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We will concentrate on explaining some ideas and methods from model the-
ory and the particular form they take in the context of modules, as well as
how they can contribute to our understanding of representations, especially cer-
tain nice infinite-dimensional ones. We will, in particular, discuss definability -
perhaps the central concept in model theory, and use of the Compactness The-
orem/ultraproducts in order to realise types - use of the Compactness Theorem
is the central method in model theory.

The aim of the lectures is to enable one to engage with the details of papers
which use these concepts and techniques, specifically to:

• gain some familiarity with pp formulas;
• see something of pp-types and how they can produce indecomposable pure-
injectives;
• then, since the first three lectures will be rather focussed, gain some broader
perspective at the end.
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1 Lecture 1: Definable sets

1.1 Definable sets

At least, definable sets in algebraic structures - we’ll ignore relations, such as ≤
on structures.

Definable sets are what we get when we close solution sets of equations
under the boolean set-theoretic operations of (finite) intersection ∩, union ∪,
complement (−)c and projection. Formulas are what we use to describe these
sets.

Formally: Given an algebraic structure M , the definable subsets of M
or, more precisely, the subsets of Mn (various n) definable in M are the sets
obtained inductively as follows:
• the solution set X in M of any equation is a definable subset (if the equation
has n variables, then X ⊆Mn) ;
• the intersection X ∩ Y of any two definable subsets X, Y (X,Y ⊆ Mn for
some n) is a definable subset;
• the complement Mn\X of any definable subset X ⊆Mn is a definable subset;
• if X ⊆ Mn is a definable subset then the projection πîX ⊆ Mn−1 =
{(a1, . . . , ai−1, ai+1, . . . an) : (a1, . . . an) ∈ X} of X along the ith coordinate
is a definable subset.

Example 1.1. In commutative k-algebras, where k is a commutative ring (a
field, the ring Z of integers,...). So an equation has the form f(x) = 0 where
f(x) ∈ k[x1, . . . , xn] and the solution set of this formula in a k-algebra R is the
subset {a ∈ Rn : f(a) = 0} of Rn.

In particular, if k is a field and L/k an extension of fields, then an affine
subvariety of Ln is the solution set in L of a finite conjunction

m∧
j=1

fj(x) = 0

of such equations. Note that this is a formula, where ∧ (and
∧

, cf. + and
∑

)
is introduced to describe the intersection of solution sets of equations.

For instance, the set of units in a commutative ring R is the solution set
of the formula φ(x) ≡ ∃y (xy = 1). We get this from the equation xy = 1 by
existentially quantifying out y. In terms of solutions sets: let θ(x, y) be the
equation xy = 1, so θ(R) = {(a, b) : ab = 1}, so then φ(R) is the projection of
θ(R) to the first coordinate. “existential quantification = projection”

The set of non-units is then defined by the negation ¬φ, that is ¬∃y (xy = 1),
of φ, where we use ¬ “not” to describe complement: ¬φ(R) = Rn \ φ(R) if φ
has n free variables.

We use ∨ to express “or” - note that φ ∨ ψ is equivalent to ¬(¬φ ∧ ¬ψ)
and we use → to express “implies” - with φ→ ψ being equivalent to (¬φ) ∨ ψ.
We can also introduce the universal quantifier ∀x and note ∀xφ is equivalent to
¬∃x(¬φ).

So, for instance, to define the set of irreducible elements we can use the
formula

∀y, z ((x = yz)→ (x|y ∨ x|z)),
with x|y just being a shorthand for ∃u(xu = y); an equivalent formula is

∀y, z (x 6= yz ∨ x|y ∨ x|z).
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Now that we have formulas to describe definable sets, we can also use them
to write down conditions on structures. For instance ∀x (x = 0∨ ∃y(xy = 1)) is
either true in a commutative ring (exactly if it’s a field) or false.

So we have seen some examples of definable sets, the formulas we can use
to define/specify these, and the additional use of sentences (formula without
free variables) to express conditions on structures (as opposed to conditions on
elements of structures).

Example 1.2. The Chevalley-Tarski Theorem says that, if k is an algebraically
closed field and V ⊆ kn is an affine variety (that is a subset defined by a
conjunction of equations) then the image of V under any projection (indeed
under any polynomial map) is constructible, meaning that it is a finite boolean
combination of solution sets of equations.

