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There exist uniserial modules that are not quasismall

R any ring, not necessarily commutative, MR any right R-module.

MR is uniserial if its lattice of submodules is linearly ordered, that
is, if for any submodules A,B of MR either A ⊆ B or B ⊆ A.

A module MR over a ring R is small if for every family {Mi | i ∈ I }
of R-modules and every homomorphism ϕ : MR → ⊕i∈IMi , there is
a finite subset F ⊆ I such that ϕ(M) ⊆ ⊕i∈FMi .

MR is quasismall if for every family {Mi | i ∈ I } of R-modules
such that MR is isomorphic to a direct summand of ⊕i∈IMi , there
is a finite subset F ⊆ I such that MR is isomorphic to a direct
summand of ⊕i∈FMi .



There exist uniserial modules that are not quasismall

R any ring, not necessarily commutative, MR any right R-module.

MR is uniserial if its lattice of submodules is linearly ordered

, that
is, if for any submodules A,B of MR either A ⊆ B or B ⊆ A.

A module MR over a ring R is small if for every family {Mi | i ∈ I }
of R-modules and every homomorphism ϕ : MR → ⊕i∈IMi , there is
a finite subset F ⊆ I such that ϕ(M) ⊆ ⊕i∈FMi .

MR is quasismall if for every family {Mi | i ∈ I } of R-modules
such that MR is isomorphic to a direct summand of ⊕i∈IMi , there
is a finite subset F ⊆ I such that MR is isomorphic to a direct
summand of ⊕i∈FMi .



There exist uniserial modules that are not quasismall

R any ring, not necessarily commutative, MR any right R-module.

MR is uniserial if its lattice of submodules is linearly ordered, that
is, if for any submodules A,B of MR either A ⊆ B or B ⊆ A.

A module MR over a ring R is small if for every family {Mi | i ∈ I }
of R-modules and every homomorphism ϕ : MR → ⊕i∈IMi , there is
a finite subset F ⊆ I such that ϕ(M) ⊆ ⊕i∈FMi .

MR is quasismall if for every family {Mi | i ∈ I } of R-modules
such that MR is isomorphic to a direct summand of ⊕i∈IMi , there
is a finite subset F ⊆ I such that MR is isomorphic to a direct
summand of ⊕i∈FMi .



There exist uniserial modules that are not quasismall

R any ring, not necessarily commutative, MR any right R-module.

MR is uniserial if its lattice of submodules is linearly ordered, that
is, if for any submodules A,B of MR either A ⊆ B or B ⊆ A.

A module MR over a ring R is small if for every family {Mi | i ∈ I }
of R-modules and every homomorphism ϕ : MR → ⊕i∈IMi , there is
a finite subset F ⊆ I such that ϕ(M) ⊆ ⊕i∈FMi .

MR is quasismall if for every family {Mi | i ∈ I } of R-modules
such that MR is isomorphic to a direct summand of ⊕i∈IMi , there
is a finite subset F ⊆ I such that MR is isomorphic to a direct
summand of ⊕i∈FMi .



There exist uniserial modules that are not quasismall

R any ring, not necessarily commutative, MR any right R-module.

MR is uniserial if its lattice of submodules is linearly ordered, that
is, if for any submodules A,B of MR either A ⊆ B or B ⊆ A.

A module MR over a ring R is small if for every family {Mi | i ∈ I }
of R-modules and every homomorphism ϕ : MR → ⊕i∈IMi , there is
a finite subset F ⊆ I such that ϕ(M) ⊆ ⊕i∈FMi .

MR is quasismall if for every family {Mi | i ∈ I } of R-modules
such that MR is isomorphic to a direct summand of ⊕i∈IMi , there
is a finite subset F ⊆ I such that MR is isomorphic to a direct
summand of ⊕i∈FMi .



There exist direct summands of serial modules that are not
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A module MR is serial if it is a direct sum of uniserial sumodules.

For both problems: Gena’s idea is to use chain rings R (i.e., rings
R with both RR and RR uniserial modules) which are nearly simple
(are not Artinian and have only three two-sided ideals: 0, R and
the Jacobson radical J(R)).
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The theory (uniserial modules, direct summands of serial modules,
non-quasismall uniserial modules,. . . ) was further greatly
developed in the following years by Pavel Př́ıhoda.



