
connected with tilting in both abelian and triangulated categories. See [74, §6]
for the relations between these various topologies and [69, Chpt. 14] for more
on this topology. Also see [80] and [69, Chpt. 14] for the structure presheaf of
rings of definable scalars over this space, generalising the structure sheaf of an
affine variety.

2) Full support topology: This is defined, in [12], like the Ziegler topology but
using pp-types in place of pp formulas, so it is finer than the Ziegler topology. It
turns out that the closed sets in this topology on pinjR are in natural bijection
with the subcategories of Mod-R which are type-definable and closed under
pure-injective hulls, equivalently which are closed under pure-injective hulls,
products and pure submodules. See [69, §§5.3.7, 12.7].

28Every finitely generated subfunctor of a finitely presented functor is finitely presented
because the category (mod-R,Ab)fp is locally coherent
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27 Decidability of theories of modules

There is the question of whether there is a decision procedure, absolute or
relative to some oracle, for the theory of modules. That is, is there a Turing
machine (with oracle) which, given a sentence in the language LR of R-modules,
will determine whether or not it holds true in every R-module?

Undecidability of the theory of modules is typically much easier to establish
than decidability. For (many) examples, see for instance [63, Chpt. 17] as well
as more recent papers such as [77], [101].

To make sense of the question one should clarify what is assumed of the ring,
since a significant part of the theory of the ring is encoded in the theory of its
modules. See [34] for a discussion of this.

Given that, the decidability question reduces largely to questions about the
topology of the Ziegler spectrum of the ring (though the first papers along these
lines, [99], also [10], predate that topology): namely, whether a given basic open
set is contained in the union of finitely many others. See [92] and particularly [33]
for this. In particular, the algebraic project of describing the Ziegler spectrum
(its points and, in particular its topology) feeds directly into the decidability
question. Typically, for rings where the Ziegler spectrum has been described,
one can deduce decidability of the theory of modules, though perhaps only with
considerable effort, depending on how explicit is the description of the spectrum.

There has been a lot of work - [34] is a recent example - on decidability over
valuation rings and rings related by localisation to these, since there one has
a detailed knowledge of the relations between arithmetic in the ring, implica-
tions between pp-pairs and inclusions between the open subsets of the Ziegler
spectrum that they define.

At least in the case where the ring is a (finite-dimensional) algebra R over
a field, the main conjecture is that the theory of R-modules is decidable iff R
has tame representation type29. The direction wild (=not tame) representation
type implies undecidable theory of modules seems close to being established
[35, §4]. A general proof that tame implies decidable is not yet in sight, rather
it has been proved for particular classes of algebras, the strongest evidence to
date being [33] which proves decidability for a class of tame but non-domestic
algebras.

28 Some other topics

Here we just give some pointers and references for a few further topics.

28.1 The canonical language for R-modules

The language that we used for R-modules is not canonical. Recall that rings R
and S are said to be Morita equivalent if their categories of modules, Mod-R
and Mod-S are equivalent; for instance R and the ring of 2 × 2 matrices over
R are Morita equivalent. So, if R and S are Morita equivalent, we could as
well use a language based on S as one based on R in setting up a language for

29We don’t define tame type here but, very roughly, it says that for every integer d ≥ 1,
the d-dimensional indecomposable R-modules sit in just finitely many 1-parameter (from the
field) families.
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their modules. We can enrich either of these languages by adding, as in Section
22, a sort Hom(A,−) for every isomorphism class of finitely presented module
A. The resulting language is a true invariant of the category of models (since
“finitely presented module” can be defined purely in terms of the structure
of that category). Or we could add all the pp-sorts and pp-definable maps
between them, as in Section 23, and use the category of pp-pairs as the basis for
the ‘richest’, so in that sense canonical, language for our category of modules.
These choices of language, and the relations between them, are discussed in [70],
also see [51].

28.2 Pure-injectives are injective

Not literally, but there is a full embedding of the category Mod-R of R-modules
into the category (R-mod,Ab) of all additive functors on finitely presented left
modules. It is given by sending a right module M to the functor M ⊗R− which
takes a finitely presented left R-module L to the abelian group M ⊗R L. Then
M is pure-injective iff the functor M ⊗R − is an injective object in the functor
category, and every injective in the functor category arises (up to isomorphism)
in this way. See [44, Appx. B, Chpt. 7], [69, Chpt. 12].

This embedding was used very effectively by Gruson and Jensen (see, e.g.,
[37]) and subsequently by many others. It shows, for instance, that the early
results [22] of Eklof and Sabbagh on absolutely pure and injective modules
actually apply to arbitrary modules and pure-injective modules, with just a
little translation.

28.3 Pure-projective modules

These are the modules which are defined dually to pure-injective modules - they
are the modules which are projective over pure epimorphisms, equivalently they
are the direct summands of direct sums of finitely presented modules. They have
been less studied than the pure-injective modules, though see for instance [91].
Puninski developed, and made effective use of, their model theory in settling
some questions about direct-sum decompositions of modules [88], [89].

28.4 Vaught’s Conjecture for modules

Despite a considerable amount of attention, see e.g. [84], [85], this has not been
proved over general rings.

28.5 Stability theory

There is a quite detailed working-through and interpretation of concepts from
stability theory in Chapters 5-7 of [63] and in [52] (see also [61]).