In particular, that projection can be defined by a formula that does not
use quantifiers, even though projection usually means introducing an existential
quantifier.

This theorem says that algebraically closed fields have quantifier elimina-
tion: every definable set for an algebraically closed can be defined by a formula
that does not use quantifiers.

In general, definable sets can be arbitrarily complex in the sense of there
being no bound on the number of alterations of quantifiers needed to define
them. So it is good when we can say that every definable set has a (relatively)
simple definition.

(Much) more information on definable sets and on what is discussed below
can be found in [12] (and [11] for a more model-theoretic approach). A set of
notes overlapping with these notes but with a little more detail on some things
is [14].

1.2 Definable sets in modules

Fix the ring R and look at, say, right R-modules. In this case, every equation is
(equivalent to one of) the form

∑n
i=1 xiri = 0 with the ri ∈ R. So a conjunction

m∧
j=1

n∑
i=1

xirij = 0

of these is a system of R-linear equations, which we may write more compactly
as xH = 0 where H = (rij)ij is a matrix over R, and the projection of the
solution set to such a system of R-linear equations is defined by a formula of
the form

∃xk+1, . . . , xn
( m∧
j=1

n∑
i=1

xirij = 0
)
.

A formula (equivalent to one) of this form is a positive primitive, or just
pp, formula (the term regular formula also is used in some parts of the lit-
erature). We can write a pp formula more compactly as ∃y (x y)G = 0, or

∃y (x y)

(
G′

G′′

)
= 0 if we want to partition the matrix G.

That is, pp formulas are those we use to define projected solution sets of
systems of R-linear equations.
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Note that if φ(x) is a pp formula then, in any module M , its solution set
φ(M) is a subgroup (of Mn if n is the length of x, that is, the number of
free variables). We refer to this as a pp-definable subgroup of M (more
accurately, as subgroup of Mn pp-definable in M). (Other terminologies that
have been used are “subgroup of finite definition” and “finitely matrizable sub-
group”.) Each such subgroup φ(M) is a submodule of Mn under the (diagonal)
action of End(M), in particular is a module over the centre of R, though not
necessarily an R-submodule.

Theorem 1.3. (Pp-elimination of quantifiers for modules)
(1) Every definable subset of a module is a (finite) boolean combination of pp-
definable subgroups.

(If we allow parameters from M into our definitions so, for instance, allow-
ing inhomogeneous systems of linear equations

∧m
j=1

∑n
i=1 xirij = aj with the

aj ∈M , then every definable subset will be a finite boolean combination of cosets
of pp-definable subgroups, or ∅.)
(2) Every sentence is equivalent to a finite boolean combination of conditions of
the form ∣∣φ(−)/ψ(−)

∣∣ > t,

where t ≥ 1 and where ψ, φ are pp with ψ ≤ φ.
If R is an algebra over an infinite field, then these simply are boolean com-

binations of formulas of the form φ(−) = ψ(−) and φ(−) 6= ψ(−).

In the above we write ψ ≤ φ to mean that ψ implies φ, that is ψ(M) ≤ φ(M)
for every module M - we refer to this pair of formulas as a pp-pair.

Example 1.4. Let’s try to express injectivity of a module (M). We can use
Baer’s Criterion: given any right ideal I of R and any morphism f : I → M ,
there is a morphism g : R → M with gj = f , where j is the inclusion of I into
R.

Fix I and choose a generating set, say (rλ)λ, for I. So f is determined by
the images (frλ)λ. What are the conditions on a tuple (aλ)λ from M to be of
the form (frλ)λ for some morphism f?

Choose a generating set (r·sα = 0)α of the relations on the chosen generators
(r · sα expanding to

∑
λ rλsαλ = 0 where sαλ = 0 for almost all λ).

Then the required condition on a tuple a = (aλ)λ is that, for each α, we
have a · sα = 0.

So, if I is finitely generated and finitely related, then there is a pp formula
φ(x) such that φ(M) = {a ∈ M (−) : ∃f : I → M such that a = fr}, namely∧
α x · sα = 0 where we are now assuming that we have chosen the tuple r to

be finite and have chosen finitely many generating relations.
How do we say that there is g : R→M such that gj = f? Note that g(1)rλ =

f(rλ), for all λ, so a formula expressing existence of such g is ∃y
(∧

λ yrλ = xλ
)
.

