Equivalence of Some Homological Conditions for Ring Epimorphisms

Alberto Facchini Università di Padova

Conference in memory of Gena Puninski Manchester, 6 April 2018 This talk is dedicated to Gena.

Three joint papers

Three joint papers

A. Facchini and G. Puninski, Σ-pure-injective modules over serial rings, in "Abelian Groups and Modules", A. Facchini and C. Menini Eds., Kluwer Academic Publishers, Dordrecht, 1995, pp. 145-162.

R. Camps, A. Facchini and G. Puninski, *Serial rings that are endomorphism rings of artinian modules*, in "Rings and radicals", B. J. Gardner, Liu Shaoxue and R. Wiegandt Eds., Pitman Research Notes in Math. Series, Longman, 1996.

A. Facchini and G. Puninski, *Classical localizations in serial rings*, Comm. Algebra 24 (11) (1996), 3537-3559.

(1) There exist uniserial modules that are not quasismall.

(1) There exist uniserial modules that are not quasismall.

[G. Puninski, Some model theory over a nearly simple uniserial domain and decompositions of serial modules, J. Pure Appl. Algebra 163 (2001), 319–337]

- (1) There exist uniserial modules that are not quasismall.
- [G. Puninski, Some model theory over a nearly simple uniserial domain and decompositions of serial modules, J. Pure Appl. Algebra 163 (2001), 319–337]
- (2) There exist direct summands of serial modules that are not serial.

- (1) There exist uniserial modules that are not quasismall.
- [G. Puninski, Some model theory over a nearly simple uniserial domain and decompositions of serial modules, J. Pure Appl. Algebra 163 (2001), 319–337]
- (2) There exist direct summands of serial modules that are not serial.
- [G. Puninski, Some model theory over an exceptional uniserial ring and decompositions of serial modules, J. London Math. Soc. (2) 64 (2001), 311–326]

R any ring, not necessarily commutative, M_R any right R-module.

R any ring, not necessarily commutative, M_R any right R-module.

 M_R is uniserial if its lattice of submodules is linearly ordered

R any ring, not necessarily commutative, M_R any right R-module.

 M_R is *uniserial* if its lattice of submodules is linearly ordered, that is, if for any submodules A, B of M_R either $A \subseteq B$ or $B \subseteq A$.

R any ring, not necessarily commutative, M_R any right R-module.

 M_R is *uniserial* if its lattice of submodules is linearly ordered, that is, if for any submodules A, B of M_R either $A \subseteq B$ or $B \subseteq A$.

A module M_R over a ring R is *small* if for every family $\{M_i \mid i \in I\}$ of R-modules and every homomorphism $\varphi \colon M_R \to \bigoplus_{i \in I} M_i$, there is a finite subset $F \subseteq I$ such that $\varphi(M) \subseteq \bigoplus_{i \in F} M_i$.

R any ring, not necessarily commutative, M_R any right R-module.

 M_R is *uniserial* if its lattice of submodules is linearly ordered, that is, if for any submodules A, B of M_R either $A \subseteq B$ or $B \subseteq A$.

A module M_R over a ring R is *small* if for every family $\{M_i \mid i \in I\}$ of R-modules and every homomorphism $\varphi \colon M_R \to \bigoplus_{i \in I} M_i$, there is a finite subset $F \subseteq I$ such that $\varphi(M) \subseteq \bigoplus_{i \in F} M_i$.

 M_R is *quasismall* if for every family $\{M_i \mid i \in I\}$ of R-modules such that M_R is isomorphic to a direct summand of $\bigoplus_{i \in I} M_i$, there is a finite subset $F \subseteq I$ such that M_R is isomorphic to a direct summand of $\bigoplus_{i \in F} M_i$.

There exist direct summands of serial modules that are not serial.

A module M_R is *serial* if it is a direct sum of uniserial sumodules.

There exist direct summands of serial modules that are not serial.

A module M_R is *serial* if it is a direct sum of uniserial sumodules.