Dubrovin-Puninski ring

[S. Bazzoni, I. Herzog, P. Př́ıhoda, J. Šaroch and J. Trlifaj, Pure
projective tilting modules, submitted for publication, available in
arXiv]

If R is a nearly simple chain domain, Gena proved that all modules
R/rR (r ∈ J(R), r 6= 0) are isomorphic. A Dubrovin-Puninski ring
is a ring of the form End(R/rR). It has two maximal right ideals.
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Fuchs and Salce, 2017

Theorem. If R is an order in a commutative perfect ring Q, then
the following conditions are equivalent:
(i) R is an almost perfect ring (i.e., R/Rr is a perfect ring for
every non-zero-divisors r ∈ R).
(ii) Flat R-modules are strongly flat.
(iii) Matlis-cotorsion R-modules are Enochs-cotorsion.
(iv) R-modules of w.d.≤ 1 are of p.d.≤ 1.
(v) The cotorsion pairs (P1,D) and (F1,WI) are equal (P1
R-modules of projective dimension ≤ 1 and F1 R-modules of weak
dimension ≤ 1).
(vi) Divisible R-modules are weak-injective.
(vii) h-divisible R-modules are weak-injective.
(viii) Homomorphic images of weak-injective R-modules are
weak-injective.
(ix) R is h-local and Q/R is semi-artinian.



In our paper, we prove that seven of these nine conditions are
equivalent for non-commutative rings, imposing a “hierarchy” of
four sets of more and more strict conditions on the extension of
rings R ⊆ Q.



First set of conditions on the extension R ⊆ Q

R and Q are rings

, ϕ : R → Q is a bimorphism in the category of
rings, that is, ϕ is both a monomorphism and an epimorphism, and
TorR1 (Q,Q) = 0.

Set K := Q/ϕ(R). The mapping ϕ is injective, and is a ring
morphism, so that R can be viewed as a subring of Q via ϕ. We
will always identify via ϕ the isomorphic rings R and ϕ(R), so that
ϕ will be always seen as an inclusion.
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The class of all right R-modules MR with M ⊗R Q = 0 is closed
under homomorphic images, direct sums and extensions

, and
therefore it is the torsion class for a torsion theory in Mod-R.

We will denote by t(MR) the torsion submodule of any right
R-module MR in this torsion theory. In all the talk, whenever we
say “torsion” or “torsion-free”, we will refer to this torsion theory.
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First set of conditions on the extension R ⊆ Q

A right R-module MR is a right Q-module MQ if and only if

Ext1R(KR ,MR) = 0 and Hom(KR ,MR) = 0

(Angeleri-Sánchez, Geigle-Lenzing).

As a consequence, if a right R-module MR is a right Q-module
MQ , then its unique right Q-module structure is given by the
canonical isomorphism Hom(QR ,MR)→ MR .

The inclusion R ↪→ Q is an epimorphism ⇔ the R-R-bimodule
Q ⊗R Q is isomorphic to the R-R-bimodule Q via the canonical
isomorphism induced by multiplication · : Q × Q → Q in the ring
Q ⇔ Q ⊗R K = 0.

Every right Q-module is a torsion-free R-module.
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First set of conditions on the extension R ⊆ Q

Lemma
The following conditions are equivalent for a right R-module NR :
(1) Every homomorphism RR → NR extends to a right R-module
morphism Q → NR .
(2) NR is a homomorphic image of a right Q-module.
(3) NR is a homomorphic image of a direct sum of copies of Q.

We say that a right R-module is h-divisible if it satisfies the
equivalent conditions of this Lemma. Any direct sum of h-divisible
right R-modules is h-divisible, homomorphic images of h-divisible
modules are h-divisible, injective modules are h-divisible, and any
right R-module BR contains a unique largest h-divisible submodule
h(BR) that contains every h-divisible submodule of BR . We will
say that BR is h-reduced if h(BR) = 0 (equivalently, if BR has no
nonzero h-divisible submodule, equivalently if Hom(QR ,BR) = 0).
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First set of conditions on the extension R ⊆ Q

A right module MR is Matlis-cotorsion if Ext1R(QR ,MR) = 0.

Theorem
The right R-module Hom(RKR ,MR) is torsion-free
Matlis-cotorsion h-reduced for every right R-module MR .
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Second set of conditions on the extension R ⊆ Q

R and Q are rings, ϕ : R → Q is a bimorphism in the category of
rings, and RQ is a flat left R-module.

Then:

The inclusion of R into its maximal right ring of quotients
Qmax(R) factors through the mapping ϕ, that is,
R ⊆ Q ⊆ Qmax(R) without loss of generality.

ϕ : R → Q is the canonical homomorphism of R into its right
localization RF , where F = { I | I is a right ideal of R and
ϕ(I )Q = Q } is a Gabriel topology consisting of dense right ideals.
Moreover, F has a basis consisting of finitely generated right ideals.



