
Definable categories and monoidal categories

Mike Prest

Abstract Definable categories are axiomatisable additive categories. They appear as
definable subcategories of module categories, equivalently as the categories of exact
functors on some small abelian category. We give an exposition of their structure
and their model theory from an essentially intrinsic point of view. We recall the
anti-equivalence between definable categories and small abelian categories and we
describe a monoidal version of this due to Wagstaffe.

1 Introduction

Definable categories first appeared in the model theory of modules as additive
axiomatisable subcategories of module categories (see, for example, [20, §2.6]).
These subcategories were given a purely algebraic characterisation in [5, §2.3] as
being those closed under direct products, directed colimits and pure submodules
(and isomorphism, which we generally assume of the subcategories we discuss).
Definable categories have a rich structure and they have been appearing in a variety of
contexts. This is a largely expository paper about certain aspects of these categories:
their model theory; some ways in which they resemble module categories (which they
include); and how, if there is a monoidal structure, it interacts with the definability
structure.

There is a third characterisation of definable categories, namely as the categories
of exact (additive, as are all functors in this paper) functors on skeletally small abelian
categories, [14, §4]). More precisely, if we fix a skeletally small abelian category A,
then the category Ex(A,Ab) of exact functors on it is a typical definable category.
Let us state the equivalence of these definitions: we say that an additive category is
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definable1 if it can be obtained in the following equivalent ways (see Section 2 for
purity and Theorem 2 for axiomatisability).

Theorem 1 The following are equivalent for an additive category D:
(i) D is equivalent to a subcategory of Mod-𝑅, where 𝑅 is a skeletally small
preadditive category, which is closed in Mod-𝑅 under direct products, directed
colimits and pure submodules;
(ii) D is an additive axiomatisable subcategory of a category of the form Mod-𝑅;
(iii) D is equivalent to the category Ex(A,Ab) of exact functors on a skeletally
small abelian category A.

From the point of view of the third equivalent, a module is none other than
an exact functor on a small abelian category. In so far as this paper adopts this
viewpoint, it can be seen as a continuation of [27], where the main theme is that a
module is intrinsically given as a faithful exact functor on a canonically associated
small abelian category. In that paper we also briefly described the anti-equivalence
between the 2-categoryABEX of small abelian categories and exact functors and the
2-category DEF of definable additive categories with interpretation functors. Here
we will say some more about that before describing the monoidal version of this
correspondence, due to Wagstaffe [33, 3.2.1], [34, 1.1].

The material in this paper is very general so, in order to anchor ideas, we present
some illustrative examples.

Example 1

LetDIV be the category of divisible abelian groups. This is a definable subcategory
of Ab, as is clear from condition (ii) of Theorem 1, suitable axioms being those of
the form ∀𝑥∃𝑦 (𝑥 = 𝑛𝑦) for 𝑛 ≥ 2. The equivalent condition (i) is also easy enough
to check but what about condition (iii)? It is not immediately clear what the relevant
abelian category A should be but general theory, see [26, 7.2], gives that it is
the opposite of the category of finitely generated abelian groups (note that, in [27,
Ex. 8.5], the “opposite" has been omitted). The action of DIV on (mod-Z)op, that
is, the equivalenceDIV → Ex((mod-Z)op,Ab) is given on objects by𝐷 ↦→ (−, 𝐷)
for 𝐷 ∈ DIV (note that (−, 𝐷) is exact since 𝐷 is an injective Z-module).

A divisible abelian group is a Z-module but, in the example above, we saw the
same group appearing as a right mod-Z-module where, by an A-module, we mean
an additive functor from A to Ab if A is a skeletally small pre additive category.
Thus a module 𝑀 , regarded as an object of a definable category, is a module over
many rings. For another example, if 𝑀 is an 𝑅-module then it is also a module over
any ring Morita equivalent to 𝑅. If, however, we require that 𝑅 = A is chosen to be
abelian and that 𝑀 be a faithful exact functor, then A is unique to equivalence, see
Theorem 26 below, and hence A is the canonical ring over which 𝑀 is a module

1 The notion of definable category has been extended beyond the additive case, see [15], [16], but,
in this paper, all our categories are additive so we don’t usually say “definable additive category".
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(and A contains, in some sense, cf. [27, 5.2], [21], all the other rings over which 𝑀
is a faithful module). We refer to A = A(𝑀) as the functor category of 𝑀 and set
fun(𝑀) = A. Similarly, if D is a definable category, then the, unique-to-equivalence
small abelian category A such that Ex(A,Ab) = D is denoted fun(D).2

A small choice

If A is a skeletally small abelian category, then so is its opposite Aop so we have a
choice of how to represent a definable category - as co- or contra-variant functors of
a skeletally small abelian category. In [27] we chose the former representation and
we will do the same here. But note that various other papers use the contravariant
representation.

𝐾-categories

If 𝐾 is a commutative ring then, by a 𝐾-category, we mean a category enriched in
Mod-𝐾 . More explicitly, to say that A is a 𝐾-category means that every hom group
ofA is endowed with the structure of a𝐾-module and 𝑓 𝑘 = 𝑘 𝑓 whenever 𝑓 ∈ (𝐴, 𝐵)
and 𝑘 ∈ 𝐾 . In that case, Ex(A,Ab) has an induced structure as a 𝐾-category and
is equivalent to the category Ex(A,Mod-𝐾) of exact 𝐾-linear functors on A and
is a typical Mod-𝐾-valued definable category. Specifically, if 𝐹 : A → Ab is an
additive functor then, because multiplication by 𝑘 ∈ 𝐾 is a natural transformation
from 𝐹 to itself, one sees that each 𝐹𝐴, for 𝐴 ∈ A has the induced structure of a
𝐾-module and then 𝐹 is 𝐾-linear, that is, 𝐹 can be regarded as a functor from A to
Mod-𝐾 . So the results here, which we present for target category Ab apply as well
to 𝐾-categories. Indeed, if G is a locally finitely presented Grothendieck abelian
category and A is skeletally small abelian, then Ex(A,G) is a definable category
([25, §3.3]).

We mention that further development in the direction of definable categories and
enriched categories is carried out in [8] (in the additive context) and [16] (in the
non-additive context).

If A is a skeletally small abelian category, then Ex(A,Ab) is contained as a
definable subcategory of the full module category A-Mod = (A,Ab), meaning
that the inclusion preserves direct products and directed colimits. That’s easy to see
because, if 𝑀 : A → Ab is an A-module, then 𝑀 is exact if, for every composable
pair 𝐴

𝑓
−→ 𝐵

𝑔
−→ 𝐶 of morphisms in A which is exact (i.e. ker(𝑔) = im( 𝑓 )), we

have that ker(𝑀𝑔) = im(𝑀 𝑓 ). That can easily be written down as the condition

2 The category fun(D) can be defined as the category of functors (additive, as always in this paper)
from D to Ab which commute with direct products and directed colimits, see Section 4. It also
has a model-theoretic definition as the category of interpretation functors from D to Ab, that is,
functors given by pp-definable sorts, see [23, Chpt. 25].
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that 𝑀 satisfies certain sentences in the language of A-modules (see Example 5 and
Theorem 2 in the next section).

Intermediate between Ex(A,Ab) andA-Mod we have the (definable sub)category
Lex(A,Ab) of left exact functors on A. That category may be identified with the
Ind-completion, Ind(A) of Aop which is naturally embedded into Lex(A,Ab) by
𝐴 ∈ A ↦→ (𝐴,−) : A → Ab. An advantage of Lex(A,Ab) = Ind(Aop) is that it
is locally coherent Grothendieck category and the embedded copy of Aop is equiv-
alent to its full subcategory of finitely presented objects ([30, Prop. 2]). Moreover,
Ex(A,Ab) is the definable subcategory of Lex(A,Ab) consisting of the abso-
lutely pure = fp-injective objects, see [23, Chpt. 11]. Thus, the definable category
D = Ex(A,Ab) and (the opposite of) its associated abelian category A are brought
together into the same category if we work inside Lex(A,Ab) = Ind(Aop).

For a comparison of these categories and the relations between them, see [23,
Chpt. 11]. For a comparison of the model-theoretic languages (all equivalent) which
result from the choices of which category to embed D = Ex(A,Ab) into, see [24].

Example 2

In the case of the category DIV of divisible abelian groups, see Example 1, we have
DIV represented as a definable subcategory of the category of left modules over
(mod-Z)op which we are regarding as a ring with many objects. The intermediate
category Lex((mod-Z)op,Ab) = Ind(mod-Z) is the category of abelian groups. That
is itself a definable subcategory of the much larger category (mod-Z)op-Mod. (If
we were dealing with the definable category of torsionfree = flat abelian groups
rather than the divisible ones, then the corresponding abelian category would be,
[26, 7.1], (mod-Z)op, so the intermediate category would be the Ind-completion of
(mod-Z)op.)