For both problems: Gena's idea is to use chain rings R (i.e., rings R with both R_R and R uniserial modules) which are nearly simple (are not Artinian and have only three two-sided ideals: 0, R and the Jacobson radical J(R)).

The theory (uniserial modules, direct summands of serial modules, non-quasismall uniserial modules,...) was further greatly developed in the following years by Pavel Příhoda.

Dubrovin-Puninski ring

[S. Bazzoni, I. Herzog, P. Příhoda, J. Šaroch and J. Trlifaj, *Pure projective tilting modules*, submitted for publication, available in arXiv]

Dubrovin-Puninski ring

[S. Bazzoni, I. Herzog, P. Příhoda, J. Šaroch and J. Trlifaj, *Pure projective tilting modules*, submitted for publication, available in arXiv]

If R is a nearly simple chain domain, Gena proved that all modules R/rR ($r \in J(R)$, $r \neq 0$) are isomorphic. A *Dubrovin-Puninski ring* is a ring of the form $\operatorname{End}(R/rR)$.

Dubrovin-Puninski ring

[S. Bazzoni, I. Herzog, P. Příhoda, J. Šaroch and J. Trlifaj, *Pure projective tilting modules*, submitted for publication, available in arXiv]

If R is a nearly simple chain domain, Gena proved that all modules R/rR ($r \in J(R)$, $r \neq 0$) are isomorphic. A *Dubrovin-Puninski ring* is a ring of the form $\operatorname{End}(R/rR)$. It has two maximal right ideals.

This talk is dedicated to Gena.

Joint work with Zahra Nazemian

Joint work with Zahra Nazemian

[F. and Nazemian, *Equivalence of Some Homological Conditions for Ring Epimorphisms*, submitted for publication, available in arXiv]

Fuchs and Salce

[L. Fuchs and L. Salce, *Almost perfect commutative rings*, J. Pure Appl. Algebra, Available online 9 March 2018.]

Fuchs and Salce

[L. Fuchs and L. Salce, *Almost perfect commutative rings, J. Pure Appl. Algebra, Available online 9 March 2018.*]

Equivalence of nine conditions for modules over commutative rings R with perfect ring of quotients Q.

Fuchs and Salce, 2017

Theorem. If R is an order in a commutative perfect ring Q, then the following conditions are equivalent:

- (i) R is an almost perfect ring (i.e., R/Rr is a perfect ring for every non-zero-divisors $r \in R$).
- (ii) Flat R-modules are strongly flat.
- (iii) Matlis-cotorsion R-modules are Enochs-cotorsion.
- (iv) R-modules of w.d. ≤ 1 are of p.d. ≤ 1 .
- (v) The cotorsion pairs $(\mathcal{P}_1, \mathcal{D})$ and $(\mathcal{F}_1, \mathcal{WI})$ are equal $(\mathcal{P}_1 R$ -modules of projective dimension ≤ 1 and $\mathcal{F}_1 R$ -modules of weak dimension ≤ 1).
- (vi) Divisible R-modules are weak-injective.
- (vii) h-divisible R-modules are weak-injective.
- (viii) Homomorphic images of weak-injective R-modules are weak-injective.
- (ix) R is h-local and Q/R is semi-artinian.

In our paper, we prove that seven of these nine conditions are equivalent for non-commutative rings, imposing a "hierarchy" of four sets of more and more strict conditions on the extension of rings $R\subseteq Q$.

R and Q are rings

R and Q are rings, $\varphi\colon R\to Q$ is a bimorphism in the category of rings

R and Q are rings, $\varphi\colon R\to Q$ is a bimorphism in the category of rings, that is, φ is both a monomorphism and an epimorphism

R and Q are rings, $\varphi \colon R \to Q$ is a bimorphism in the category of rings, that is, φ is both a monomorphism and an epimorphism, and $\operatorname{Tor}_1^R(Q,Q)=0$.

R and Q are rings, $\varphi \colon R \to Q$ is a bimorphism in the category of rings, that is, φ is both a monomorphism and an epimorphism, and $\operatorname{Tor}_1^R(Q,Q) = 0$.

