Abelian Regularization of Rings and Modules

Sonia L'Innocente

School of Science and Technology

University of Camerino

Conference in memory of Gena Puninski

Manchester, 6th-9th April 2018

문에 비문어

The goal: This joint work, with Ivo Herzog, aims at obtaining for a noncommutative ring R, the **universal abelian regular** R-ring $R \rightarrow \hat{R}$; generalizing Olivier's construction of a universal commutative regular ring.

An axiomatization for the full subcategory \hat{R} -Mod $\subseteq R$ -Mod of modules over the universal abelian regular R-ring is also provided.

Finally, some topological spaces attached to the ring \hat{R} are investigated.

프 (프) -

Our context Main Results

Sonia L'Innocente Abelian Regularization of Rings and Modules

・ロン ・四 と ・ ヨ と ・ ヨ と

Let *R* denote an associative ring with identity $1 \in R$.

Regular ring: An element $r \in R$ is **regular** if there exists a $y \in R$ such that ryr = r; then y is called a *generalized inverse* of r. R is called **regular ring** if every element is regular.

Commutative reflexive inverse: A **reflexive inverse** of r is an element y such that

 $r = ryr, \qquad y = yry.$

If y also commutes with r, the element is called a **commuting reflexive** inverse (CRI) of r.

Property The following are equivalent for an element $r \in R$:

- r has a CRI in R;
- **2** there is an idempotent element $e \in R$ such that rR = eR and Rr = Re;
- **③** there exist a direct sum decomposition $R_R = rR \oplus r.ann(r)$; and
- For every left *R*-module $_RM$, $M = rM \oplus \operatorname{ann}_M(r)$;

Abelian regular ring: A regular ring is said to be **abelian regular ring** if every element has a CRI. Equivalently, a regular ring is abelian if and only if every idempotent is central.

R-ring: A ring *S* is said to be an *R*-ring if there exists a ring morphism $f: R \to S$ of rings with domain *R*. An *R*-ring *S* can be thought as a left *R*-module _{*R*}*S* via the action rs = f(r)s.

R-field: An *R*-ring $R \to \Delta$ is called *R*-field if Δ is a (not necessarily commutative) field.

Epic *R*-field: An *R*-field, which is generated, as a field, by the image of *R* is called **epic R**-field.

向 ト イヨ ト イヨ ト

A new *R*-ring: Adjoin a CRI for every element of *R*. An *R*-ring is obtained by adjoining noncentral variables y_r , one for every $r \in R$,

$$R \to R_1^{\mathrm{ab}} := R\{y_r \mid r \in R\}/I,$$

modulo the ideal $I = (ry_r r - r, y_r ry_r - y_r, ry_r - y_r r \mid r \in R)$ generated by the relations that ensure each $y_r + I = \overline{r}$ is a CRI of r.

If *R* is commutative, then R_1^{ab} is abelian regular: The *R*-ring $R \to R_1^{ab}$ is universal with respect to the property that every $r \in R$ obtains a CRI.

A universal property: Every abelian regular *R*-ring $f : R \to S$ factors uniquely, through R_1^{ab} ,

An axiomatization: The full subcategory R_1^{ab} -Mod $\subseteq R$ -Mod is axiomatizable, A left R-module $M \in R_1^{ab}$ -Mod iff $\forall r \in R$

$$M \models \{ \forall u \; \exists v, w \; [(u \doteq v + w) \land r | v \land rw \doteq 0] \} \land \forall u \; [(ru \doteq 0 \land r | u) \rightarrow u \doteq 0]$$

-

Non commutative version of Olivier's construction

This process can be iterated to obtain a denumerable sequence $R = R_0^{ab} \longrightarrow R_1^{ab} \longrightarrow R_2^{ab} \longrightarrow \cdots$, of ring morphisms defined recursively by $R_{n+1}^{ab} := (R_n)_1^{ab}$.

The *R*-ring R^{ab} : Each of the compositions $R \to R_n^{ab}$ is an epic *R*-ring and, therefore, so is the limit $R \to R^{ab} := \lim_{n \to \infty} R_n^{ab}$.

 R^{ab} is abelian regular: if $r \in R^{ab}$ is represented by some approximation $r_n \in R_n^{ab}$, then the construction ensures that r_n obtains a CRI in R_{n+1}^{ab} .

B A B A B A A A

Theorem: Every ring R admits a universal abelian regular R-ring $R \to R^{ab}$.