Therefore, if I is finitely presented, then the sentence

∀x
(∧
α

x · sα = 0→ ∃y
∧
λ

yrλ = xλ
)

expresses injectivity of M over the inclusion of I into R. Note that this is
exactly expressing closure of a pp-pair, namely, it is expressing that∣∣(∧

α

x · sα)/(∃y
∧
λ

yrλ = xλ)
∣∣ = 1.
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If R is right noetherian, then every right ideal is finitely presented, so the
collection of all these sentences (that is, closure of a certain set of pp-pairs) cuts
out the injective modules. In fact, if R is any ring, then the set of all these
sentences as I ranges over the finitely presented ideals, cuts out the absolutely
pure modules iff R is right coherent.
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2 Lecture 2: Pp formulas and purity

2.1 Free realisations and finitely presented modules

Suppose that A is a finitely presented (right R-)module and that c = (c1, . . . , cn)
is a tuple from A. Then there is a pp formula φ such that c ∈ φ(A) and such
that, for every module M and n-tuple b ∈ φ(M), there is f : A→M such that
fc = b. That is, in every module M , the solution set φ(M) is the set of images
of c under morphisms A→M . We say that the pair (A, c) is a free realisation
of φ.

The formula φ describes how c sits in A: choose a finite generating set a for
A and suppose that the system of equations aH = 0 generates the relations on
a. Also take a matrix G such that c = aG. Then take φ(x) to be the formula
∃y (x = yG ∧ yH = 0).

One may check that every pp formula is freely realised in this sense in some
finitely presented module (use elementary duality, discussed below, to write any
pp-formula in the form ∃y (x = yG ∧ yH = 0) and reverse the above outlined
argument).

Example 2.1. TakeR to be the path algebra of the Kronecker quiver Ã1 1
α
((

β

66 2

and take A to be the (regular) module and the element c to be as indicated.
•

β

"" •

•

α

<<

β ""
• = c

Then (A, c) is a free realisation of the formula

∃y (x = yβ ∧ ∃z (zβ = yα ∧ zα = 0)).

2.2 The lattice of pp formulas

We (pre-)order pp formulas in the same (number of) free variables by ψ(x) ≤
φ(x) iff ψ(M) ≤ φ(M) for every module M (since taking solution sets of pp
formulas commutes with direct limits, it is enough that this be so in every
finitely presented module M).

Then the equivalence classes of such pp formulas, with this order, form a
lattice which we denote by ppnR, or just ppn, if n is the number of free variables.
The operations are meet, given by φ(x) ∧ ψ(x), and join, given by ∃y (φ(y) ∧
ψ(x − y)), corresponding respectively to intersection and sum in the lattice of
(pp-definable) subgroups of any module.

If M is any module, then taking solution sets in M , φ(x) 7→ φ(M), is a
surjective lattice homomorphism from ppn to the lattice of subgroups of Mn

pp-definable inM . The kernel equivalence relation is the set of pairs (φ(x), ψ(x))
of pp formulas such that φ(M) = ψ(M) and is generated by the pp-pairs φ/ψ
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that is, ψ ≤ φ) which are closed on M (that is,
∣∣φ(M)/ψ(M)

∣∣ = 1 as in the
statement of the pp-elimination of quantifiers theorem). A pp-pair is open on
M if it is not closed on M .

Note that if (A, a) is a free realisation of a pp formula φ, then, for every pp
formula ψ, a ∈ ψ(A) iff φ ≤ ψ (using terminology that we will introduce later,
this says that φ generates the pp-type of a in A). For the direction which is
not the definition, if a ∈ ψ(A) take any module M and tuple b ∈ φ(M). Then
there is a morphism A→M taking a to b and so, since morphisms preserve pp
formulas (fφ(M) ⊆ φ(N) whenever f : M → N is a morphism and φ is pp -
exercise), b ∈ ψ(M), as required to show that φ ≤ ψ.

2.3 Duality of pp formulas

If φ(x) is the pp formula, for right R-modules,

∃y (x y)

(
G
H

)
= 0,

define the pp formula Dφ(x), for left R-modules - the (elementary) dual of φ
to be

∃z
(
In G
0 H

)(
x
z

)
= 0.

Similarly (taking transposes to interchange the roles of rows and columns, left
and right) we define the dual of a pp formula for left modules.