Set $K:=Q/\varphi(R)$. The mapping φ is injective, and is a ring morphism, so that R can be viewed as a subring of Q via φ . We will always identify via φ the isomorphic rings R and $\varphi(R)$, so that φ will be always seen as an inclusion.

The class of all right R-modules M_R with $M \otimes_R Q = 0$ is closed under homomorphic images, direct sums and extensions

The class of all right R-modules M_R with $M \otimes_R Q = 0$ is closed under homomorphic images, direct sums and extensions, and therefore it is the torsion class for a torsion theory in Mod-R.

The class of all right R-modules M_R with $M \otimes_R Q = 0$ is closed under homomorphic images, direct sums and extensions, and therefore it is the torsion class for a torsion theory in Mod-R.

We will denote by $t(M_R)$ the torsion submodule of any right R-module M_R in this torsion theory.

The class of all right R-modules M_R with $M \otimes_R Q = 0$ is closed under homomorphic images, direct sums and extensions, and therefore it is the torsion class for a torsion theory in Mod-R.

We will denote by $t(M_R)$ the torsion submodule of any right R-module M_R in this torsion theory. In all the talk, whenever we say "torsion" or "torsion-free", we will refer to this torsion theory.

(Angeleri-Sánchez, Geigle-Lenzing).

A right R-module M_R is a right Q-module M_Q if and only if $\operatorname{Ext}^1_R(K_R,M_R)=0$ and $\operatorname{Hom}(K_R,M_R)=0$

A right R-module M_R is a right Q-module M_Q if and only if

$$\operatorname{Ext}^1_R(K_R,M_R)=0$$
 and $\operatorname{Hom}(K_R,M_R)=0$

(Angeleri-Sánchez, Geigle-Lenzing).

As a consequence, if a right R-module M_R is a right Q-module M_Q , then its unique right Q-module structure is given by the canonical isomorphism $\operatorname{Hom}(Q_R,M_R)\to M_R$.

A right R-module M_R is a right Q-module M_Q if and only if

$$\operatorname{Ext}^1_R(K_R,M_R)=0$$
 and $\operatorname{Hom}(K_R,M_R)=0$

(Angeleri-Sánchez, Geigle-Lenzing).

As a consequence, if a right R-module M_R is a right Q-module M_Q , then its unique right Q-module structure is given by the canonical isomorphism $\operatorname{Hom}(Q_R,M_R)\to M_R$.

The inclusion $R \hookrightarrow Q$ is an epimorphism \Leftrightarrow the R-R-bimodule $Q \otimes_R Q$ is isomorphic to the R-R-bimodule Q via the canonical isomorphism induced by multiplication $\cdot \colon Q \times Q \to Q$ in the ring $Q \Leftrightarrow Q \otimes_R K = 0$.

A right R-module M_R is a right Q-module M_Q if and only if

$$\operatorname{Ext}^1_R(K_R,M_R)=0$$
 and $\operatorname{Hom}(K_R,M_R)=0$

(Angeleri-Sánchez, Geigle-Lenzing).

As a consequence, if a right R-module M_R is a right Q-module M_Q , then its unique right Q-module structure is given by the canonical isomorphism $\operatorname{Hom}(Q_R,M_R)\to M_R$.

The inclusion $R \hookrightarrow Q$ is an epimorphism \Leftrightarrow the R-R-bimodule $Q \otimes_R Q$ is isomorphic to the R-R-bimodule Q via the canonical isomorphism induced by multiplication $\cdot \colon Q \times Q \to Q$ in the ring $Q \Leftrightarrow Q \otimes_R K = 0$.

Every right *Q*-module is a torsion-free *R*-module.

Lemma

The following conditions are equivalent for a right R-module N_R :

- (1) Every homomorphism $R_R \to N_R$ extends to a right R-module morphism $Q \to N_R$.
- (2) N_R is a homomorphic image of a right Q-module.
- (3) N_R is a homomorphic image of a direct sum of copies of Q.