Example 3

The category DIVTORS of divisible torsion abelian groups (that is, direct sums
of copies of the various Prüfer groups Z𝑝∞ ) is not a definable subcategory of Ab -
for instance because it is not closed under products, but it is a definable category. In
particular, one may check that the product in DIVTORS of objects 𝑀𝑖 is given by
taking the torsion submodule of the product

∏
𝑖 𝑀𝑖 in Ab. That is shown for instance

in [27, Ex. 8.7], where it is also shown that, with Fin denoting the category of finite
abelian groups, the functor category of DIVTORS, fun(DIVTORS) = Finop.
In this case, the intermediate category between DIVTORS and Finop-Mod is
the category of torsion abelian groups. (In the dual case, that of reduced divisible
abelian groups, see [27, 8.7], the functor category is Fin and the intermediate
category Ind(Finop) is the opposite of the category of profinite abelian groups.)
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2 Model theory in definable categories

There are many introductory accounts of the model theory of modules (pp formulas,
pp-types etc.) but these are based on the view of a module as an abelian group
with a ring acting on it as endomorphisms. Here we reformulate some of the basic
definitions to fit directly with the view of a module as an exact functor on a small
abelian category. We don’t, however, carry this too far forward; we just say how it
can be done. For those who know the usual approach, we add explanatory comments.

2.1 Pp formulas, pp-types and pure-injectives

Elements

A definable category D = Ex(A,Ab) might have no nonzero finitely presented
objects; therefore the usual way of defining elements of an object of a category,
as morphisms from a finitely presented object, can’t be applied internally to D.
Regarding 𝑀 ∈ D as an exact functor on A we can say that an element of 𝑀 of
sort 𝐴 ∈ A is simply an element of 𝑀 (𝐴). We can bring this closer to the first idea
of “element" by noting that each representable functor (𝐴,−) is in Lex(A,Ab), so
then we have Aop sitting inside Ind(A) = Lex(A,Ab) as the subcategory of finitely
presented objects3 while D sits definably within the same category of functors on A.
Then, by the Yoneda Lemma, we have a natural isomorphism ((𝐴,−), 𝑀) ' 𝑀 (𝐴),
so we may, alternatively, say that an element of 𝑀 ∈ Ex(A,Ab) of sort 𝐴 ∈ A is a
morphism 𝑎 : (𝐴,−) → 𝑀 and that is what we will do here.

Explanation

If 𝑅 is a ring in the usual sense, that is a ring with one object (a 1-sorted ring), and
if 𝑀 is a right 𝑅-module, then we have the canonical identification of the elements
𝑎 ∈ 𝑀 with the morphisms 𝑓 : 𝑅𝑅 → 𝑀 via 𝑓 ↦→ 𝑎 = 𝑓 (1). This of course is
the basis of the above definition of “element" but the latter is wider since we allow
morphisms from arbitrary finitely presented objects4.

Example 4

Continuing Example 3, where we have DIVTORS and its functor category A =

Finop, we have both Fin and DIVTORS sitting inside Lex(Finop,Ab), and so
the sorts of a torsion divisible abelian group 𝐷 are of the form (𝐴, 𝐷) as 𝐴 ranges

3 It sits as the finitely generated projectives within (A,Ab) = A-Mod which is another possible
context to use.
4 or arbitrary finitely generated projective objects if we were using A-Mod, rather than Ind(A) ,
as the context.
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over finite abelian groups. Decomposing 𝐴 as a direct sum of indecomposables
Z𝑝𝑘 we have a finite sequence (𝑝𝑘1

1 , . . . , 𝑝
𝑘𝑛
𝑛 ) of prime powers and so see that the

elements of 𝐷 of sort 𝐴 are 𝑛-tuples of elements (𝑎1, . . . , 𝑎𝑛) where the order of
𝑎𝑖 is a divisor of 𝑝𝑘𝑖

𝑖
. This does give all the sorts, up to isomorphism, in the usual

model-theoretic, quotient of pp-definable subgroups sense: for instance the elements
of 𝐷 of the quotient sort 𝑥𝑝3 = 0/𝑥𝑝2 = 0 is isomorphic to the solution set of the
formula 𝑥𝑝 = 0 (because 𝐷 is divisible) which is the sort ((Z𝑝 ,−), 𝐷) of 𝐷 (the
general point is that A = Finop is abelian so already contains each quotient of sorts
as a sort).

A simplification, seen in the example above, with respect to the usual model-
theoretic approach is that we don’t need to treat 𝑛-tuples of elements for 𝑛 > 1
because A is additive, so an 𝑛-tuple (𝑎1, . . . , 𝑎𝑛) with 𝑎𝑖 : (𝐴𝑖 .−) → 𝑀 can be
regarded as a single element of sort 𝐴1 ⊕ · · · ⊕ 𝐴𝑛.

pp formulas

Suppose that 𝐴 is an object of A. A pp formula for elements of sort 𝐴 is a
morphism 𝜌 : 𝐵 → 𝐴 in A. If 𝑀 ∈ D = Ex(A,Ab) and 𝑎 ∈ 𝑀 is of sort 𝐴, that
is, 𝑎 ∈ ((𝐴,−), 𝑀), then 𝑎 satisfies the pp formula 𝜌 (in 𝑀) if 𝑎 factors through
(𝜌,−) : (𝐴,−) → (𝐵,−). We refer to such a formula as being of sort 𝐴 or as having
free variable of sort 𝐴.

Explanation

Because we are using the maximal language (see [24]) for D, the distinction between
pp formulas and pp-pairs = pp-sorts disappears, as commented at the end of Example
4. The point is that A can be regarded as the category, usually denoted Leq+ (D),
of pp-pairs and pp-definable maps for D, see [23, 22.2]. These sorts - the objects
of A - are given by pairs 𝜙(𝑥)/𝜓(𝑥) of pp formulas (in the usual sense) and we
then identify a pp formula 𝜙(𝑥) with the pp-pair 𝜙(𝑥)/(𝑥 = 0). So to say that an
element 𝑎 : (𝐴,−) → 𝑀 of 𝑀 of sort 𝐴 satisfies a formula 𝜙, written 𝑀 |= 𝜙(𝑎)
or 𝑎 ∈ 𝜙(𝑀), is to say that 𝑎 factors through the map (𝐴,−) → ((𝜙(𝑥)/(𝑥 = 0),−)
induced by the canonical inclusion of 𝜙(𝑥)/(𝑥 = 0) into 𝐴 (that inclusion exists
since we are assuming that 𝜙 is a formula which applies to elements of sort 𝐴, that
is, whose free variable is of sort 𝐴).

We haven’t insisted that 𝜌 be monic. To do so would give a more direct translation
of the usual notion of a formula of a given sort but we haven’t seen a strong reason
to make the restriction.

It might be noted that the above definition yields only divisibility formulas; to
see why that is enough, that is, why every pp formula is equivalent in the language
based on A to a divisibility formula, see Example 5 below.
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Example 5

Let D = Ex(A,Ab) and regard D as a subcategory of A-Mod. To show that D is a
definable subcategory, we must show how to express the condition of exactness, so
suppose that 0 → 𝐴

𝑓
−→ 𝐵

𝑔
−→ 𝐶 → 0 is an exact sequence in A. The requirement

that 𝐷 ∈ D be exact at, say, 𝐵 is the condition that, for every 𝑏 : (𝐵,−) → 𝐷 with
𝑏(𝑔,−) = 0, there exist 𝑎 : (𝐴,−) → 𝐷 with 𝑏 = 𝑎( 𝑓 ,−). This is an implication
between pp formulas, namely

∀𝑥𝐵
( (
𝑥𝐵 (𝑔,−) = 0

)
→

(
∃𝑥𝐴 (𝑥𝐵 = 𝑥𝐴( 𝑓 ,−))

) )
,

where subscripts to variables show their sorts, and hence D is definable by Theorem
2 below.

We expressed the pp formulas above in the usual way, so how are these reformu-
lated following the definition above? The exact sequence in A gives the (non-exact)
sequence 0 → (𝐶,−)

(𝑔,−)
−−−−→ (𝐵,−)

( 𝑓 ,−)
−−−−→ (𝐴,−) → 0 in A-Mod. The pp for-

mula ∃𝑥𝐴 (𝑥𝐵 = 𝑥𝐴( 𝑓 ,−)) is the requirement that a morphism from (𝐵,−) to an
A-module factor through ( 𝑓 ,−) so, according to the above definition, is precisely
the morphism 𝑓 : 𝐴 → 𝐵 in A. The other pp formula 𝑥𝐵 (𝑔,−) = 0 is not of the
same form but, because the objects of D are exact on A, it is equivalent, on D, to
the requirement that 𝑥𝐵 factor through ( 𝑓 ,−).

Pure embeddings

We say that a morphism 𝑓 : 𝑀 → 𝑁 in D is a pure embedding if, whenever
an element 𝑎 : (𝐴,−) → 𝑀 is such that 𝑓 𝑎 : (𝐴,−) → 𝑁 satisfies a pp formula
𝜌 : 𝐵 → 𝐴, then already 𝑎 satisfies that formula. That is, if 𝑓 𝑎 factors through
(𝜌,−) : (𝐴,−) → (𝐵,−), then already 𝑎 factors through (𝜌,−).