Then, for every pp formula φ and module M , we have DDφ(M) = φ(M),
that is, φ is equivalent to DDφ (exercise).

Moreover, if ψ ≤ φ then Dφ ≤ Dψ, D(φ ∧ ψ) = Dφ+Dψ and D(φ+ ψ) =
Dφ ∧Dψ.

Thus D gives an anti-isomorphism, “elementary duality”, of lattices ppnR '
(ppn +Rop)op of pp formulas, in n free variables, for right and left modules, for
each n.

It connects nicely to the algebraic duality MR 7→ (RM
∗) = HomZ(M,Q/Z):

Dφ(RM
∗) = annM∗(φ(M)).

Exercise 2.2. Compute the dual of the formula we saw in the example over
the Kronecker algebra [after simplification it can be written as ∃v, w (βx =
αv ∧ βv = αw)] and also compute a free realisation of this dual pp formula [a
minimal free realisation is a 7-dimensional left module].

Theorem 2.3. (Herzog’s criterion [6]) Let a ∈Mn
R, l ∈R Ln. Then a⊗R l =

0 (that is
∑n
i=1 ai ⊗ li = 0) in M ⊗R L iff there is a pp formula φ(x) such that

a ∈ φ(M) and l ∈ Dφ(L).

Exercise 2.4. Check this for (M, c) being the Kronecker algebra free realisation
seen in the earlier example and (L, l) being the free realisation of the dual
formula. That is, check directly why c⊗ l = 0 in M ⊗R L.

If φ(x) is ∃y (x y)

(
G
H

)
= 0 then its dual has the form

∃z (x = G(z) ∧Hz = 0).
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Since every pp formula is a dual formula, this allows us to write a typical pp
formula in the form ∃y(x = yG ∧ yH = 0), that is ‘generalised divisibility
formula’.

2.4 Purity

Every morphism between modules preserves pp-definable subgroups: if f : L→
M then fφ(L) ⊆ φ(M). A morphism, necessarily injective, is pure if it also
reflects pp-definable subgroups. That is a monomorphism j : L→M is pure if,
for every pp formula φ(x1, . . . , xn) we have

jφ(L) = Ln ∩ φ(M)

(in fact it is enough to require this for n = 1).
For instance, the inclusion of 2Z into Z is not pure - take φ(x) to be ∃y x =

y + y and a = 2 ∈ 2Z.
We then say that 0→ L→M →M/L→ 0 is a pure-exact sequence.
A module N is said to be pure-injective if it is injective over pure embed-

dings, that is, if whenever we have a pure embedding L→M and a morphism
g : L→ N , then there is a lifting of g to a morphism M → N as shown.

L //

g

��

M

~~
N

There are many equivalent ways to define pure monomorphisms, for instance:
j : M → N is pure iff j ⊗ 1L : M ⊗R L → N ⊗R L is monic for every (finitely
presented) RL.
We can see this using Herzog’s Criterion:
(pp-pure⇒ ⊗-pure): if a⊗ l = 0 in N ⊗L, then, by Herzog’s Criterion, there is
some pp φ such that a ∈ φ(N) and l ∈ Dφ(L), but pp-purity implies a ∈ φ(M),
so a⊗ l = 0 in M ⊗ L.
(⊗-pure ⇒ pp-pure): Suppose a ∈ φ(N). Take (RL, l) to be a free realisation
of Dφ. Then, by Herzog’s Criterion, a ⊗ l = 0 in N ⊗ L so, by assumption,
a⊗ l = 0 in M ⊗L. So by Herzog’s criterion, there is ψ such that a ∈ ψ(M) and
l ∈ Dψ(L). Since (L, l) freely realises Dφ it follows that (as observed earlier)
that Dφ ≤ Dψ and hence, since D is a duality, that ψ ≤ φ, in particular that
a ∈ φ(M), as required.
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3 Lecture 3: Pp-types, compactness and pure-
injectivity

3.1 The Compactness Theorem

If a ∈ φ(M) then this fact is a piece of information about how a sits in M
(namely that it satisfies a certain projected system of linear equations, equiva-
lently that is satisfies a certain generalised divisibility condition). The pp-type
of a in M , ppM (a) is the set of all these pieces of information:

ppM (a) = {φ(x) pp : a ∈ φ(M)}.