Lemma

The following conditions are equivalent for a right R-module N_R :

- (1) Every homomorphism $R_R \to N_R$ extends to a right R-module morphism $Q \to N_R$.
- (2) N_R is a homomorphic image of a right Q-module.
- (3) N_R is a homomorphic image of a direct sum of copies of Q.

We say that a right R-module is h-divisible if it satisfies the equivalent conditions of this Lemma.

Lemma

The following conditions are equivalent for a right R-module N_R :

- (1) Every homomorphism $R_R \to N_R$ extends to a right R-module morphism $Q \to N_R$.
- (2) N_R is a homomorphic image of a right Q-module.
- (3) N_R is a homomorphic image of a direct sum of copies of Q.

We say that a right R-module is h-divisible if it satisfies the equivalent conditions of this Lemma. Any direct sum of h-divisible right R-modules is h-divisible, homomorphic images of h-divisible modules are h-divisible, injective modules are h-divisible,

Lemma

The following conditions are equivalent for a right R-module N_R :

- (1) Every homomorphism $R_R \to N_R$ extends to a right R-module morphism $Q \to N_R$.
- (2) N_R is a homomorphic image of a right Q-module.
- (3) N_R is a homomorphic image of a direct sum of copies of Q.

We say that a right R-module is h-divisible if it satisfies the equivalent conditions of this Lemma. Any direct sum of h-divisible right R-modules is h-divisible, homomorphic images of h-divisible modules are h-divisible, injective modules are h-divisible, and any right R-module B_R contains a unique largest h-divisible submodule $h(B_R)$ that contains every h-divisible submodule of B_R . We will say that B_R is h-reduced if $h(B_R) = 0$ (equivalently, if B_R has no nonzero h-divisible submodule, equivalently if $Hom(Q_R, B_R) = 0$).

A right module M_R is Matlis-cotorsion if $\operatorname{Ext}^1_R(Q_R,M_R)=0$.

A right module M_R is Matlis-cotorsion if $\operatorname{Ext}^1_R(Q_R,M_R)=0$.

Theorem

The right R-module $\operatorname{Hom}({}_RK_R,M_R)$ is torsion-free Matlis-cotorsion h-reduced for every right R-module M_R .

R and Q are rings, $\varphi\colon R\to Q$ is a bimorphism in the category of rings, and ${}_RQ$ is a flat left R-module.

R and Q are rings, $\varphi\colon R\to Q$ is a bimorphism in the category of rings, and ${}_RQ$ is a flat left R-module. Then:

R and Q are rings, $\varphi \colon R \to Q$ is a bimorphism in the category of rings, and ${}_RQ$ is a flat left R-module. Then:

The inclusion of R into its maximal right ring of quotients $Q_{\max}(R)$ factors through the mapping φ , that is, $R\subseteq Q\subseteq Q_{\max}(R)$ without loss of generality.

R and Q are rings, $\varphi\colon R\to Q$ is a bimorphism in the category of rings, and ${}_RQ$ is a flat left R-module. Then:

The inclusion of R into its maximal right ring of quotients $Q_{\max}(R)$ factors through the mapping φ , that is, $R \subseteq Q \subseteq Q_{\max}(R)$ without loss of generality.

 $\varphi\colon R \to Q$ is the canonical homomorphism of R into its right localization $R_{\mathcal{F}}$, where $\mathcal{F} = \{I \mid I \text{ is a right ideal of } R \text{ and } \varphi(I)Q = Q\}$ is a Gabriel topology consisting of dense right ideals.

R and Q are rings, $\varphi\colon R\to Q$ is a bimorphism in the category of rings, and ${}_RQ$ is a flat left R-module. Then:

The inclusion of R into its maximal right ring of quotients $Q_{\max}(R)$ factors through the mapping φ , that is, $R\subseteq Q\subseteq Q_{\max}(R)$ without loss of generality.

 $\varphi\colon R \to Q$ is the canonical homomorphism of R into its right localization $R_{\mathcal{F}}$, where $\mathcal{F} = \{I \mid I \text{ is a right ideal of } R \text{ and } \varphi(I)Q = Q\}$ is a Gabriel topology consisting of dense right ideals. Moreover, \mathcal{F} has a basis consisting of finitely generated right ideals.