In a module category, any pure embedding between finitely presented modules
is split; in fact, in any finitely presentable category, the pure embeddings are the
directed colimits of split embeddings [1, 2.30].

Pp-types

The pp-type of an element 𝑎 ∈ 𝑀 of sort 𝐴, that is, 𝑎 : (𝐴,−) → 𝑀 , is

pp𝑀 (𝑎) = {𝜌 : 𝐵 → 𝐴 in A : 𝑎 factors through (𝜌,−) : (𝐴,−) → (𝐵,−)}.

Note that if 𝜌 and 𝜌′ are in this set, then 𝑎 will factor through the pushout of (𝜌,−)
and (𝜌′,−) which, since A is abelian, is (𝜌′′,−) for 𝜌′′ : 𝐵′′ → 𝐴 the pullback
of 𝜌 and 𝜌′ in A, hence pp𝑀 (𝑎) is closed under pullback. Also, if 𝜌 : 𝐵 → 𝐴

factors through 𝜌′ : 𝐵′ → 𝐴, and if 𝜌 ∈ pp𝑀 (𝑎), then 𝜌′ ∈ pp𝑀 (𝑎). Thus, a
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pp-type, regarded, via 𝜌 ↦→ (𝜌,−), as a set of maps in Aop which is embedded in
Lex(A,Ab), is a consistent collection of factorisation requirements on a map, or
element, 𝑎.

If 𝐴 ∈ A then a pp-type of sort 𝐴 is a filter in the slice category A/𝐴 where this
is pre-ordered by 𝜌 ≤ 𝜌′ iff 𝜌 factors through 𝜌′. It is the case, see [22, 4.1.4, also
3.3.6], that every such, abstractly defined, pp-type is realised, that is, is of the form
pp𝑀 (𝑎) for some element 𝑎 of sort 𝐴 of some object 𝑀 in D.

A pp-type, of sort 𝐴, is neg-isolated by a pp formula 𝜓 (also of sort 𝐴) if 𝑝 is
maximal, among pp-types of sort 𝐴, with respect to not containing 𝜓.

Explanation

The fact that pp-types are closed under pullback is essentially the fact that they (in
the usual definition) are closed under intersection, and the other part of pp-types
being a filter is the usual closure under implication.

Formulas and types with parameters

We also consider pp formulas and pp-types with parameters (i.e. formulas that name
elements of a module). We say that an element 𝑎 : (𝐴,−) → 𝑀 of 𝑀 of sort 𝐴
satisfies the formula 𝐵 with parameter 𝑐 : (𝐶,−) → 𝑀 if there is a morphism
𝜌 : 𝐵 ⊕𝐶 → 𝐴 such that 𝑎 factors through (𝜌,−) : (𝐴,−) → (𝐵,−) ⊕ (𝐶,−) along
a morphism of the form (𝑏 : (𝐵,−) → 𝑀) ⊕ 𝑐. We identify the data (𝐵, 𝑐) as a
formula with parameters.

A pp-type with parameters is a set 𝑝 of pp formulas all of the same sort, 𝐴 say,
with all parameters from some 𝑀 ∈ D and such that any finite subset of 𝑝 is realised
in 𝑀 (equivalently, every formula in the closure of 𝑝 under pullback is satisfied in
𝑀). If 𝑀 is purely embedded in 𝑁 ∈ D, then we say that 𝑎 : (𝐴,−) → 𝑁 realises
𝑝 if 𝑎 satisfies every formula in 𝑝.

Explanation

As with the usual route to defining formulas with parameters, we may consider the
formula 𝐵 ⊕ 𝐶 - so with a free variable of sort 𝐵 and one of sort 𝐶 - then we fix the
value of the 𝐶-variable to be a specific element of sort 𝐶 in a specific object of D.

Definable subcategories again

A definable subcategory of a module category is any axiomatisable additive subcat-
egory of a module category, Theorem 1, but we can say what the defining axioms
look like.
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Theorem 2 (see [22, 3.4.7]) A subcategory D of Mod-𝑅 is a definable subcategory
iff D can be defined by a set of axioms of the form ∀𝑥(𝜙(𝑥 → 𝜓(𝑥)) where 𝜙 and
𝜓 are pp formulas for 𝑅-modules. Definable subcategories of D can be cut out by
adding further axioms of this form.

In case D is definably embedded as Ex(A,Ab) in the category Lex(A,Ab) or in
the category of A-modules (so the axioms defining D are those expressing exactness
- see Example 5 above), then definable subcategories of D are obtained by adding
axioms of the form (𝐴,−) = 0 for some objects 𝐴 in A.

Example 6

The definable subcategory DIV of divisible abelian groups is defined within Ab by
axioms of the form ∀𝑥 (𝑥 = 𝑥 → (∃𝑦 (𝑛𝑦 = 𝑥))) for 𝑛 ≥ 2. Definable subcategories
of D are obtained by adding further axioms of the form ∀𝑥 (𝑥𝑝 = 0 → 𝑥 = 0)
for 𝑝 from some set of primes. If we regard DIV as definably embedded as
Ex(Z-modop,Ab), then definable subcategories of DIV are obtained by adding
axioms of the form (Z𝑝 ,−) = 0.

Pure-injectives

An object 𝑀 ∈ D is pure-injective if every pp-type with parameters from 𝑀 is
already realised in 𝑀 . Equivalently, see [22, 4.3.11], 𝑀 is pure-injective iff it is
injective over pure embeddings (in D or, by the fact of the equivalence, in any
category containing D as a definable subcategory).

There is an approach to pure-injectivity which uses that there is an embedding,
given by𝑀 → (−⊗𝑅𝑀) on objects, of 𝑅-Mod into the category (mod-𝑅,Ab) of left
modules over the finitely presented right 𝑅-modules. This induces an equivalence
between the pure-injectives in the first category and the injectives of the second. For
more on this, see [11, 7.12], [22, 12.1.6].

If 𝑀 is any module then its pure-injective hull is the minimal pure-injective into
which 𝑀 purely embeds. This exists (for instance via the embedding appearing in
the above paragraph and the existence of injective hulls in Grothedieck categories)
and is unique up to isomorphism over 𝑀 . For example, the pure-injective hull of the
localisation Z(𝑝) of Z at a prime 𝑝 is the 𝑝-adic integers Z(𝑝) and, in general, the
pure-injective hull of a module is obtained by adding realisations of pp-types with
parameters from 𝑀 .

Every neg-isolated pp-type is realised in an indecomposable pure-injective, see
[22, 4.3.52, 4.3.49], in which case we refer to that indecomposable pure-injective
as being neg-isolated. In the above-mentioned comparison between pure-injectives
and injectives in the associated functor category this condition on the corresponding
indecomposable injective is that it be the injective hull of a simple object (see [22,
5.3.45]).
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Example 7

Divisible abelian groups are injective, so every object of DIV is pure-injective.
The indecomposables are the Prüfer groups Z𝑝∞ and the group of rationals Q.

Each Prüfer group is neg-isolated in DIV: to see, at least plausibly, that this
is the case, consider the pp-type in Z𝑝∞ of an element 𝑎 of order 𝑝. That pp-type
contains all divisibility formulas 𝑛|𝑥 for 𝑛 ≥ 2 plus the formula 𝑝𝑥 = 0 and there
is no more information that can be added to a pp-description of an element other
than the formula 𝑥 = 0. So the pp-type of 𝑎 in Z𝑝∞ is neg-isolated by the formula
𝑥 = 0. An algebraic argument is to use the criterion, see [22, 5.3.48], which is that
an indecomposable pure-injective 𝑁 is neg-isolated in a definable category D iff,
whenever 𝑁 is a direct summand of a direct product

∏
𝑖 𝑁𝑖 of pure-injectives in D,

it must be a direct summand of one of the 𝑁𝑖 .
On the other hand, Q is, by that criterion, not neg-isolated in D. (Of course Q is

neg-isolated in the definable subcategory of torsionfree divisible abelian groups.)

Example 8

The dual (in the sense of elementary duality, [9], see [22, §3.4.2]) definable category
to DIV is the category TF of torsionfree = flat abelian groups. This has, for its
indecomposable pure-injectives, the 𝑝-adic integers Z(𝑝) for 𝑝 prime, together with
Q. Each of these is neg-isolated in TF .

2.2 The Ziegler spectrum

Theorem 3 ([32, Cor. 4 to Thm. 4], see [22, 4.3.21]; [35, 4.8], see [22, 5.1.4]) If
D is a definable subcategory of a module category, then the pure-injective hull of
every module in D is contained in D.

Furthermore, D is generated, as a definable subcategory, by the indecomposable
pure-injectives in D.

It is the case, see [22, 4.3.38], that there is, up to isomorphism, just a set of
indecomposable pure-injectives in any definable category D; let pinj(D) denote
a set of representatives. The Ziegler spectrum of D, Zg(D), is the set pinj(D)
topologised with a basis of open sets of the form

(𝜙/𝜓) = {𝑁 ∈ pinj(D) : 𝜙(𝑁)/𝜓(𝑁) ≠ 0}.