Second set of conditions on the extension R ⊆ Q

R and Q are rings, ϕ : R → Q is a bimorphism in the category of
rings, and RQ is a flat left R-module. Then:

The inclusion of R into its maximal right ring of quotients
Qmax(R) factors through the mapping ϕ, that is,
R ⊆ Q ⊆ Qmax(R) without loss of generality.

ϕ : R → Q is the canonical homomorphism of R into its right
localization RF , where F = { I | I is a right ideal of R and
ϕ(I )Q = Q } is a Gabriel topology consisting of dense right ideals.
Moreover, F has a basis consisting of finitely generated right ideals.



Second set of conditions on the extension R ⊆ Q

R and Q are rings, ϕ : R → Q is a bimorphism in the category of
rings, and RQ is a flat left R-module. Then:

The inclusion of R into its maximal right ring of quotients
Qmax(R) factors through the mapping ϕ, that is,
R ⊆ Q ⊆ Qmax(R) without loss of generality.

ϕ : R → Q is the canonical homomorphism of R into its right
localization RF , where F = { I | I is a right ideal of R and
ϕ(I )Q = Q } is a Gabriel topology consisting of dense right ideals.
Moreover, F has a basis consisting of finitely generated right ideals.



Second set of conditions on the extension R ⊆ Q

R and Q are rings, ϕ : R → Q is a bimorphism in the category of
rings, and RQ is a flat left R-module. Then:

The inclusion of R into its maximal right ring of quotients
Qmax(R) factors through the mapping ϕ, that is,
R ⊆ Q ⊆ Qmax(R) without loss of generality.

ϕ : R → Q is the canonical homomorphism of R into its right
localization RF , where F = { I | I is a right ideal of R and
ϕ(I )Q = Q } is a Gabriel topology consisting of dense right ideals.

Moreover, F has a basis consisting of finitely generated right ideals.



Second set of conditions on the extension R ⊆ Q

R and Q are rings, ϕ : R → Q is a bimorphism in the category of
rings, and RQ is a flat left R-module. Then:

The inclusion of R into its maximal right ring of quotients
Qmax(R) factors through the mapping ϕ, that is,
R ⊆ Q ⊆ Qmax(R) without loss of generality.

ϕ : R → Q is the canonical homomorphism of R into its right
localization RF , where F = { I | I is a right ideal of R and
ϕ(I )Q = Q } is a Gabriel topology consisting of dense right ideals.
Moreover, F has a basis consisting of finitely generated right ideals.



Second set of conditions on the extension R ⊆ Q

For every right R-module MR , the kernel of the canonical right
R-module morphism MR → M ⊗R Q is the torsion submodule
t(MR) of MR .

The torsion submodule t(MR) of any right R-module MR is
isomorphic to TorR1 (MR , RK ).
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Second set of conditions on the extension R ⊆ Q

A left R-module RD is divisible if D = ID for every I ∈ F
(equivalently, if M ⊗R D = 0 for every torsion right R-module
MR).

h-divisible left R-modules are divisible.
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Theorem
(1) For every right R-module MR , there is a short exact sequence
of right R-modules

0 // MR/t(MR) // M ⊗R Q // M ⊗R K // 0.

(2) For every left R-module RB, there are two short exact
sequences of left R-modules

0 // Hom(RKR , RB) // Hom(RQR , RB) // h(RB) // 0

and

0 //
RB/h(RB) // Ext1R(RKR , RB) // Ext1R(RQR , RB) // 0.
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Second set of conditions on the extension R ⊆ Q

Corollary

For every torsion right R-module MR , the canonical mapping

π : Hom(RKR ,MR)⊗R K → h(MR)

defined by π(f ⊗ x) = f (x) for every f ∈ Hom(KR ,MR) and
x ∈ K is a right R-module epimorphism.



Second set of conditions on the extension R ⊆ Q

And now we will consider left R-modules.

Define the class of Matlis-cotorsion left R-modules by

RMC := RQ
⊥ and the class of strongly flat left R-modules by

RSF := ⊥(RMC). A left module RM will be said to be
Enochs-cotorsion if Ext1R(RF , RM) = 0 for all flat left R-modules

RF . Their class will be denoted by REC. If RF is the class of flat
left R-modules, then (RF ,R EC) is a cotorsion pair. Since RQ is
flat, Q⊥ ⊇ F⊥ = REC and since ⊥(REC) = F , we have that
strongly flat modules are flat.
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Second set of conditions on the extension R ⊆ Q

Notice that the concept of Enochs-cotorsion left R-module is an
“absolute concept”, in the sense that it depends only on the ring
R, while the concept of Matlis-cotorsion left R-module is a
“relative concept”, in the sense that it also depends on the choice
of the overring Q of R with RQ flat.