This is, note, a filter in the lattice ppnR of pp formulas (where a = (a1, . . . , an)).
Recall that, a filter on a (modular) lattice (with top and bottom elements)

is an upwards-closed, non-empty proper subset which is closed under finite meet.
In fact, every filter in ppnR arises in this way. To prove that we use the

Compactness Theorem and ultraproducts.

Take an indexed set (Mi)i∈I of structures, all of the same kind (groups,
rings, R-modules, ...). Choose a filter F on the set I of indices and form the
reduced product

M∗ =
∏
i∈I

Mi/F = lim−→
J∈F

∏
j∈J

Mj

(in the case of modules the directed colimit and products are taken in the
category of modules, in general it has to be taken in the category of structures for
a certain language). Elements of M∗ have the form (ai)i/ ∼ where (ai)i ∼ (bi)i
iff {i ∈ I : ai = bi} ∈ F .

Theorem 3.1. ( Los’ Theorem)
(1a) Let φ(x1, . . . , xn) be a pp formula and a = (a1, . . . , an), with aj = (aji )i/ ∼,
be elements of M∗. Then:

a ∈ φ(M∗) iff {i ∈ I : (a1
i , . . . , a

n
i ) ∈ φ(Mi)} ∈ F .

(1b) If F is an ultrafilter then (1a) holds for arbitrary formulas φ.
(2a) If φ(x) and ψ(x) are pp formulas then:

φ(M∗) ⊆ ψ(M∗) iff {i ∈ I : φ(Mi) ⊆ ψ(Mi)} ∈ F .

(2b) If F is an ultrafilter and σ is any sentence (formula without quantifiers),
then:

σ is true in M∗ iff {i ∈ I : σ is true in Mi} ∈ F .

A filter F on I is an ultrafilter if it is a maximal (with respect to inclusion)
proper filter (equivalently if, for every J ⊆ I, either J ∈ F or Jc ∈ F). Then
we refer to the reduced product as an ultraproduct (or ultrapower if all the
structures are the same).

(In all this there is a formal language in the background - describing that
involves giving the precise rules used to produce the formulas that we are using
to describe definable sets. This does have to be done carefully but the details
are easily available.)
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A corollary is the Compactness Theorem - the basic theorem of Model The-
ory. First we extend the definition of pp-type.

Suppose that M is a structure and a ∈Mn. Then the type of a in M is

tpM (a) = {φ(x) a formula : a ∈ φ(M)}.

More generally, a partial type for M is a collection Φ(x) of formulas in the free
variables x such that, for every finite subset Φ′ of Φ, we have

⋂
φ∈Φ′ φ(M) 6= ∅.

A type for M is a partial type which is maximal, with respect to inclusion,
among partial types for M (equivalently an ultrafilter in the lattice of definable
subsets of M). If we allow the elements of M to appear as parameters (con-
stants) in our formulas, then we will refer to a (partial) type with parameters
from M .

We say that a (partial) type Φ is realised in M if
⋂
φ∈Φ φ(M) 6= ∅. The

type of any tuple from M is a type but not every type for M may be realised
in M . Consider for example, the abelian group M = Z and Φ(x) = {∃y x = ty :
t ∈ Z, t 6= 0} ∪ {x 6= 0}.

Theorem 3.2. (Compactness Theorem) If M is a structure and Φ(x) is a
(partial) type for M (possibly with parameters), then there is an ultraproduct
M∗ of M which contains a realisation of Φ.

Note that there is the diagonal map embedding M naturally into M∗. This
will be a pure embedding (in fact an elementary one, meaning as in the definition
of pure embedding but allowing arbitrary formulas in place of pp ones).

In particular, if p(x) is a filter in the lattice ppnR of pp formulas for R-
modules, then there is a module M∗ and a ∈M∗ with ppM

∗
(a) = p.

Example 3.3. If we take M to be the ring of integers, then we can produce a
ring M∗ with comparatively bizzare behaviour: new primes; non-zero elements
divisible by infinitely many distinct primes; non-zero elements divisible by arbi-
trarily high powers of a particular prime, yet M∗ will be a Bezout ring in that
every finitely generated ideal is principal.

3.2 Algebraic compactness and pure-injectivity

A module M is algebraically compact if every filter of cosets of pp-definable
subgroups has non-empty intersection, that is, if every pp-type, consisting of
formulas with parameters from M is realised in M .