Theorem 4 If D is a definable category, then there is a natural bijection between the
definable subcategories of D and the closed subsets of its Ziegler spectrum Zg(D),
given by:
D ′ ↦→ D ′ ∩ pinj(D) when D ′ is a definable subcategory of D and
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𝑋 ↦→ 〈𝑋〉 when 𝑋 is a closed subset of Zg(D), where 〈−〉 denotes the definable
subcategory generated by 𝑋 , that is, the smallest definable subcategory of D which
contains 𝑋 .

Example 9

The indecomposable pure-injectives in DIV are described in Example 7. Each
Prüfer group Z𝑝∞ is an isolated = open point of Zg(DIV) since this is the only
indecomposable pure-injective which contains a non-zero element of order 𝑝, that
is, the open set (𝑝𝑥 = 0/𝑥 = 0) contains just Z𝑝∞ . On the other hand, it can be
checked, see Example 10 below, that Q is in the closure of each Prüfer group, so
every nonempty closed set contains Q. So the nonempty closed sets of Zg(DIV)
are of the form 𝑋 ∪ {Q} where 𝑋 is any, possibly empty, set of Prüfer groups.
Hence each definable subcategory of DIV consists of the groups of the form⊕

𝑝∈𝑋 Z
(𝜅𝑝)
𝑝∞ ⊕ Q(𝜅0) where the 𝜅𝑝 can be any cardinals ≥ 0, for some such 𝑋 .

Frames

A complete Heyting algebra, or frame, is a complete lattice in which meet dis-
tributes over infinite join. If 𝑇 is a topological space, then the lattice O(𝑇) of open
subsets of 𝑇 is a frame and any frame of this form is said to be spatial. A continuous
map 𝑇 → 𝑇 ′ of topological spaces induces a morphism O(𝑇 ′) → O(𝑇) in the
category of complete Heyting algebras. The category of frames is the opposite of
that category, so has the same objects but the morphisms ‘go in the same direction
as continuous maps’ (see [12, Chpt. II, §1.1]). Elementary duality, induces an iso-
morphism of frames between the right and left Ziegler spectrum of any ring 𝑅, see
[22, §5.4]. In all known cases, this is induced by a homeomorphism between these
spaces but, at least currently, for general rings we have only a “homeomorphism at
the level of topology", that is, an isomorphism of frames.

2.3 Ultraproducts

This applies to any type of first-order structure but we will describe reduced products
and ultraproducts just for 𝑅-modules, where 𝑅 is a, possibly many-sorted, ring.

A filter on a set 𝐼 is a set, F , of subsets of 𝐼 such that 𝐼 ∈ F , ∅ ∉ F , 𝐽, 𝐾 ∈ F
implies 𝐽 ∩ 𝐾 ∈ F , and 𝐽 ∈ F and 𝐽 ⊆ 𝐽 ′ ⊆ 𝐼 implies 𝐽 ′ ∈ F . An ultrafilter
on 𝐼 is a filter U which is maximal with respect to set-inclusion among filters on
𝐼, equivalently which satisfies the property that, for every 𝐽 ⊆ 𝐼, either 𝐽 ∈ U or
𝐼 \ 𝐽 ∈ U.

Suppose that (𝑀𝑖)𝑖∈𝐼 is an 𝐼-indexed set of 𝑅-modules and let F be a filter on
𝐼. Note that the products

∏
𝑖∈𝐽 𝑀𝑖 for 𝐽 ∈ F , together with the natural projection
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maps 𝜋𝐽𝐾 :
∏
𝑖∈𝐽 𝑀𝑖 →

∏
𝑖∈𝐾 𝑀𝑖 for 𝐽 ⊇ 𝐾 , 𝐽, 𝐾 ∈ F , form a directed system

of modules. The reduced product
∏
𝑖 𝑀𝑖/F is the directed colimit of that directed

system. If F is an ultrafilter, then we refer to this as an ultraproduct. If all 𝑀𝑖 = 𝑀
then we use the terms reduced power and ultrapower and write 𝑀 𝐼 /F .

Remark 5 Every definable subcategory is closed under direct products and directed
colimits, hence under reduced products.

There is an elementwise description of reduced powers as follows. The elements,
of any given sort, of a reduced product

∏
𝑖 𝑀𝑖/F are of the form (𝑎𝑖)𝑖/∼ where 𝑎𝑖

is an element, of that sort, of 𝑀𝑖 , and the equivalence relation ∼ on the elements of∏
𝑖∈𝐼 𝑀𝑖 of that sort is given by (𝑎𝑖)𝑖 ∼ (𝑏𝑖)𝑖 iff {𝑖 ∈ 𝐼 : 𝑎𝑖 = 𝑏𝑖} ∈ F . That is, two

elements, of the same sort, in the full product are equivalent iff they agree on a large
set of coordinates where “large" means “in F ". That this is an equivalence relation
follows from the definition of filter. So the reduced product is a quotient structure
of

∏
𝑖∈𝐼 𝑀𝑖 . The 𝑅-module structure on this quotient (rather collection of quotients,

one for each sort) is defined in the obvious way, pointwise, and can be checked to be
well-defined and to give the same structure as the directed-colimit definition.

Theorem 6 (Łos’ Theorem) Suppose that 𝑀𝑖 , 𝑖 ∈ 𝐼 are 𝑅-modules and that F is a
filter on 𝐼. Set 𝑀∗ =

∏
𝑖 𝑀𝑖/F .

(a) If 𝜙(𝑥) is a pp formula and 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ (𝑀∗)𝑛, with 𝑎𝑘 = (𝑎𝑘
𝑖
)𝑖/∼,5 then

𝑀∗ |= 𝜙(𝑎) iff {𝑖 ∈ 𝐼 : 𝑀𝑖 |= 𝜙(𝑎1
𝑖
, . . . , 𝑎𝑛

𝑖
)} ∈ F .

(b) Suppose that F is an ultrafilter. Then, if 𝜎(𝑥) is any formula for 𝑅-modules and
𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ (𝑀∗)𝑛, with 𝑎𝑘 = (𝑎𝑘

𝑖
)𝑖/∼, then 𝑀∗ |= 𝜎(𝑎) iff {𝑖 ∈ 𝐼 : 𝑀𝑖 |=

𝜎(𝑎1
𝑖
, . . . , 𝑎𝑛

𝑖
)} ∈ F .

That is, a pp formula, possibly with parameters, is true in the reduced product iff
it is true on a “large" set of coordinates, and the same is true for general formulas -
these may include “or",“not" and universal quantifiers ∀ - if we have an ultraproduct.

Example 10

Take 𝑀 to be the Prüfer group Z𝑝∞ , take 𝐼 to be the set of integers 𝑛 ≥ 1 and let U
be any ultrafilter (existence by Zorn’s Lemma) which contains the filter of cofinite
subsets of 𝐼. Let 𝑀∗ be the corresponding ultrapower 𝑀 𝐼 /U. For each 𝑖 ≥ 1 choose
an element 𝑎𝑖 ∈ Z𝑝∞ of order 𝑝𝑖 . Consider the element 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑖 , . . . )/∼.
Then 𝑎 has infinite order since, given any 𝑛, the set of its coordinates 𝑖 which satisfy
𝑝𝑛𝑎𝑖 = 0 is finite, so the complementary set of coordinates is in U and we have
𝑝𝑛𝑎 ≠ 0 by Łos’ theorem. Also by Łos’ Theorem, 𝑀∗ is divisible (formulas include
sentences - formulas which have no free variables - such as ∀𝑥 𝑛|𝑥), so we deduce
that 𝑀∗ splits off a(t least one) copy of Q. It follows then, by Remark 5, that Q is in
the definable subcategory generated by Z𝑝∞ .

5 Note that the equivalence relation ∼ might vary with 𝑘 since the elements 𝑎𝑘 might belong to
different sorts.
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2.4 Purity in definable categories

There are many equivalent ways of defining purity (pure embeddings, pure-exact
sequences,...) in a module category (see e.g. [22, §§2.1.1, 2.1.3] and this purity re-
stricts to any definable subcategory because, if 𝑀 belongs to a definable subcategory
D and 𝑀 ′ is a pure submodule, then both 𝑀 ′ and 𝑀/𝑀 ′ are in D (e.g. [22, 2.1.17]).
Every definable category embeds as a definable subcategory of many module cate-
gories, so one may ask whether these induced purities on a given definable category
agree. Indeed, they do agree, because there is an intrinsic definition of purity in
definable categories which agrees with any such induced purity. Namely, we say that
a sequence 0 → 𝐴

𝑓
−→ 𝐵

𝑔
−→ 𝐶 → 0 in a definable category D is pure exact if some

ultrapower 0 → 𝐴𝐼 /U
𝑓 𝐼 /U
−−−−−→ 𝐵𝐼 /U

𝑔𝐼 /U
−−−−→ 𝐶 𝐼 /U → 0 is split exact, in which

case 𝑓 is said to be a pure embedding and 𝑔 a pure epimorphism.
This works because, from the perspective of D being a definable subcategory of

a module category, if we have any exact sequence whose terms lie in D and which is
pure in the module category, then any ultrapower of that sequence is again pure and
it is a theorem from model theory, see [22, §4.2.5] for outline and references, that
there is a choice of 𝐼 and U which is such that every module of the form 𝑀 𝐼 /U is
pure-injective, making the corresponding ultrapower sequence split.