Corollary:

There is a bijection $P \mapsto R^{\rm ab}/P$ between the prime ideals of $R^{\rm ab}$ and the epic R-fields $R \to R^{\rm ab} \to R^{\rm ab}/P$. In particular, $R^{\rm ab} \neq 0$ iff there exists a nonzero epic R-field.

The notation $R \to \hat{\mathbf{R}} := R^{ab}$ is used from now on.

Model theoretic context:

Let $\mathcal{L}(R) = (+, -, 0, r)_{r \in R}$ the language of left *R*-modules. For a pp formula $\rho(u, v)$ in two free variables and an *R*-module $_RM$, ρ defines the graph of a \mathbb{Z} -linear map $\rho : M \to M$,

$$M \models \forall u \exists ! v \ \rho(u, v).$$

This pp definable function ρ is called a *definable scalar* on M. The definable scalars on M form an R-ring $R \to R_M$.

The lattice of pp definable subgroups: Denote by $\mathbb{L}(R, 1)$, the lattice of pp formulae $\psi(u)$ in one variable. A morphism $f : R \to S$ of rings induces a morphism of languages $\mathcal{L}(f) : \mathcal{L}(R) \to \mathcal{L}(S)$, which induces the obvious morphism $\mathbb{L}(f, 1) : \mathbb{L}(R, 1) \to \mathbb{L}(S, 1)$ of pp lattices.

The lattice $\mathbb{L}(\mathbf{R}, \mathbf{1})_{\mathbf{M}}$: The pp definable subgroups $\psi(M) \subseteq M$ represent the elements of the quotient lattice $\mathbb{L}(R, 1) \longrightarrow \mathbb{L}(R, 1)_M$, $\psi(u) \mapsto \psi(M)$, modulo the congruence given by equivalence relative to M, $\varphi(M) = \psi(M)$. The following diagram commutes:

where the bottom horizontal arrow is an isomorphism.

A coordinatized lattice: If R is a regular ring, then every pp formula $\psi(u)$ in one variable is equivalent to one of the form e|u for some idempotent $e \in R$. The localization $\mathbb{L}(R, 1) \to \mathbb{L}(R, 1)_R$, $e|u \mapsto eR$ is an isomorphism.

Any complemented lattice, that is isomorphic to the lattice $\mathbb{L}(R, 1)_R$ of principal right ideals of some regular ring R, is said to be **coordinatized** by R.

Proposition: Let *R* be an associative ring and *M* a left *R*-module for which $\mathbb{L}(R, 1)_M$ is complemented. Then the vertical arrow in the diagram

is an isomorphism and $R o R_M$ is a regular epic R-ring that coordinatizes $\mathbb{L}(R,1)_M.$

向下 イヨト イヨト 三日

Abelian regular rings can also be characterized by the property that every element in the lattice $\mathbb{L}(R, 1)_R$ of principal right ideals has a unique complement.

Theorem: The following are equivalent for a left *R*-module $_RM$:

- $M \in \hat{R}$ -Mod;
- **2** the *R*-ring $R \rightarrow R_M$ of definable scalars is abelian regular; and
- So every pp definable subgroup $\psi(M) \in \mathbb{L}(R, 1)_M$ has a unique complement.

The Condition (2) can be used to axiomatize the elementary class \hat{R} -Mod $\subseteq R$ -Mod.

Corollary: A module $M \in \hat{R}$ -Mod iff for every definable scalar $\rho(u, v) \in R_M$,

$$M \models \{ \forall u \exists v, w [(u \doteq v + w) \land \exists u' \rho(u', v) \land \rho(w, 0)] \} \land$$
$$\land \forall u [(\rho(u, 0) \land \exists v \rho(v, u)) \rightarrow u \doteq 0].$$

Further axiomatization: A nicer system of axioms could be given if we could find $\forall \varphi$ an explicit form for a pp formula φ^{\perp} itha defines in M the unique element of $\varphi(M)$ in $\mathbb{L}(R, 1)_M$.

The axiom schema would then be of the form $\varphi(M) \oplus \varphi^{\perp}(M) = M$.

A possible way: Given a pp formula $\varphi(u)$, the task therefore is to find a pp formula $\varphi^{\perp}(u)$ such that for every epic *R*-field Δ , $\varphi^{\perp}(\Delta) = \Delta$ if and only if $\varphi(\Delta) = 0$.

This is possible when the ring R is commutative.

The Cohn spectrum: Let Spec(R) denote the Cohn spectrum of a ring R. The points of Spec(R) are the epic R-fields $R \to \Delta$, with a basis of quasi-compact open subsets given by

Main Results

 $\mathcal{O}(A) := \{ \Delta \mid A \text{ is invertible in } \Delta \},\$

as A ranges over the square matrices with entries in R.