For every right R-module M_R , the kernel of the canonical right R-module morphism $M_R \to M \otimes_R Q$ is the torsion submodule $t(M_R)$ of M_R .

For every right R-module M_R , the kernel of the canonical right R-module morphism $M_R \to M \otimes_R Q$ is the torsion submodule $t(M_R)$ of M_R .

The torsion submodule $t(M_R)$ of any right R-module M_R is isomorphic to $\operatorname{Tor}_1^R(M_{R,R}K)$.

A left R-module $_RD$ is divisible if D=ID for every $I\in\mathcal{F}$ (equivalently, if $M\otimes_RD=0$ for every torsion right R-module M_R).

A left R-module $_RD$ is divisible if D=ID for every $I\in\mathcal{F}$ (equivalently, if $M\otimes_RD=0$ for every torsion right R-module M_R).

h-divisible left R-modules are divisible.

Theorem

(1) For every right R-module M_R , there is a short exact sequence of right R-modules

$$0 \longrightarrow M_R/t(M_R) \longrightarrow M \otimes_R Q \longrightarrow M \otimes_R K \longrightarrow 0.$$

Theorem

(1) For every right R-module M_R , there is a short exact sequence of right R-modules

$$0 \longrightarrow M_R/t(M_R) \longrightarrow M \otimes_R Q \longrightarrow M \otimes_R K \longrightarrow 0.$$

(2) For every left R-module $_RB$, there are two short exact sequences of left R-modules

$$0 \longrightarrow \operatorname{Hom}({}_RK_R,{}_RB) \longrightarrow \operatorname{Hom}({}_RQ_R,{}_RB) \longrightarrow h({}_RB) \longrightarrow 0$$

Theorem

(1) For every right R-module M_R , there is a short exact sequence of right R-modules

$$0 \longrightarrow M_R/t(M_R) \longrightarrow M \otimes_R Q \longrightarrow M \otimes_R K \longrightarrow 0.$$

(2) For every left R-module $_RB$, there are two short exact sequences of left R-modules

$$0 \longrightarrow \operatorname{Hom}({}_RK_R, {}_RB) \longrightarrow \operatorname{Hom}({}_RQ_R, {}_RB) \longrightarrow h({}_RB) \longrightarrow 0$$
and

$$0 \longrightarrow_{R} B/h({}_{R}B) \longrightarrow \operatorname{Ext}^{1}_{R}({}_{R}K_{R},{}_{R}B) \longrightarrow \operatorname{Ext}^{1}_{R}({}_{R}Q_{R},{}_{R}B) \longrightarrow 0.$$

Corollary

For every torsion right R-module M_R , the canonical mapping

$$\pi \colon \operatorname{Hom}({}_RK_R, M_R) \otimes_R K \to h(M_R)$$

defined by $\pi(f \otimes x) = f(x)$ for every $f \in \text{Hom}(K_R, M_R)$ and $x \in K$ is a right R-module epimorphism.

And now we will consider *left R*-modules.

And now we will consider *left R*-modules.

Define the class of *Matlis-cotorsion* left *R*-modules by $_R\mathcal{MC}:={_RQ^\perp}$ and the class of *strongly flat* left *R*-modules by $_R\mathcal{SF}:={^\perp}(_R\mathcal{MC}).$

And now we will consider *left R*-modules.

Define the class of *Matlis-cotorsion* left *R*-modules by ${}_R\mathcal{MC}:={}_RQ^\perp$ and the class of *strongly flat* left *R*-modules by ${}_R\mathcal{SF}:={}^\perp({}_R\mathcal{MC})$. A left module ${}_RM$ will be said to be *Enochs-cotorsion* if $\operatorname{Ext}^1_R({}_RF,{}_RM)=0$ for all flat left *R*-modules ${}_RF$. Their class will be denoted by ${}_R\mathcal{EC}$.

And now we will consider *left R*-modules.