2.5 The Downwards Löwenheim-Skolem Theorem

The Downwards Löwenheim-Skolem Theorem, which we will state as Theorem
7, just for modules, says that any first-order structure is a directed union of small
elementary substructures, where “small" means of cardinality bounded by the size of
the language for that structure. If 𝑅 is a ring, possibly with many objects, then, by the
cardinality |𝑅 | of 𝑅we mean the cardinality of the set of elements, that is, morphisms
if we regard 𝑅 as a small preadditive category, in 𝑅. If A is a skeletally small abelian
category and D = Ex(A,Ab), then we can replace A by any small equivalent
subcategory, for instance by a skeletal version of A and a suitable language for D
would be based on that ring with many objects.

Since we’re taking the view that a module can be regarded as a module over many
rings, there is some further ambiguity as to what is meant by the cardinality of a
module. Let us say that the cardinality of an 𝑅-module 𝑀 is the cardinality of the
union, over all objects 𝐴 of 𝑅, of the set 𝑀 (𝐴) = ((𝐴,−), 𝑀) of elements of 𝑀
of sort 𝐴: |𝑀 | =

�� ⋃
𝐴∈𝑅 ((𝐴,−), 𝑀)

��. So, if 𝑅 is 1-sorted, then |𝑀 | has the usual
meaning (the cardinality of the underlying set of 𝑀). If we regard 𝑀 as a(n exact)
fun(𝑀)-module then, unless 𝑀 is of cardinality < |𝑅 | +ℵ0, the cardinality of 𝑀 will
not have changed because all the extra sorts of 𝑀 are (definable) sections of some
finite power 𝑀𝑛 of 𝑀 and the number of such sorts is no more than |𝑅 | + ℵ0. So, in
fact, there is little ambiguity in the meaning of |𝑀 |.
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We say that a submodule 𝑀0 of a module 𝑀 is an elementary submodule if, for
every tuple 𝑎 of elements of 𝑀 and every formula 𝜎 with free variables matching
𝑎 in number and sorts, we have 𝑀 |= 𝜎(𝑎) iff 𝑀0 |= 𝜎(𝑎). In particular, since this
applies to pp formulas, an elementary submodule is a pure submodule.

Theorem 7 Suppose that 𝑀 is an 𝑅-module and that 𝐴 is a subset of 𝑀 . Then there
is an elementary submodule 𝑀0 of 𝑀 , containing 𝐴, of cardinality no more than
max( |𝐴|, |𝑅 |,ℵ0).

Elementary submodules are pure submodules, so we have the following corollary.

Corollary 8 If D is a definable subcategory of Mod-𝑅, then every object 𝐷 in D
is a directed union 𝐷 =

⋃
𝑖 𝐷𝑖 of elementary submodules with each 𝐷𝑖 ∈ D and

|𝐷𝑖 | ≤ |𝑅 | + ℵ0.

2.6 Definable and elementary equivalence

Two 𝑅-modules, 𝑀 and 𝑁 , are elementarily equivalent if they satisfy the same
sentences in the language of 𝑅-modules.

Remark 9 By Łos’ Theorem, every module is elementarily equivalent to each of its
ultrapowers.

The next result, basic in the model theory of modules, follows directly from Baur’s
pp-elimination of quantifiers for modules [4] and is given explicitly by Garavaglia
[7, Thm. 2].

Theorem 10 (e.g. [20, 2.18]) Modules 𝑀 and 𝑁 are elementarily equivalent iff for
every pp-pair 𝜙/𝜓, the cardinality of 𝜙(𝑀)/𝜓(𝑀) is equal to that of 𝜙(𝑁)/𝜓(𝑁)
or both are infinite.

A somewhat weaker condition is that they are definably equivalent, meaning
that they generate the same definable subcategory of Mod-𝑅: 〈𝑀〉 = 〈𝑁〉. In fact,
this is only slightly weaker than 𝑀 and 𝑁 being elementarily equivalent. The next
result follows by Theorem 2 and, e.g., [20, 2.23].

Corollary 11 Modules 𝑀 and 𝑁 are definably equivalent if and only if 𝑀 (ℵ0) and
𝑁 (ℵ0) are elementarily equivalent, equivalently if every pp-pair open on 𝑀 is open
on 𝑁 and vice versa.

Thus elementary equivalence of 𝑀 and 𝑁 adds, to definable equivalence, the
requirement that, for each pp-pair 𝜙/𝜓, the cardinalities of 𝜙(𝑀)/𝜓(𝑀) and
𝜙(𝑁)/𝜓(𝑁) are equal if one of them is finite. However, for most algebraic con-
siderations, the important information is whether the pair is open or closed, not the
exact size of that factor group6.

6 The condition “𝑇 = 𝑇 ℵ0 " which appears in the hypotheses of many results in [20] says that we
ignore the exact sizes and look only at which pp-pairs are open and which are closed.
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Corollary 12 If every pp-definable quotient 𝜙(𝑀)/𝜓(𝑀) is infinite if nonzero, then
𝑀 is elementarily equivalent to each of its powers 𝑀 𝐼 and copowers 𝑀 (𝐼 ) .

If 𝑅 is an algebra over an infinite field 𝐾 , then all quotients 𝜙(𝑀)/𝜓(𝑀), being
vector spaces over are infinite if nonzero, so we have the following.

Corollary 13 If 𝑅 is an algebra over an infinite field, then definable equivalence and
elementary equivalence for 𝑅-modules coincide.

Corollary 14 ([32, Cor. 2 to Thm. 4]) For any module 𝑀 and index set 𝐼, 𝑀 (𝐼 ) and
𝑀 𝐼 are elementarily equivalent, and hence definably equivalent.

Although we state the next theorem for modules it holds true for arbitrary kinds
of first-order structures.

Theorem 15 (Keisler-Shelah Theorem, see, e.g. [10, 9.5.7]) Two 𝑅-modules 𝑀, 𝑁
are elementarily equivalent iff they have isomorphic ultrapowers: 𝑀 𝐼 /U ' 𝑁 𝐽/V
for some index sets 𝐼, 𝐽 and ultrafilters U, V on 𝐼, respectively 𝐽.

In fact one may take 𝐼 = 𝐽 and U = V.

Corollary 16 Two 𝑅-modules 𝑀, 𝑁 are elementarily equivalent iff one is an ele-
mentary submodule of an ultrapower of the other.

That follows from Theorem 15 and Remark 9.

Corollary 17 Two 𝑅-modules 𝑀 , 𝑁 are definably equivalent iff 𝑀 (ℵ0) and 𝑁 (ℵ0)

have isomorphic ultrapowers.

Corollary 18 The definable subcategory 〈𝑀〉 generated by a module 𝑀 consists of
the pure submodules of ultrapowers of 𝑀 (ℵ0) , equivalently of ultrapowers of 𝑀ℵ0 ,
equivalently of ultraproducts of the various finite powers 𝑀𝑛 (𝑛 = 1, 2, . . . ) of 𝑀 .

3 Large and small objects in definable categories

In a module category, every module is the directed colimit of finitely presented
objects and every module can be embedded in a direct power of a (fixed) large
enough injective module. There are, for definable categories, analogues of these
facts.

3.1 Small objects - (strongly) atomic modules

For every definable category D there is a cardinal 𝜅 such that every object is a
directed colimit of < 𝜅-presented objects. To see that, suppose that D is a definable
subcategory of 𝑅-Mod and set 𝜅 to be the cardinality of 𝑅 if 𝑅 is infinite and 𝜅 = ℵ0
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if 𝑅 is finite. Then, by Corollary 8 every module in D is a directed colimit of
submodules which are also in D. It follows that D is 𝜅-accessible in the sense of [1],
though 𝜅 might not be minimal such that D is 𝜅-accessible, see Example 11 below.
So every definable category is an additive accessible category with products.

Example 11

Take A to be an abelian category consisting of a very large set of non-isomorphic
simple objects, all with endomorphism ring some field 𝐾 , that is, A is the 𝐾-path
category of some very large discrete quiver. An (exact) A-module is just a choice
of a 𝐾-vector space for each object of A; such a module is the directed union
of submodules which are small (of cardinality ≤ |𝐾 | + ℵ0), so D in this case is
|𝐾 | + ℵ0-accessible.