Note that if R is a k-algebra where k is a field, then any finite-dimensional
R-module will be algebraically compact (since every pp-definable subgroup is a
k-subspace).

Example 3.4. Consider the localisation M = Z(p) of Z at some prime p (as a
module over itself or over Z). The pp-definable subgroups of M are the pnM
(n ≥ 0) and 0. So the pp-definable cosets form a p-branching tree of infinite
depth and every branch along this tree is a filter/pp-type with parameters from
M . Regarded as descriptions of potential elements, these pp-types are mutually
inconsistent so, since there are uncountable many branches but M is countable,
they are not all realised in M . Hence M is not algebraically compact.

Theorem 3.5. A module is algebraically compact iff it is pure-injective, that
is, injective over pure embeddings.
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Every module M has a pure-injective hull (or pure-injective envelope),
that is, a pure embedding i : M → H(M) into a pure-injective module with the
property that if j : M → N is a pure embedding and N is pure-injective, then
there is a split (in particular, pure) embedding f : M → N with fi = j.

In the example above, the pure-injective hull of M is the embedding of the
localisation Z(p) into its p-adic completion - the ring Z(p) of p-adic integers.

Here are some of the (many) equivalents to pure-injectivity.

Theorem 3.6. The following are equivalent for any module N :
(i) N is pure-injective;
(ii) N is algebraically compact
(iii) N is a direct summand of N∗∗;
(iv) for any (index) set I, the summation map N (I) → N factors through the
canonical embedding N (I) → N I .

3.3 Structure of pure-injective modules and hulls

Pure-injective modules form a class which extends the finite-dimensional mod-
ules into the infinite-dimensional ones but which still has a nice structure theory
and which, over some rings are even classifiable. (Recall that over almost all
rings there is no structure theorem for infinitely generated modules.)

Say that a (nonzero) module is superdecomposable if it has no inde-
composable direct summands. For instance the ring of endomorphisms of a
countably-infinite-dimensional vector space modulo the ideal of finite rank en-
domorphisms, is superdecomposable as a module over itself.

Theorem 3.7. (Structure theorem for pure-injectives) If N is a pure-
injective module then

N = H(
⊕
λ

Nλ)⊕N ′

where each Nλ is an indecomposable pure-injective direct summand of N and
where N ′ is superdecomposable. In all such decompositions, the factors Nλ are
the same up to isomorphism and multiplicity and the superdecomposable factor
is the same up to isomorphism.

Just as finitely presented modules are the ‘correct contexts’ in which to re-
alise finitely generated pp-types (those which, as a filter in ppnR are finitely=singly
generated), pure-injectives give the correct contexts for general pp-types, in the
sense that if a is a tuple from a module M and if p = ppM (a), then, for ev-
ery (matching) tuple b from a pure-injective module N , there is a morphism
f : M → N with fa = b iff p ⊆ ppN (b).

Let p be a pp-type. We have seen that p is realised in some module M
and, since the embedding of M into H(M) is pure, we may assume that M is
pure-injective.

Theorem 3.8. (Fisher, mid70s) Let a be a tuple from a pure-injective module
N . Then there is a pure-injective direct summand, H(a), of N which is minimal
with respect to containing all the entries of a. The module H(a) is unique to
isomorphism over a.

Indeed, if N ′ is any pure-injective module and a′ is a tuple from N ′ such
that ppN (a) = ppN

′
(a′), then there is a split embedding from H(a) to N ′ taking

a to a′.
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In view of this, if p is a pp-type and a (from a pure-injective module) is a
realisation of p, then we set H(p) = H(a), referring to this as the hull of p.

There is the following criterion on p for being realised in an indecompos-
able pure-injective (reflecting that indecomposable pure-injectives have local
endomorphism rings); we say that p is irreducible if the hull H(p) of p is
indecomposable.

Theorem 3.9. (Ziegler’s Criterion [18]) Let p(x) be a pp-type. Then p is
irreducible iff, for every ψ1(x), ψ2(x) not in p, there is φ ∈ p such that

(φ ∧ ψ1) + (φ ∧ ψ2) /∈ p.