28.6 Grothendieck rings

Here we mean Grothendieck rings in the sense of [47]. I conjectured that this
ring should be nontrivial for any theory of nonzero modules; some initial results
were obtain in [60]. The conjecture was proved by Kuber [49].
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28.7 Model theory in triangulated categories

One may set up model theory in compactly generated triangulated categories
very much as in finitely accessible categories (indeed, it can essentially be trans-
ported to that case). The triangulated structure does make a difference, for
instance every pp formula is equivalent to a quantifier-free formula, hence also
(by elementary duality) to a divisibility formula, [28]. Ziegler spectra of some
triangulated categories have been computed [28], [3].

An approach via derivateurs has been initiated by Laking [55].

28.8 Abstract elementary classes of modules

There is some closeness between abstract elementary classes of modules and cur-
rent investigations around deconstructibility in classes of modules (essentially
considering how classes of modules can be built up as possibly transfinite exten-
sions). See for instance [5], [98], [31, §10.3], as well as more model-theoretically-
inspired work e.g. [53].

28.9 Infinitary languages

There was a little early work using infinitary languages, see [9], [97] for instance,
and the languages Lαω do fit well with not-necessarily-finitely accessible cate-
gories, see [1, Chpt. 5], and well-generated triangulated categories (for which
see [59]) but, at least in the absence of a clear goal, there has not yet been very
much development here yet.

28.10 Nonadditive additive model theory

By this I mean the very extensive parallel between categorical (in the topos
theory or accessible categories sense) model theory and additive classical model
theory. There has been a certain amount of transfer, e.g. [6], [50], [54], which is
increasing, especially through the regular logic aspect.

28.11 Modules with additional structure

For example vector spaces with bilinear forms [32], and module (and more gen-
eral representation) categories with a tensor product [7], [8].

28.12 Finally

In looking over this, I see many topics, in particular, regarding the model theory
of modules over particular kinds of ring, which have been barely, or not at all,
touched on here. The contents and bibliography of [69] must give some idea of
why this is so - and much more has been done since that book was published.
Beyond this, there are a number of contexts where modules and their model
theory play a role but do not form the focus of attention; see [11], [15], [23],
[62], [102] for a few quite recent examples.

This article has been mostly a summary of ideas and themes and then point-
ers to the wide and detailed understanding and the vast array of results that
have been achieved in this area.
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[1] J. Adámek and J. Rosický, Locally Presentable and Accessible Cate-
gories, London Math. Soc. Lecture Note Ser., Vol. 189, Cambridge Uni-
versity Press, 1994.

[2] M. Adelman, Abelian categories over additive ones, J. Pure Appl. Alge-
bra, 3(2) (1973), 103-117.

[3] K. Arnesen, R. Laking, D. Pauksztello and M. Prest, The Ziegler spec-
trum for derived-discrete algebras, Adv. in Math., 319 (2017), 653-698.

[4] M. Auslander, Isolated singularities and existence of almost split se-
quences, (notes by Louise Unger), pp. 194-242 in Representation Theory
II, Groups and Orders, Ottawa 1984, Lecture Notes in Mathematics, Vol.
1178, Springer-Verlag, 1986.

[5] J. T. Baldwin, P. C. Eklof and J. Trlifaj, ⊥N as an abstract elementary
class, Ann. Pure Appl. Logic, 149 (2007), 25-39.

[6] L. Barbieri-Viale, O. Caramello and L. Lafforgue, Syntactic categories
for Nori motives, Selecta Math., 24(4), 3619-3648.

[7] L. Barbieri-Viale, A. Huber and M. Prest, Tensor structure for Nori
motives, Pacific J. Math., to appear.

[8] L. Barbieri-Viale and M. Prest, Tensor product of motives
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teurs lim←−
(i), C. R. Acad. Sci. Paris, 276 (1973), 1651-1653.

[38] L. Gruson and C. U. Jensen, Dimensions cohomologiques reliées aux

foncteurs lim←−
(i), pp. 243-294 in Lecture Notes in Mathematics, Vol. 867,

Springer-Verlag, 1981.

[39] R. Harland and M. Prest, Modules with irrational slope over tubular
algebras, Proc. London Math. Soc., 110(3) (2015), 695-720.

[40] I. Herzog, Elementary duality of modules, Trans. Amer. Math. Soc., 340
(1993), 37-69.

[41] I. Herzog, The pseudo-finite dimensional representations of sl(2, k), Se-
lecta Mathematica, 7(2) (2001), 241-290.

[42] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer.
Math. Soc., 142 (1969), 43-60.

[43] W. Hodges, Model Theory, Encyclopedia of Mathematics, Vol. 42, Cam-
bridge University Press, 1993.

[44] C. U. Jensen and H. Lenzing, Model Theoretic Algebra; with particular
emphasis on Fields, Rings and Modules, Gordon and Breach, 1989.

[45] I. Kaplansky, Infinite Abelian Groups, Univ. of Michigan Press, Ann
Arbor, 1954. Also revised edition, Ann Arbor, 1969.

[46] R. Kielpinski, On Γ-pure injective modules, Bull. Polon. Acad. Sci.
Math., 15 (1967), 127-131.

[47] J. Krajicek and T. Scanlon, Combinatorics with definable sets: Euler
characteristics and Grothendieck rings, Bull. Symbolic Logic, 6(3)(2000),
311-330.

[48] H. Krause, Exactly definable categories, J. Algebra, 201 (1998), 456-492.

33



[49] A. Kuber, Grothendieck rings of theories of modules, Ann. Pure Applied
Logic, 166(3) (2015), 369-407.
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