Define the class of *Matlis-cotorsion* left *R*-modules by $_R\mathcal{MC}:={}_RQ^\perp$ and the class of *strongly flat* left *R*-modules by $_R\mathcal{SF}:={}^\perp({}_R\mathcal{MC})$. A left module $_RM$ will be said to be *Enochs-cotorsion* if $\operatorname{Ext}^1_R({}_RF,{}_RM)=0$ for all flat left *R*-modules $_RF$. Their class will be denoted by $_R\mathcal{EC}$. If $_R\mathcal{F}$ is the class of flat left *R*-modules, then $({}_R\mathcal{F},{}_R\mathcal{EC})$ is a cotorsion pair.

And now we will consider *left R*-modules.

Define the class of Matlis-cotorsion left R-modules by ${}_R\mathcal{MC}:={}_RQ^\perp$ and the class of strongly flat left R-modules by ${}_R\mathcal{SF}:={}^\perp({}_R\mathcal{MC}).$ A left module ${}_RM$ will be said to be Enochs-cotorsion if $\operatorname{Ext}^1_R({}_RF,{}_RM)=0$ for all flat left R-modules ${}_RF.$ Their class will be denoted by ${}_R\mathcal{EC}.$ If ${}_R\mathcal{F}$ is the class of flat left R-modules, then $({}_R\mathcal{F},{}_R\mathcal{EC})$ is a cotorsion pair. Since ${}_RQ$ is flat, $Q^\perp\supseteq\mathcal{F}^\perp={}_R\mathcal{EC}$ and since ${}^\perp({}_R\mathcal{EC})=\mathcal{F},$ we have that strongly flat modules are flat.

Notice that the concept of Enochs-cotorsion left R-module is an "absolute concept", in the sense that it depends only on the ring R, while the concept of Matlis-cotorsion left R-module is a "relative concept", in the sense that it also depends on the choice of the overring Q of R with $_RQ$ flat.

It is well known that every left module has an Enochs-cotorsion envelope.

It is well known that every left module has an Enochs-cotorsion envelope.

Theorem

If Q is a left perfect ring, then every left R-module has an \mathcal{MC} -envelope.

It is well known that every left module has an Enochs-cotorsion envelope.

Theorem

If Q is a left perfect ring, then every left R-module has an \mathcal{MC} -envelope.

A left *R*-module $_RM$ is called *weak-injective* if $\operatorname{Ext}^1_R(I,M)=0$ for all modules I of weak dimension ≤ 1 .

It is well known that every left module has an Enochs-cotorsion envelope.

Theorem

If Q is a left perfect ring, then every left R-module has an \mathcal{MC} -envelope.

A left *R*-module $_RM$ is called *weak-injective* if $\operatorname{Ext}^1_R(I,M)=0$ for all modules I of weak dimension ≤ 1 .

Lemma

Weak-injective left R-modules are h-divisible and Matlis-cotorsion.

Third set of conditions: \mathcal{F} is a 1-topology

We have already said that the Gabriel topology ${\cal F}$ always has a basis consisting of finitely generated right ideals.

Third set of conditions: \mathcal{F} is a 1-topology

We have already said that the Gabriel topology \mathcal{F} always has a basis consisting of finitely generated right ideals. Now we will suppose that the Gabriel topology \mathcal{F} is a 1-topology,

Third set of conditions: \mathcal{F} is a 1-topology

We have already said that the Gabriel topology $\mathcal F$ always has a basis consisting of finitely generated right ideals. Now we will suppose that the Gabriel topology $\mathcal F$ is a 1-topology, that is, that $\mathcal F$ has a basis consisting of principal right ideals. Thus $\mathcal F$ is completely determined by the set $S:=\{s\in R\mid sR\in \mathcal F\}$.