If we embed Mod-R in the functor category (R-mod,Ab) using the tensor
embedding MR 7→ M ⊗R −, discussed briefly below, then this criterion be-
comes an expression of the fact that an indecomposable injective object in a
Grothendieck abelian category is uniform (i.e., the intersection of two non-zero
subobjects is non-zero).
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4 Lecture 4: The Ziegler spectrum, definable
categories, functor categories, multisorted mod-
ules

4.1 The Ziegler spectrum

The (right) Ziegler spectrum of R, ZgR, is a topological space whose points
are the isomorphism classes of indecomposable pure-injective right R-modules.
A basis of open sets consists of the sets

(φ/ψ) = {N ∈ ZgR : φ(N) > ψ(N)}

- the set of indecomposable pure-injectives which open the pp-pair φ/ψ. Note
that, because every indecomposable pure-injective is the hull of some pp-type,
we do have just a set of these.

Ziegler proved that this basis consists precisely of the compact open sets.
In particular, the whole space is compact, being (x = x/x = 0), but seldom
Hausdorff (if R is a finite-dimensional algebra then ZgR is Hausdorff, indeed
discrete, iff R is of finite representation type).

If N ∈ ZgR then a basis of open neighbourhoods of N can be obtained by
choosing any pp-type p such that N = H(p) - the corresponding basis then
consists of the sets (φ/ψ), with ψ < φ, such that φ ∈ p, ψ /∈ p.
Example 4.1. If R is a finite-dimensional algebra then, direct from the existence
of almost split sequences, the finite-dimensional indecomposable modules are
precisely the isolated points of ZgR (note that these are pure-injective, hence
points of ZgR). So, if R is a finite-dimensional algebra of infinite represen-
tation type then, by compactness, there is a non-isolated point, that is, an
infinite-dimensional indecomposable (pure-injective) module. It is also the case
that, over a finite-dimensional algebra, the finite-dimensional=isolated points
are dense.

The closed sets are particularly significant in that they parametrise the de-
finable subcategories - these are discussed in the next section.

Example 4.2. Ziegler spectra of tame hereditary algebras are described, see [?],
[?]. It turns out that the infinite-dimensional indecomposable pure-injectives
all are associated to tubes in the regular part of the Auslander-Reiten quiver of
such an algebra.

More precisely, and taking the Kronecker algebra for the simplest example,
we have, associated to each ‘quasisimple’ regular module S, an adic and a Prüfer
module, obtained respectively by taking the inverse limit of the coray ending
at S and the direct limit of the ray starting at S; plus a generic module which

has the structure K(T )
α=1 ,,

β=T

22 K(T ) , where K(T ) denotes the ring of rational

functions in T over the base field K.

Example 4.3. Ziegler spectra of domestic string algebras have been described, see
[?], [?], [9]. Roughly, there are infinite-dimensional band modules analogous to
those seen in the tame hereditary case, plus infinite-dimensional string modules.
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4.2 Definable subcategories

A closed set of the Ziegler spectrum has the form
⋂
λ [φλ/ψλ], so consists of the

indecomposable pure-injectivesN such that φλ(N) = ψλ(N) for each λ. We may
look at the class of all modules M satisfying these closure conditions: this class
is referred to as a definable subcategory of Mod-R. (The name comes about
because such classes of modules are axiomatised, or defined in the precise model-
theoretic sense, by the corresponding set of sentences ∀x (φλ(x) → ψλ(x)).)
This is the sense in which the closed subsets of ZgR parametrise the definable
subcategories of Mod-R.

There are various equivalent characterisations of definable subcategories.

Theorem 4.4. For a class D of R-modules, closed in Mod-R, under isomor-
phism, the following are equivalent:
(i) D forms a definable subcategory of Mod-R;
(ii) D is closed in Mod-R under direct products, direct limits and pure submod-
ules;
(iii) D is closed in Mod-R under ultraproducts, finite direct sums and pure
submodules;
(iv) there is a set fλ : Aλ → Bλ of morphisms in mod-R such that
D = {M : Hom(fλ,M) : Hom(Bλ,M)→ Hom(Aλ,M) is surjective ∀λ}.

These categories also can be characterised as the categories of exact functors
on small abelian categories, see [7], [13].

It is also the case that any definable subcategory is closed under pure quo-
tients; indeed, if 0→ L→ M → N → 0 is a pure-exact sequence, then M ∈ D
iff L,N ∈ D.