Second set of conditions on the extension R ⊆ Q

It is well known that every left module has an Enochs-cotorsion
envelope.

Theorem
If Q is a left perfect ring, then every left R-module has an
MC-envelope.

A left R-module RM is called weak-injective if Ext1R(I ,M) = 0 for
all modules I of weak dimension ≤ 1.

Lemma
Weak-injective left R-modules are h-divisible and Matlis-cotorsion.
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Third set of conditions: F is a 1-topology

We have already said that the Gabriel topology F always has a
basis consisting of finitely generated right ideals.

Now we will
suppose that the Gabriel topology F is a 1-topology, that is, that
F has a basis consisting of principal right ideals. Thus F is
completely determined by the set S := { s ∈ R | sR ∈ F }.

Thus, we now suppose that R is a ring and S is a multiplicatively
closed subset of R satisfying:
(1) If a, b ∈ R and ab ∈ S, then a ∈ S.
(2) If s ∈ S and a ∈ R, then there are t ∈ S and b ∈ R such that
sb = at (i.e., S satisfies the right Ore condition).
(3) The elements of S are not right zero-divisors.
(4) Q := RF is directly finite.
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Third set of conditions: F is a 1-topology

Lemma
Let F be the Gabriel topology consisting of all right ideals I of R
such that I ∩ S 6= 0, let RF be the localization and ϕ : R → RF be
the canonical mapping. Then F consists of dense right ideals, ϕ is
a bimorphism and RRF is a flat left R-module.



Third set of conditions: F is a 1-topology

Proposition

For every torsion right R-module MR , the canonical mapping

π : Hom(RKR ,MR)⊗R K → h(MR),

defined by π(f ⊗ x) = f (x) for every f ∈ Hom(KR ,MR), is a right
R-module isomorphism.



Third set of conditions: F is a 1-topology

Theorem
Let MR be an h-reduced torsion-free right R-module. Then the
canonical mapping λ : MR → Hom(KR ,M ⊗R K ) is injective and
its cokernel is isomorphic to Ext1R(QR ,MR).



Third set of conditions: F is a 1-topology

Corollary

Let MR be an h-reduced torsion-free Matlis-cotorsion right
R-module. Then the canonical mapping

λ : MR → Hom(KR ,M ⊗R K )

is an isomorphism.



Third set of conditions: F is a 1-topology

In our setting we have the Matlis category equivalence:

Theorem
There is an equivalence of the category C of h-reduced torsion-free
Matlis-cotorsion right R-modules with the category T of h-divisible
torsion right R-modules, given by

−⊗R K : C → T and Hom(KR ,−) : T → C.



Fourth set of conditions: left and right flat bimorphisms,
and 1-topologies

Now we assume that we have a a ring R for which the set S of all
its regular elements is both a right denominator set and a left
denominator set (right and left Ore ring), Q = R[S−1] = [S−1]R
(the classical right and left ring of quotients of R) and
F. dim(QQ) = 0.

Related to [L. Angeleri, D. Herbera, J. Trlifaj, Divisible modules
and localization, J. Algebra 294 (2005), 519–551].
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F. dim(QQ) = 0

The big finitistic dimension is defined by

F. dim(QQ) := sup{ p. d.(MQ) | MQ any right Q-module

with p. d.(MQ) <∞}.

Thus, for a ring Q, F. dim(QQ) = 0 means that every right
R-module has projective dimension 0 or ∞.

A commutative ring Q is perfect if and only if F. dim(QQ) = 0.

For an arbitrary, not-necessarily commutative, ring Q,
F. dim(QQ) = 0 if and only if Q is right perfect and every simple
right Q-module is a homomorphic image of an injective module
(Bass).
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Fourth set of conditions: left and right flat bimorphisms,
and 1-topologies

Theorem
Assume that R is a right and left Ore ring and F. dim(QQ) = 0,
where Q = R[S−1] = [S−1]R. Then the following conditions are
equivalent:
(i) Flat right R-modules are strongly flat.
(ii) Matlis-cotorsion right R-modules are Enochs-cotorsion.
(iii) h-divisible right R-modules are weak-injective.
(iv) Homomorphic images of weak-injective right R-modules are
weak-injective.
(v) Homomorphic images of injective right R-modules are
weak-injective.
(vi) Right R-modules of w. d. ≤ 1 are of p. d. ≤ 1.
(vii) The cotorsion pairs (P1,D) and (F1,WI) coincide.
(viii) Divisible right R-modules are weak-injective.