Clopen sets: If R is abelian regular, then the Cohn spectrum Spec(R) is a totally disconnected compact space with a clopen basis given by

$$\mathcal{O}(e) = \{ \mathcal{P} \mid e \not\in \mathcal{P} \},\$$

where *e* ranges over the idempotent elements in R and \mathcal{P} over the maximal ideals of R.

同下 イヨト イヨト

We can introduce the patch topology on it. This space is the **constructible Cohn spectrum** of R, denoted by $\widehat{\text{Spec}}(R)$; an open basis is given by the boolean combinations of quasi-compact open subsets of $\operatorname{Spec}(R)$.

Main Results

Theorem: The universal abelian regular R-ring $R \to \hat{R}$ induces a homeomorphism $\operatorname{Spec}(\hat{R}) \to \widehat{\operatorname{Spec}}(R), \ \mathcal{P} \mapsto \hat{R}/\mathcal{P}$, of constructible Cohn spectra.

The Ziegler spectrum Zg(R) of a ring R is the space whose points are given by indecomposable pure injective left R-modules, with a basis of open subsets:

$$\mathcal{O}(\varphi/\psi) := \{ U \in \operatorname{Zg}(R) \mid \varphi(U)/\psi(U) \neq 0 \},\$$

as $\psi \leq \varphi$ range over $\mathbb{L}(R, 1)$. The quasi-compact open subsets of this topology have the form $\mathcal{O}(\varphi/\psi)$, as $\psi \leq \varphi$ range over the various $\mathbb{L}(R, n)$, $n \geq 1$.

「「「 (山) (山) (山)

Endosimple modules: A module $_R U$ is **endosimple** if it is simple as a module over its endomorphism ring $End_R U$.

Main Results

An example: Every epic *R*-field $R \rightarrow \Delta$ becomes, by restriction of scalars, an indecomposable endosimple left *R*-module

 $Zg_1(R)$ denotes the subspace of endosimple points of Zg(R) and forms a closed subset.

 $\mathcal{O}(\varphi/\psi)$: the quasi-compact open subsets of $\operatorname{Zg}_1(R)$ are also closed: if $\psi \leq \varphi$ in $\mathbb{L}(R,1)$ and $\Delta \in \mathcal{O}(\varphi/\psi)$, then $\varphi(\Delta) = \Delta$ and $\psi(\Delta) = 0$, and so in $Zg_1(R)$,

$$\mathcal{O}(\varphi/\psi)^c = \mathcal{O}(u \doteq u/\varphi(u)) \cup \mathcal{O}(\psi(u)/u \doteq 0)$$

is also open. So, $Zg_1(R)$ is equipped by patch topology.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ■ ● ● ● ●

If R is abelian regular, then the points of the Ziegler spectrum are given by the endosimple modules R/P, as ranges over the prime, i.e., maximal, ideals.

Proposition: If R is abelian regular, then $Zg(R) = Zg_1(R)$ and the function $ann : Zg(R) \to Spec(R), \Delta \mapsto ann(\Delta)$, is a homeomorphism.

Theorem: The universal abelian regular *R*-ring $R \rightarrow \hat{R}$ induces a homeomorphism

Main Results

$$\widehat{\operatorname{Spec}}(R) = \operatorname{Zg}(\hat{R}) \to \operatorname{Zg}_1(R) \subseteq \operatorname{Zg}(R)$$

from the constructible Cohn spectrum of R to the closed subset of endosimple points in the Ziegler spectrum.

Our goal: We show how to present an abelian regular ring R as the ring of global sections of a suitable sheaf over the constructible Cohn Spectrum.

The topological space $\operatorname{Zg}^*(R)$: Consider the Zariski topology $\operatorname{Zg}^*(R)$, introduced as a dual topology on the Ziegler spectrum $\operatorname{Zg}(R)$ whose basic open subsets are the complements $\mathcal{O}(\varphi/\psi)^c$, $\psi \leq \varphi \in \mathbb{L}(R, n)$, of the quasi-compact open subsets of $\operatorname{Zg}(R)$.

If R is abelian regular, then $Zg^*(R) = Zg(R)$.