Furthermore, if M ∈ D then the pure-injective hull H(M) of M is also in D.

Every definable subcategory is determined by the pure-injective modules
in it, indeed by the set of indecomposable pure-injective modules in it. We
say that a pure-injective module N is an elementary cogenerator for the
definable subcategory D if every module in D purely embeds in some power
N I of D. Every definable category has an elementary cogenerator, which may
be taken, minimally, to be the pure-injective hull of the direct sum of the neg-
isolated pure-injectives in (the closed set corresponding to) D - for these see
below.

Example 4.5. Let R be a tubular canonical algebra. Every finite-dimensional
indecomposable module has a slope (indeed, every indecomposable module has
a slope [17]) which (with some exceptions that we can ignore) is a non-negative
rational or ∞, such that if there is a non-zero morphism A → B with A,B
finite-dimensional indecomposables, then the slope of A is ≤ the slope of B.

Then we can use the Compactness Theorem to show that there are mod-
ules of irrational slope (see [5]), indeed the modules of irrational slope form
a non-zero definable subcategory and so there are, for each positive irrational
r, indecomposable pure-injective modules, necessarily infinite-dimensional, of
slope r.
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4.3 Functor categories

There are many useful functor categories around; here we very briefly discuss
two.

(mod-R,Ab)fp - the category of finitely presented functors (we always mean
additive functors) on finitely presented right modules.

Note that every pp formula φ, and hence every pp-pair φ/ψ, defines a func-
tor, let us denote it Fφ, on Mod-R which, as already remarked, is determined
by its restriction to mod-R (since it commutes with direct limits and since
every module is a direct limit of finitely presented modules). In fact, each
of these (restricted) functors is finitely presented in the large functor category
(mod-R,Ab) and conversely, every finitely presented functor on mod-R has this
form. (Indeed, more is true, the natural transformations also are definable by
pp formulas.)

We can interpret a free realisation (A, c) of a pp formula φ in this category as
being a projective precover (A,−)→ Fφ → 0 of the functor Fφ, where c appears
through the morphism c : RR → A Yoneda-transformed to (c,−) : (A,−) →
(R,−), with Fφ being exactly the image of (c,−).

(R-mod,Ab) - the category of all functors on finitely presented left R-modules.
There is a full and faithful embedding Mod-R→ (R-mod,Ab) given on objects
by M → (M ⊗R −). This functor takes pure-exact sequences in the module
category to exact sequences in the functor category and takes pure-injective
modules to injective functors.

Indeed, the indecomposable pure-injectives are taken to exactly the inde-
composable injective functors, and so the Ziegler topology becomes a topology
on the indecomposable injectives of the functor category (the Zariski topology
on the set of those injectives is, in fact, the dual of the Ziegler topology).

A number of results about pure-injectives that we have mentioned become
corollaries of corresponding results on injectives (giving easy proofs) and, for
instance, Ziegler’s criterion becomes an expression of the fact that an indecom-
posable injective is uniform.

We say that an indecomposable pure-injective N is neg-isolated if N ⊗−
is the injective hull of a simple functor. This is weaker than being isolated in
ZgR, which is equivalent to N ⊗− being the injective hull of a finitely presented
simple functor.
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4.4 Multisorted modules

So far, everything has been said for modules over a ring but, in fact, essentially
everything holds true, and by essentially the same proofs, for “multisorted mod-
ules” by which we mean additive functors from a skeletally small preadditive
category to Ab (see [10]). For example, the objects of the functor category
(mod-R,Ab) are multisorted modules, so all the above applies also to this cat-
egory in place of Mod-R (that is the case where the preadditive category has a
single object). The only point to note is that the whole space need no longer be
compact, because in general no single compact open set is equal to the whole
space.

This viewpoint, and fact that multisorted modules, additive functors on
small preadditive categories, and representations of quivers are all equivalent,
is explained in [15].

In particular, any finitely accessible category (see [1]) with products falls
under the description of being a category of multisorted modules, so all the
above applies to comodules, sheaves of modules, quasicoherent sheaves, and
a variety of other types of structure (in general with some sort of condition to
ensure the finite accessibility, though definable categories of multisorted modules
are more general: though accessible, they need not be finitely accessible).

Finally, we point out that a lot of this can be developed for triangulated
categories, see [2], [3], [4], [8].
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