Some definable categories D, for example module categories, are finitely accessi-
ble, that is, every object is a directed colimit of objects from Cfp - the full subcategory
of finitely presented objects - which is also required to be skeletally small. Recall
that an object 𝐴 in a category C is finitely presented if the hom functor (𝐴,−)
commutes with directed colimits in C. But, for instance, in the definable category
of divisible abelian groups the zero module is the only finitely presented object,
see [22, 18.1.1]. We may ask whether a definable category has a lim−−→-generating set
consisting of objects which are more analogous to finitely presented objects than
those given by the Downwards Löwenheim-Skolem Theorem. We do, in fact, have
the (strictly) atomic objects, which share the following key property with finitely
presented objects.

Proposition 19 ([22, 1.2.6, 1.2.7]) If 𝐴 is a finitely presented 𝑅-module, then every
pp-type realised in 𝐴 is finitely generated. Moreover, if 𝑎 is any finite tuple from 𝐴,
with pp𝐴(𝑎) being generated by, say, 𝜙, then, if 𝑀 is any module and 𝑏 ∈ 𝜙(𝑀),
then there is a morphism 𝑓 : 𝐴→ 𝑀 with 𝑓 𝑎 = 𝑏.

These properties don’t characterise the finitely presented modules. In fact, the
first characterises the Mittag-Leffler 𝑅-modules, [31, 2.2] and the stronger property
characterises the strictly Mittag-Leffler modules, see [28, 4.1]. But they represent
what we do have in definable categories in the possible absence of finitely presented
objects - see Corollary 21 below.

Suppose that D is a definable category. We say that 𝑀 ∈ D is D-atomic, if
every pp-type realised in 𝑀 is D-finitely generated, that is, for every finite tuple
𝑎 = (𝑎1, . . . , 𝑎𝑛) from 𝑀 , there is a pp formula 𝜙 (in whichever language for D that
we are using), with free variables 𝑥1, . . . , 𝑥𝑛 (say), which D-generates pp𝑀 (𝑎) in
the sense that 𝜙 ∈ pp𝑀 (𝑎) and, for every pp formula 𝜓 ∈ pp𝑀 (𝑎), we have 𝜙 ≤D 𝜓,
meaning that 𝜙(𝐷) ≤ 𝜓(𝐷) for every 𝐷 ∈ D.

The, stronger, strictly D-atomic condition on 𝑀 ∈ D is that 𝑀 is D-atomic
and, for every tuple 𝑎 from 𝑀 , with pp-type D-generated by, say, 𝜙, and for every
𝐷 ∈ D and 𝑏 ∈ 𝜙(𝐷), there is a morphism 𝑓 : 𝑀 → 𝐷 with 𝑓 𝑎 = 𝑏.
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Example 12

Consider the category DIV of divisible abelian groups as a definable subcategory
of Ab. The object Q as an object of DIV has the propery that the pp-type of every
finite tuple in it is generated modulo (the theory of) DIV by some pp formula. For
instance, 1 ∈ Q is, within that category, a free realisation of the single pp formula
𝑥 = 𝑥 in the sense that, given any divisible abelian group 𝐷 and element 𝑑 ∈ 𝐷

realising 𝑥 = 𝑥 (that is, given any element 𝑑 ∈ 𝐷), there is a morphism Q → 𝐷

taking 1 to 𝑑 (see [22, §1.2.2] for free realisations of pp formulas). Similarly it is
easy to see that each Prüfer group is strictly DIV-atomic (and clearly they and
their finite direct sums form a lim−−→-generating set for DIV). They are, respectively,
DIV-(pre)envelopes of Z and the Z(𝑝) in the sense defined below.

The theorem and corollary that follow are special cases of a very general theorem
of Makkai, for which see [18, 4.3, 4.4]. For this formulation see [28, 4.10].

Theorem 20 If D is a definable subcategory of Mod-𝑅 and 𝐴 is a finitely presented
𝑅-module, then there is a D-preenvelope 𝐴→ 𝐷𝐴 of 𝐴 with 𝐷𝐴 strictly D-atomic.
Every module in D is a directed colimit of modules of the form 𝐷𝐴 with 𝐴 ∈ mod-𝑅.

To say that 𝑓 : 𝐴 → 𝐷𝐴 is a D-preenvelope of 𝐴 is to say that every morphism
from 𝐴 to a module in D factors (not necessarily uniquely) through 𝑓 .

Corollary 21 If D is a definable category then D contains a lim−−→-generating set of
strictly D-atomic objects.

So every definable category has a lim−−→-generating set of objects which are the
analogues of strictly Mittag-Leffler modules in a module category and these objects
share some key properties with finitely presented modules.

3.2 Large objects - elementary cogenerators

We also have, in any definable category, objects which are somewhat analogous to
injective cogenerators in module categories. Recall that an object 𝐸 in a category C
is an injective cogenerator for C if 𝐸 is injective in C and if every object has an
embedding into a direct product 𝐸 𝐼 of copies of 𝐸 . Every module category Mod-𝑅
has an injective cogenerator, indeed many injective cogenerators, a minimal choice
being the injective hull 𝐸 (

⊕
𝑆 𝐸 (𝑆)) of the direct sum of one copy of the injective

hull 𝐸 (𝑆) for each simple module 𝑆. The corresponding notion in a definable category
is that of an elementary cogenerator.

If D is a definable subcategory of 𝑅-Mod, then an elementary cogenerator for
D is a pure-injective module 𝑁 ∈ D such that the objects of D are exactly the
𝑅-modules which purely embed in some direct power 𝑁 𝐼 of 𝑁 . Since D is closed
in 𝑅-Mod under pure submodules we can say this independently of the embedding
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of D as a definable subcategory: 𝑁 ∈ D is an elementary cogenerator for D iff
every object of D purely embeds in a power of 𝑁 . The 𝑅-modules which arise
as elementary cogenerators (of some definable subcategory) are characterised in
Proposition 23 below.

Contrast this with the fact, stated earlier, that the definable subcategory 〈𝑀〉 gen-
erated by a module 𝑀 can be obtained, Corollary 18 as the class of pure submodules
of ultraproducts of finite powers 𝑀𝑛 of 𝑀 (or, by Corollary 12, just of 𝑀 if every
pp-pair open on 𝑀 is infinite).

Theorem 22 (see [22, 5.3.52, 5.3.50]) Every definable category has an elementary
cogenerator. A minimal choice is the pure-injective hull of the direct sum of one copy
of each neg-isolated pure-injective. So a pure-injective 𝑁 ∈ D is an elementary
cogenerator for D iff it has, as a direct summand, at least one copy of each neg-
isolated pure-injective in D.

Example 13

By Theorem 22 and Example 7 a minimal elementary cogenerator for DIV is
the direct sum of one copy of each Prüfer group. In contrast, by Example 8, a
minimal elementary cogenerator for TF is 𝐻 (

⊕
𝑝 Z(𝑝) ) ⊕ Q where 𝐻 (−) denotes

pure-injective hull.

We will say that a pure-injective module 𝑁 is an elementary cogenerator if
every ultrapower of 𝑁 purely embeds in a direct power of 𝑁 .

Proposition 23 A pure-injective module 𝑁 is an elementary cogenerator iff it is an
elementary cogenerator of the definable category 〈𝑁〉 that it generates.

Proof Since every definable subcategory is closed under ultraproducts, we have the
direction (⇐).

For the other direction we consider the set of (isomorphism classes of) indecom-
posable pure-injective modules which are direct summands of modules elementarily
equivalent to 𝑁 (equivalently, Corollary 16, direct summands of ultrapowers of 𝑁).
This is exactly the closed subset of Zg(D) corresponding, in the sense of Theorem
4, to the definable subcategory 〈𝑁〉. In [35] this is denoted𝑈 (𝑁) and in [20, p. 87] it
is denoted I(𝑁), but here we will use the perhaps more suggestive notation supp(𝑁)
of [22].

We use the fact, see [22, 5.3.53], that every object in the definable subcategory
generated by a module 𝑁 is a pure submodule of a direct product of modules in
supp(𝑁).

By definition, each of the modules in supp(𝑁) is a direct summand of a module
elementarily equivalent to 𝑁; each such module is, Corollary 16, pure in an ultra-
power of 𝑁 and, by assumption on 𝑁 , each such ultrapower is pure in a direct power
of 𝑁 . Therefore every module in 〈𝑁〉 is pure in a direct power of 𝑁 , as required. �
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Thus we have a characterisation of the modules which occur as elementary
cogenerators of definable subcategories. From Corollary 14 and the fact that
supp(𝑀) = supp(𝑀 (ℵ0) ) [20, 4.39], we have the following.

Corollary 24 𝑁 is an elementary cogenerator iff 𝑁ℵ0 is an elementary cogenerator
iff the pure-injective hull of 𝑁 (ℵ0) is an elementary cogenerator. All three of these
modules are definably equivalent.

Note that there is a natural bijection between definable-equivalence classes of
𝑅-modules 𝑁 which are elementary cogenerators and definable subcategories of
𝑅-Mod. Furthermore, the relation of inclusion D1 ⊆ D2 between definable subcat-
egories D1 and D2 is equivalent to 𝑁1 being a direct summand of some power of
𝑁2, where 𝑁𝑖 is an(y) elementary cogenerator of D𝑖 . On the other hand, the lattice
operations on the set of definable subcategories of 𝑅-Mod are not very well-reflected
by elementary cogenerators.