We have already said that the Gabriel topology $\mathcal F$ always has a basis consisting of finitely generated right ideals. Now we will suppose that the Gabriel topology $\mathcal F$ is a 1-topology, that is, that $\mathcal F$ has a basis consisting of principal right ideals. Thus $\mathcal F$ is completely determined by the set $S:=\{s\in R\mid sR\in \mathcal F\}.$

We have already said that the Gabriel topology $\mathcal F$ always has a basis consisting of finitely generated right ideals. Now we will suppose that the Gabriel topology $\mathcal F$ is a 1-topology, that is, that $\mathcal F$ has a basis consisting of principal right ideals. Thus $\mathcal F$ is completely determined by the set $S:=\{s\in R\mid sR\in \mathcal F\}$.

Thus, we now suppose that R is a ring and S is a multiplicatively closed subset of R satisfying:

(1) If $a, b \in R$ and $ab \in S$, then $a \in S$.

We have already said that the Gabriel topology $\mathcal F$ always has a basis consisting of finitely generated right ideals. Now we will suppose that the Gabriel topology $\mathcal F$ is a 1-topology, that is, that $\mathcal F$ has a basis consisting of principal right ideals. Thus $\mathcal F$ is completely determined by the set $S:=\{s\in R\mid sR\in \mathcal F\}.$

- (1) If $a, b \in R$ and $ab \in S$, then $a \in S$.
- (2) If $s \in S$ and $a \in R$, then there are $t \in S$ and $b \in R$ such that sb = at (i.e., S satisfies the right Ore condition).

We have already said that the Gabriel topology $\mathcal F$ always has a basis consisting of finitely generated right ideals. Now we will suppose that the Gabriel topology $\mathcal F$ is a 1-topology, that is, that $\mathcal F$ has a basis consisting of principal right ideals. Thus $\mathcal F$ is completely determined by the set $S:=\{s\in R\mid sR\in \mathcal F\}$.

- (1) If $a, b \in R$ and $ab \in S$, then $a \in S$.
- (2) If $s \in S$ and $a \in R$, then there are $t \in S$ and $b \in R$ such that sb = at (i.e., S satisfies the right Ore condition).
- (3) The elements of S are not right zero-divisors.

We have already said that the Gabriel topology $\mathcal F$ always has a basis consisting of finitely generated right ideals. Now we will suppose that the Gabriel topology $\mathcal F$ is a 1-topology, that is, that $\mathcal F$ has a basis consisting of principal right ideals. Thus $\mathcal F$ is completely determined by the set $S:=\{s\in R\mid sR\in \mathcal F\}.$

- (1) If $a, b \in R$ and $ab \in S$, then $a \in S$.
- (2) If $s \in S$ and $a \in R$, then there are $t \in S$ and $b \in R$ such that sb = at (i.e., S satisfies the right Ore condition).
- (3) The elements of S are not right zero-divisors.
- (4) $Q := R_{\mathcal{F}}$ is directly finite.

Lemma

Let $\mathcal F$ be the Gabriel topology consisting of all right ideals I of R such that $I\cap S\neq 0$, let $R_{\mathcal F}$ be the localization and $\varphi\colon R\to R_{\mathcal F}$ be the canonical mapping. Then $\mathcal F$ consists of dense right ideals, φ is a bimorphism and $_RR_{\mathcal F}$ is a flat left R-module.

Proposition

For every torsion right R-module M_R , the canonical mapping

$$\pi \colon \operatorname{Hom}({}_RK_R, M_R) \otimes_R K \to h(M_R),$$

defined by $\pi(f \otimes x) = f(x)$ for every $f \in \text{Hom}(K_R, M_R)$, is a right R-module isomorphism.

Theorem

Let M_R be an h-reduced torsion-free right R-module. Then the canonical mapping $\lambda \colon M_R \to \operatorname{Hom}(K_R, M \otimes_R K)$ is injective and its cokernel is isomorphic to $\operatorname{Ext}^1_R(Q_R, M_R)$.

Corollary

Let M_R be an h-reduced torsion-free Matlis-cotorsion right R-module. Then the canonical mapping

$$\lambda \colon M_R \to \operatorname{Hom}(K_R, M \otimes_R K)$$

is an isomorphism.