Topological bundle: Let $\rho(u, v)$ be a pp formula in two variables. Then ρ defines a scalar on every point in the Zariski open subset

$$\mathcal{O}_{\mathrm{Zar}}(
ho(u,v)):=\mathcal{O}(u\doteq u/\exists v\;
ho(u,v))^c\;\cap\;\mathcal{O}(
ho(0,v)/v\doteq 0)^c$$

of $\operatorname{Zg}^*(R)$. Thus $U \in \mathcal{O}_{\operatorname{Zar}}(\rho(u, v))$ if and only if $\rho(U) \in R_U$.

伺い くさい くさい しきし

Topological bundle: Let **Bun**(R) := $\bigcup \{R_U \mid U \in \mathrm{Zg}^*(R)\}$ be the disjoint union of the R_U and define $p : \mathrm{Bun}(R) \to \mathrm{Zg}^*(R)$ to be a **topological bundle**, that is, a function whose fiber $p^{-1}\{U\} = R_U$. There is a commutative diagram

where $\mathbf{Ev}(\rho)(U) := \rho(U) \in R_U$.

Proposition: The topological bundle $p : Bun(R) \to Zg^*(R)$ is an **étale bundle**, with a subbasis of open subsets for Bun(R) given by the images $Im Ev(\rho)$, $\rho(u, v) \in L(R, 2)$, and preimages $p^{-1}(\mathcal{O})$, as \mathcal{O} ranges over a basis for $Zg^*(R)$.

The sheaf Def: The sheaf Def of sections associated to the étale bundle $p : Bun(R) \to Zg^*(R)$ assigns to an open subset $\mathcal{O} \subseteq Zg^*(R)$ the *R*-ring $R \to Def(\mathcal{O})$ of continuous maps $s : \mathcal{O} \to Bun(R)$ for which the diagram

commutes, where the horizontal arrow is the inclusion morphism.

Definable sections: A section $s \in \text{Def}(\mathcal{O})$ is **definable** if there is pp formula $\rho(u, v)$ such that $\mathcal{O} \subseteq \mathcal{O}_{\text{Zar}}(\rho)$ and $s = \text{Ev}(\rho)|_{\mathcal{O}}$. Prest defined the notion of a **presheaf-on-a-basis** of definable scalars, which assigns to a basic open subset $\mathcal{O} \subseteq \text{Zg}^*(R)$ the *R*-ring of definable sections on \mathcal{O} . The sheaf Def on $\text{Zg}^*(R)$ is the sheafification of this presheaf.

< 3 > < 3 >

Pullback of étale bundles If $f : R \to S$ is an epic *R*-ring, then the induced homeomorphic embedding $Zg(f) : Zg(S) \to Zg(R)$ is also continuous with respect to the Zariski topology $Zg(f) = Zg^*(f) : Zg^*(S) \to Zg^*(R)$. The action of every element $s \in S$ on a left *S*-module $_SM$ is a definable scalar over *R*. So if $U \in Zg^*(S)$ is an indecomposable pure injective, then $S_U = R_U$ and the obvious morphism $Bun(f) : Bun(S) \to Bun(R)$ of étale bundles given by

where $p_S = p_R|_{Bun(S)}$, is a pullback diagram.

同 ト イヨ ト イヨ ト ・ ヨ ・ ・ ク ヘ ()・

The étale bundle of definable scalars

The correspondence between sheaves and topological bundles, implies that the sheaf of locally definable scalars on $Zg^*(S)$ is given by the pullback along $Zg^*(f)$ of the sheaf of locally definable scalars on $Zg^*(R)$.

Coming back to our regular R-ring $R o \hat{R}$, we can prove as follows.

Theorem: Let R be a ring with universal abelian regular R-ring $R \to \hat{R}$. The sheaf $Def(\hat{R})$ of locally definable scalars over the constructible Cohn spectrum $\widehat{Spec}(R) = Zg^*(\hat{R})$ is obtained by the image sheaf Def(R) along the homeomorphic embedding $Zg^*(\hat{R}) \to Zg^*(R)$.

글 > - + 글 > - -

-

Ring with involution Olivier's construction can still be generalized to obtain $(\hat{R}, \hat{*})$, the universal *-regular (R, *)-ring over a noncommutative ring (R, *) with involution.

The construction mimics Olivier's construction with the **Moore-Penrose inverse** replacing the role of the commuting reflexive inverse in Olivier's construction.

It is shown that $(\hat{R}, \hat{*})$ coordinatizes the universal quantum logic of (R, *), defined to be the lattice $\mathbb{L}(R, 1)$ modulo the least congurence for which the involution designates an orthogonal complement. This congruence is generated by the Laws of Contradiction and Excluded Middle, so that the *R*-modules that arise from the universal *-regularization are axiomatized by these laws.

A B > A B >

-