Example 14

If D1,D2 are definable subcategories of 𝑅-Mod then so is their intersection but
an elementary cogenerator for D1 ∩ D2 cannot be manufactured from elementary
cogenerators 𝑁𝑖 for the D𝑖 . For instance, take 𝑅 = Z, D1 = 〈Z2∞〉 and D2 = 〈Z3∞〉.
Both Z2∞ and Z2∞ are elementary cogenerators but they have no direct summands in
common so do not give an elementary cogenerator for D1 ∩ D2 = 〈Q〉. Of course,
if the elementary cogenerators 𝑁𝑖 have every indecomposable pure-injective in D𝑖

occurring as a direct summand, then the direct product of their common direct
summands will be an elementary cogenerator for D1 ∩ D2.

On the other hand, finite join of definable subcategories is better.

Lemma 25 Suppose that D1 and D2 are definable subcategories of 𝑅-Mod and that
𝑁𝑖 is an elementary cogenerator for D𝑖 . Then 𝑁1 ⊕ 𝑁2 is an elementary cogenerator
for the definable subcategory generated by D1 ∪ D2.

Proof By [22, 3.4.9] 〈D1 ∪D2〉 consists of the pure submodules of modules of the
form 𝑀1 ⊕ 𝑀2 with 𝑀𝑖 ∈ D𝑖 , so this follows. �

Example 15

That doesn’t work for infinite joins of definable subcategories. Take 𝑅 = Z and
D𝑛 = 〈Z𝑝𝑛〉 - the subcategory of direct sums of copies of Z𝑝𝑛 , so each Z𝑝𝑛 is an
elementary cogenerator. The definable subcategory generated by the union of these
also containsZ𝑝∞ ,Z(𝑝) andQ andZ𝑝∞ is neg-isolated for that definable subcategory,
so is not a direct summand of (any power of)

∏
𝑛 Z𝑝𝑛 .
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4 Anti-equivalence of definable categories and abelian categories

Definable categories D and skeletally small abelian categories A are linked by
D ↦→ fun(D) and A ↦→ Ex(A,Ab). This link extends to functors between these
types of category and natural transformations between those functors. The framework
in which to talk about this link is that of 2-categories.

Because the 2-categories we deal with here are rather concrete we don’t need to
give the full definition of 2-category or deal with some of the subtleties involved. For
that see, for instance, [19, §4.1], [13, B1.1]. Essentially a 2-category has three layers
of structure: 0-arrows (or objects), 1-arrows and 2-arrows (or 2-cells). In all our
examples these will be, respectively, categories, functors between those categories,
and natural transformations between those functors.

An equivalence between 2-categories A, B is given by a pair 𝐹 : A → B and
𝐺 : B → A of 2-functors such that there are natural equivalences 𝐺𝐹 ' 1A and
𝐹𝐺 ' 1B (for full details see the references). By an anti-equivalence from A to B
we mean an equivalence between the opposite of A (which is also a 2-category) and
B.

We have already mentioned two of the 2-categories we will consider. Namely the
2-category ABEX whose objects are the skeletally small abelian categories, whose
1-arrows are the exact functors between these and whose 2-arrows are the natural
transformations between exact functors. The other 2-category is DEF, with objects
the definable additive categories, 1-arrows the interpretation functors7 = functors
which preserve direct products and directed colimits, and with 2-arrows the natural
transformations between these functors.

There is a third 2-category COH that we can add to the picture. This has, for its
objects, the locally coherent Grothendieck categories, for its 1-arrows, the coherent
morphisms, meaning adjoint pairs (𝐹∗, 𝐹∗) of functors, 𝐹∗ : G → H and 𝐹∗ :
H → G, between such categories, with 𝐹∗ left exact and 𝐹∗H fp ⊆ Gfp and, again,
natural transformations for the 2-arrows. See [25, §4] for more detail.

Given a skeletally small abelian category A its Ind-completion, Ind(A), has,
for its objects, the equivalence classes of directed diagrams in A and the morphisms
of Ind(A) are constructed along the same lines, see e.g. [2, Exp. I, §8] for de-
tails. The categories Ind(A) obtained in this way are precisely the locally coherent
Grothendieck categories, [30, Prop. 2]. In the other direction, given a locally coher-
ent Grothendieck category G, the subcategory Gfp of finitely presented objects is,
to natural equivalence, a typical skeletally small abelian category. This construction
can be extended to a 2-functor from ABEX to COH which is an equivalence of
2-categories, see [25, 4.3].

In fact we have the following commutative diagram of equivalences and anti-
equivalences.

Theorem 26 ([29, 2.3 and comments following])

7 This terminology refers to their model-theoretic definition which turns out to be equivalent to the
stated algebraic preservation properties, see [23, Chpt. 2].



Definable categories and monoidal categories 21

There are equivalences and anti-equivalences between the 2-categories ABEX,
COH and DEF as shown.

COH

'

ABEX
'op

'op

DEF

The anti-equivalence from ABEX to DEF takes A to Ex(A,Ab) and, if
𝐹 : A → B is exact then we have, by composition, the induced functor
Ex(B,Ab) → Ex(A,Ab) which commutes with products and directed colimits.
In the other direction, starting from a definable category D we obtain the skeletally
small abelian category fun(D) of functors from D to Ab which commute with direct
products and directed colimits and, again, the action on functors is just that induced
by composition, [23, 13.1]. Further details can be found in [29] or, for a broader
account, [25].

We remark that, from the above, fun(D) can be any small abelian category but
those categories arising when D is the category of all modules over some ring
(possibly with many objects) have enough, that is a generating set of, projectives
and are of global dimension 0 or 2, [3, p. 205]. Furthermore, [14, 2.3], a definable
category D is finitely accessible iff fun(D) has enough projectives.

5 Monoidal structure and definable categories

5.1 Monoidal categories

We briefly recall some definitions; for details see, for example, [17, Chpt. 7].
By a monoidal structure on an additive category C we mean an additive bifunctor

(− ⊗ −) : C × C → C which is associative - 𝐴 ⊗ (𝐵 ⊗ 𝐶) ' (𝐴 ⊗ 𝐵) ⊗ 𝐶 - and
symmetric - 𝐴 ⊗ 𝐵 ' 𝐵 ⊗ 𝐴 and which has a tensor-unit 1 - 𝐴 ⊗ 1 ' 𝐴 ' 1 ⊗ 𝐴. In
fact, one has to take care over these isomorphisms and treat them as part of the data
of the monoidal structure but we don’t need that level of detail in this exposition.

Familiar examples are the category of modules over a commutative ring with the
usual tensor structure and the category of 𝐾-representations (𝐾 a field) of a finite
group with 𝐴 ⊗ 𝐵 defined to be the vector space 𝐴 ⊗ 𝐵 equipped with the 𝐺-action
determined by 𝑔(𝑎 ⊗ 𝑏) = 𝑔𝑎 ⊗ 𝑔𝑏.

In each of those examples, there is a right adjoint to the tensor functor, expressed
by the natural isomorphisms (𝐴⊗𝐵,𝐶) ' (𝐴, [𝐵,𝐶]) where [𝐵,𝐶] is the usual hom
in the first case but not in the second. In general, we say that a monoidal structure
on a category is closed if there is such an adjoint, referred to as internal hom and
notated [−,−].

We say that a monoidal structure is rigid if every object 𝐴 has a dual 𝐴∨, where
this duality is a contravariant functor on C and satisfies natural conditions including
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that [𝐴∨, 𝐵] ' [1, 𝐴 ⊗ 𝐵]. Typically (as in vector spaces) one requires that there
is such a duality only on the subcategory of “small" objects of C and our typical
requirement on a monoidal category C is that the monoidal structure be closed on
C and we might add that the monoidal structure should restrict to the category Cfp

(if C is finitely accessible) or Cc (if C is triangulated), and possibly add that this
restricted structure be rigid.

A symmetric monoidal structure on a skeletally small additive category C lifts to
a closed symmetric monoidal structure on the category (C,Ab) of C-modules. The
process, Day convolution [6, 3.3, 3.6], is determined by setting (𝐴,−) ⊗ (𝐵,−) =

(𝐴 ⊗ 𝐵,−) on representable functors = finitely generated projective modules and
then extending to all modules by insisting that ⊗ on the functor category be right
exact. Clearly this tensor product on C-Mod restricts to C-mod.

5.2 The monoidal anti-equivalence

We now state the monoidal version of the anti-equivalence betweenABEX andDEF.
The analogue of the third vertex, COH, appearing in Theorem 26 can be obtained by
extending a monoidal structure on an abelian category A along directed colimits.