In our setting we have the Matlis category equivalence:

Theorem

There is an equivalence of the category $\mathcal C$ of h-reduced torsion-free Matlis-cotorsion right R-modules with the category $\mathcal T$ of h-divisible torsion right R-modules, given by

$$-\otimes_R K \colon \mathcal{C} \to \mathcal{T}$$
 and $\operatorname{Hom}(K_R, -) \colon \mathcal{T} \to \mathcal{C}$.

Fourth set of conditions: left and right flat bimorphisms, and 1-topologies

Now we assume that we have a a ring R for which the set S of all its regular elements is both a right denominator set and a left denominator set (right and left Ore ring), $Q = R[S^{-1}] = [S^{-1}]R$ (the classical right and left ring of quotients of R) and F. $\dim(Q_Q) = 0$.

Fourth set of conditions: left and right flat bimorphisms, and 1-topologies

Now we assume that we have a a ring R for which the set S of all its regular elements is both a right denominator set and a left denominator set (right and left Ore ring), $Q = R[S^{-1}] = [S^{-1}]R$ (the classical right and left ring of quotients of R) and F. $\dim(Q_Q) = 0$.

Related to [L. Angeleri, D. Herbera, J. Trlifaj, *Divisible modules and localization*, J. Algebra 294 (2005), 519–551].

$$\mathsf{F.\,dim}(Q_Q)=0$$

The big finitistic dimension is defined by

$$\mathsf{F.dim}(Q_Q) := \sup \{ \, \mathsf{p.d.}(M_Q) \mid M_Q \text{ any right Q-module} \\$$
 with $\mathsf{p.d.}(M_Q) < \infty \, \}.$

Thus, for a ring Q, F. $\dim(Q_Q) = 0$ means that every right R-module has projective dimension 0 or ∞ .

$$\mathsf{F.\,dim}(Q_Q)=0$$

The big finitistic dimension is defined by

$$\mathsf{F.\,dim}(Q_Q) := \sup \{ \, \mathsf{p.\,d.}(M_Q) \mid M_Q \text{ any right Q-module}$$
 with $\, \mathsf{p.\,d.}(M_Q) < \infty \, \}.$

Thus, for a ring Q, F. $\dim(Q_Q) = 0$ means that every right R-module has projective dimension 0 or ∞ .

A commutative ring Q is perfect if and only if $F. \dim(Q_Q) = 0$.

$$\mathsf{F.\,dim}(Q_Q)=0$$

The big finitistic dimension is defined by

$$\mathsf{F.\,dim}(Q_Q) := \sup\{\,\mathsf{p.\,d.}(M_Q) \mid M_Q \text{ any right } Q\text{-module}$$
 with $\mathsf{p.\,d.}(M_Q) < \infty\,\}.$

Thus, for a ring Q, F. dim $(Q_Q) = 0$ means that every right R-module has projective dimension 0 or ∞ .

A commutative ring Q is perfect if and only if $F. \dim(Q_Q) = 0$.

For an arbitrary, not-necessarily commutative, ring Q, F. $\dim(Q_Q)=0$ if and only if Q is right perfect and every simple right Q-module is a homomorphic image of an injective module (Bass).

Fourth set of conditions: left and right flat bimorphisms, and 1-topologies

Theorem

Assume that R is a right and left Ore ring and F. dim $(Q_Q) = 0$, where $Q = R[S^{-1}] = [S^{-1}]R$. Then the following conditions are equivalent:

- (i) Flat right R-modules are strongly flat.
- (ii) Matlis-cotorsion right R-modules are Enochs-cotorsion.
- (iii) h-divisible right R-modules are weak-injective.
- (iv) Homomorphic images of weak-injective right R-modules are weak-injective.
- (v) Homomorphic images of injective right R-modules are weak-injective.
- (vi) Right R-modules of w. d. ≤ 1 are of p. d. ≤ 1 .
- (vii) The cotorsion pairs $(\mathcal{P}_1, \mathcal{D})$ and $(\mathcal{F}_1, \mathcal{WI})$ coincide.
- (viii) Divisible right R-modules are weak-injective.