The 2-categoryABEX⊗ has, for its objects, the skeletally small monoidal abelian
categories (A, ⊗) where ⊗ is additive, symmetric and exact, that is, if 0 → 𝐴 →
𝐵 → 𝐶 → 0 is an exact sequence in A then, for each 𝐷 ∈ A, the sequence
0 → 𝐴 ⊗ 𝐷 → 𝐵 ⊗ 𝐷 → 𝐶 ⊗ 𝐷 → 0 is exact. The 1-arrows of ABEX⊗ are
the exact monoidal functors 𝐹, where exactness means that, if 𝐹 : A → B and if
0 → 𝐴→ 𝐵 → 𝐶 → 0 is an exact sequence inA, then 0 → 𝐹𝐴→ 𝐹𝐵 → 𝐹𝐶 → 0
is an exact sequence in B, and the monoidal condition includes that 𝐹 takes the
tensor-unit of A to that of B and that, for each pair 𝐴, 𝐵 of objects of A, there is an
isomorphism 𝜏𝐴,𝐵 : 𝐹 (𝐴⊗𝐵) → 𝐹𝐴⊗𝐹𝐵 such that, for all morphisms 𝑓 : 𝐴→ 𝐴′,
𝑔 : 𝐵 → 𝐵′, we have the commutative diagram shown.

𝐹 (𝐴 ⊗ 𝐵)
𝐹 ( 𝑓 ⊗𝑔)//

𝜏𝐴,𝐵

��

𝐹 (𝐴′ ⊗ 𝐵′)
𝜏𝐴′,𝐵′

��
𝐹𝐴 ⊗ 𝐹𝐵

𝐹 𝑓 ⊗𝐹𝑔
// 𝐹𝐴′ ⊗ 𝐹𝐵′

The 2-arrows of ABEX⊗ are the natural transformations.
The definition of DEF⊗ is more complicated and less “intrinsic". The objects of

DEF⊗ are triples (D, C, ⊗) where C is a finitely accessible category with products, ⊗
is an additive symmetric closed monoidal structure on C such that Cfp is a monoidal
subcategory (that is Cfp is closed in C under ⊗ and contains 1) and where D is
a definable subcategory of C which is fp-hom-closed and satisfies the exactness
criterion - we now define these conditions.
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We say that a definable subcategory D of a monoidal finitely accessible category
C with products is fp-hom-closed if, for every 𝐴 ∈ Cfp and every 𝑀 ∈ D, the object
[𝐴, 𝑀] is in D - that is, “D contains its internal hom sorts".

We say that a definable subcategory D of a monoidal finitely accessible category
C with products satisfies the exactnesss criterion if, given morphisms 𝑓 : 𝐴 → 𝐵

and 𝑔 : 𝐶 → 𝐷 in Cfp, and given any 𝑀 ∈ D and morphism ℎ : 𝐴 ⊗ 𝐶 → 𝑀 , if ℎ
factors through 𝑓 ⊗ 𝐶 and also factors through 𝐴 ⊗ 𝑔, then ℎ factors through 𝑓 ⊗ 𝑔.

𝐴 ⊗ 𝐶
𝐴⊗𝑔 //

𝑓 ⊗𝐶
��

ℎ

''

𝐴 ⊗ 𝐷

𝑓 ⊗𝐷
��

��

𝐴 ⊗ 𝐶
𝐴⊗𝑔 //

𝑓 ⊗𝐶
��

𝑓 ⊗𝑔

$$

ℎ ''

𝐴 ⊗ 𝐷

𝑓 ⊗𝐷
��

𝐵 ⊗ 𝐶
𝐵⊗𝑔
//

))

𝐵 ⊗ 𝐷 𝐵 ⊗ 𝐶
𝐵⊗𝑔
// 𝐵 ⊗ 𝐷

##
𝑀 𝑀

The 1-arrows of DEF⊗ from (D, C, ⊗) to (D ′, C′, ⊗′) are the morphisms D → D ′

which commute with direct products and directed colimits and which are such that
the exact functor fun(D ′) → fun(D) induced by composition, see [23, 13.1], is
monoidal.
The 2-arrows of DEF⊗ are just the natural transformations.

Theorem 27 ([34, 1.3/3.1]) There is an anti-equivalence of 2-categories:

ABEX⊗ ↔op DEF⊗

given by
A ↦→ (Ex(A,Ab),A-Mod, ⊗)

where the monoidal structure on A-Mod is induced from that on A by Day convo-
lution and, in the other direction, given by

(D, C, ⊗) ↦→ (fun(D), ⊗)

where the monoidal structure on fun(D) is induced, by Serre-localisation, from that
induced on (Cfp,Ab)fp by Day convolution.

The last part, about the monoidal structure on fun(D), needs explanation. We use
the fact, see [23, Chpt. 10], that fun(D) is a Serre quotient of (Cfp,Ab)fp = fun(C),
namely the quotient by the Serre-annihilator SD = {𝐹 ∈ (Cfp,Ab)fp : −→𝐹D = 0}
of D, where −→

𝐹 is the lim−−→-commuting extension of 𝐹 to all of C. The fp-hom-
closed condition on D is exactly what is needed to ensure that SD is a tensor-ideal
of (Cfp,Ab)fp and hence that the monoidal structure on (Cfp,Ab)fp induced, via
Day convolution, by that on Cfp induces a monoidal structure on its Serre-quotient
fun(D) = (Cfp,Ab)fp/SD .

Theorem 28 ([34, 1.2/3.7]) Suppose that C is an additive finitely accessible cat-
egory with products, with a closed symmetric monoidal structure such that Cfp



24 Mike Prest

is a monoidal subcategory. Equip (Cfp,Ab)fp with the Day-convolution-induced
monoidal structure.

Let D be a definable subcategory of C and let SD denote the Serre-annihilator
of D.

Then SD is a tensor-ideal of (Cfp,Ab)fp iff D is fp-hom-closed in C.

The exactness condition on D is precisely what is needed to ensure that the
monoidal structure induced on fun(D) is exact.

Theorem 29 ([34, 3.10,3.11]) Suppose that C is an additive finitely accessible cat-
egory with products, with a closed symmetric monoidal structure such that Cfp

is a monoidal subcategory. Equip (Cfp,Ab)fp with the Day-convolution-induced
monoidal structure.

Let D be an fp-hom-closed definable subcategory of C and induce the monoidal
structure on fun(D) as in Theorem 28.

Then the monoidal structure on fun(D) is exact iff D satisfies the exactness
criterion in C.

Example 16

(see [34, 5.3] Consider the category of modules over 𝑅 = 𝐾 [𝜖 : 𝜖2 = 0] with 𝐾 any
field, equipped with the usual tensor product for commutative rings (so the tensor-
unit 1 is the unique simple module 𝑈 which is 𝐾 with 𝜖 acting as 0). There are just
two nonzero proper definable subcategories of 𝑅-Mod, namely 〈𝑈〉, which consists
of direct sums of copies of 𝑈, and 〈𝑅〉, which consists of direct sums of copies of
the indecomposable projective module 𝑅. We have (𝑈,𝑈) ' 𝑈 ' (𝑅,𝑈) so 〈𝑈〉 is
fp-hom-closed in 𝑅-Mod, but (𝑈, 𝑅) ' 𝑈, so 〈𝑅〉 is not fp-hom-closed. It is also the
case that 〈𝑈〉 satisfies the exactness condition, by the following result.

Theorem 30 ([34, 5.5]) If 𝑅 is a commutative coherent ring then every fp-hom-
closed definable subcategory of 𝑅-Mod satisfies the exactness condition.

If the tensor structure restricted to Cfp is rigid, then we have the following.

Theorem 31 ([34, 4.3]) Suppose that C is an additive finitely accessible cate-
gory with products, with a closed symmetric monoidal structure such that Cfp is
a rigid monoidal subcategory. Equip (Cfp,Ab)fp with the Day-convolution-induced
monoidal structure. Let D be a definable subcategory of C.

Then SD is a Serre tensor-ideal of (Cfp,Ab)fp iff D is a tensor-ideal of C.

Example 17

Suppose that 𝐺 is a finite group and 𝐾 is a field. Then the monoidal structure on
𝐾𝐺-modules, restricted to finitely presented 𝐾𝐺-modules, is rigid. So, by Theorem
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31, the definable tensor-ideals of 𝐾𝐺-Mod are in natural bijection with the Serre
tensor-ideals of (Cfp,Ab)fp.

Example 18

(see [34, 5.14] Consider again the category of modules over 𝑅 = 𝐾 [𝜖 : 𝜖2 = 0] but
now with 𝐾 a field of characteristic 2, so that we may consider this as the category of
𝐾-representations of the cyclic group of order 2 equipped with the representations-
of-groups tensor product. So now the tensor-unit is the module 𝑅.

One can compute that, in this case (cf. Example 16), 〈𝑅〉 is fp-hom-closed (and
a tensor-ideal of 𝑅-Mod) but 〈𝑈〉 is not, so we have S〈𝑅〉 as the unique proper
non-trivial Serre tensor-ideal of (𝑅-mod,Ab)fp.

Although we have not discussed elementary duality of definable categories here
(for that see [22] for instance), we do note the further result, [34, 4.8], that a definable
subcategory D ofA-Mod, whereA has a rigid monoidal structure, is fp-hom-closed
iff the dual definable subcategory Dd of Mod-A is a tensor-ideal.
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