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Abstract 

 

Breast cancer is the most common cancer in women worldwide. Many countries, 
including the UK, run screening programs in which x-ray mammograms of the breast 
are examined for signs of disease. The signs of breast cancer in mammograms may be 
very subtle, particularly in asymptomatic women. This makes reading mammograms a 
difficult task that is subject to human error. As a consequence it is vital readers are 
adequately trained and assessed throughout their career. 

This thesis promotes the use of synthetic mammographic abnormalities as part of reader 
training and assessment. Using mammograms in which signs of breast cancer have been 
synthesised overcomes the problem of obtaining a sufficiently large volume of real data 
with known ground truth. 

In particular, this thesis focuses on generating the appearance of malignant spiculated 
masses. Such masses are one the most frequent signs of breast cancer, but despite 
previous attempts, have yet to be synthesised successfully.  

Statistical methods were used to model the appearance and location of a training set of 
real masses. 

A global appearance model was used to encapsulate the variation in shape, texture and 
size of the central density present in each mass. Local texture models were constructed 
to describe the interaction between mass spicules and existing breast tissue in the region 
of the mass. Finally, a model describing the location of masses relative to breast shape 
was constructed. The models were used to synthesise the appearance of a malignant 
mass in an otherwise normal mammogram.  By virtue of using generative statistical 
models, the synthesis process could be fully automated. 

An observer study showed that masses generated by the method were identified as 
synthetic by expert readers at a rate significantly better than chance. However, this rate 
was similar to previous synthesis methods that required some level of manual input. 
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Chapter 1 : Introduction 

1.1 Clinical Motivation 

Breast cancer is the most common cancer in women worldwide. Each year 

approximately one million new cases are diagnosed [5]. In the UK alone, 11,990 

women died as a result of breast cancer in 2007 [1]. 

To reduce mortality rates, many countries, including the UK, have adopted large-scale 

screening programs in which x-ray mammograms of the breast are examined for signs 

of disease. Such programs have been associated with a 35% reduction in mortality from 

breast cancer [2]. The current program in the UK invites all women between the age of 

50 and 69 to screening once every three years. As a result, in the period from April 2007 

to March 2008, mammograms were acquired for nearly 1.9 million women. The age 

range of women invited to screening is currently being expanded to cover all women 

aged 47 to 73. When this expansion is complete nationally, it will result in an additional 

400,000 women to screen annually. 

Thus every year, a vast number of mammograms must be examined for signs of disease. 

Whilst the last 20 years has seen great developments in computer algorithms that can 

automate this process, all mammograms in a clinical setting must be visually assessed 

by at least one human expert. Indeed because detecting signs of cancer in mammograms 

is a challenging task for even the most experienced breast radiologists, it is 

recommended best practice that all mammograms are examined independently by two 

expert readers. This process, known a double reading, has been shown to significantly 

improve the accuracy of detecting cancer [116].  
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However, double reading all mammograms acquired as part of a national screening 

program creates a large workload for individual readers. This workload, coupled with 

the complexity of detecting the subtlest signs of breast cancer, imposes great pressure 

on mammography readers. As a result, the way in which mammography readers are 

trained and evaluated throughout their career is of great importance, and it is primarily 

to this area we aim to contribute in this thesis. 

In particular, we note that obtaining datasets comprising a sufficient range of 

mammographic abnormalities for teaching and assessment purposes may be 

problematic. We propose that synthesised mammographic lesions could be used in place 

of real data to overcome this problem. However if synthetic data is to be used, we must 

ensure that the lesions generated are indistinguishable from real examples. Moreover, 

for the full potential of synthetic data to be realised, we believe that any synthesis 

method must be able to run automatically so that very large datasets can be obtained 

without requiring significant human input. 

In this thesis we develop a method for synthesising mammographic masses using a 

statistical modelling framework. Statistical models are constructed to describe the 

appearance of a real set of mammographic lesions so that by sampling from the model 

distributions, we can generate potentially infinite sets of synthesised lesions that match 

the appearance characteristics of our real data. 

 

1.2 Thesis overview 

In this section we provide a brief overview of the remaining chapters in this thesis. 
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Chapter 2 provides an overview of breast cancer, the imaging modality x-ray 

mammography and the national screening program currently implemented in the UK. 

This chapter sets out the clinical motivation for generating synthetic mammographic 

abnormalities that can be used in place of real data. 

Chapter 3 presents a review of relevant literature from the field of computer-based 

mammography research. As a result of this review we conclude there has yet to be a 

method developed that satisfactorily synthesises malignant, spiculated breast masses. 

We note that partial synthesis (in which synthetic abnormalities are added to real normal 

mammograms) has proved more capable of generating realistic results than attempts to 

synthesise whole mammograms. Finally we identify a statistical appearance modelling 

framework we believe has the potential to generate synthetic masses that meet our 

requirements. 

Chapter 4 includes a review of general methods in the field of image processing and 

analysis that will be useful for the methods we develop in the remainder of the thesis. 

Chapter 5 describes the set of real data used throughout our work. These data comprise 

540 mammograms supplied by the Nightingale Breast Centre, Manchester. Within the 

data are 101 malignant breast masses captured in either one or both mammographic 

projections. We describe the process by which these masses are annotated by a breast 

radiologist. 
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Chapter 6 presents a method in which each mammographic mass in our dataset is 

separated from the surrounding breast tissue. As a result of applying this process we 

effectively generate two new sets of image data: masses and mass backgrounds. 

Chapter 7 describes the process of fitting a statistical appearance model to the set of 

masses. In particular we show how steps taken to optimise model fit have led to a model 

that generalises to unseen masses significantly better than a previously published model. 

Chapter 8 includes a novel set of methods to model and synthesise the appearance of 

mass backgrounds. To obtain a rich set of descriptors of mammogram texture and 

structure, we apply the dual-tree complex wavelet transform (DT-CWT) to decompose 

our image data. We present a synthesis method in which DT-CWT coefficients of a 

normal region are modified, so that when the region is reconstructed it has the 

appearance of a real mass background. 

Chapter 9 describes how the models of mass appearance and mass background 

appearance can be combined to produce a complete method for synthesising malignant 

mammographic masses in normal regions. 

Chapter 10 presents a method for sampling a location within a normal mammogram at 

which a synthetic mass may be generated. The method incorporates an automatic 

segmentation of breast shape, so that given a normal mammogram, we can select a 

target location without user input. Coupled with the appearance synthesis method 

described in chapter 9, this produces a completely automated method for generating a 

synthetic breast mass in any normal mammogram. 

Chapter 11 describes an observer study in which the realism of masses generated by 
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our method are assessed by expert mammography readers. Quantitative results of the 

study are given, in addition to qualitative feedback provided by the readers. 

Chapter 12 concludes this thesis and provides a summary of the work we have 

presented. Possible areas for improving and extending the methods we have developed 

are discussed. The chapter finishes with a discussion on the contributions we believe 

our work has made to the field of mammography research. 
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Chapter 2 : Breast Cancer and Mammography 

In this chapter we present background information on breast cancer and describe how 

the imaging modality of X-ray mammography can be used to screen for breast cancer. 

Having discussed the process by which cancer may be detected in mammograms 

obtained as part of a large-scale screening process, we consider the pressures and 

workload this imposes on human readers of mammograms. In particular, we note the 

need for comprehensive training of readers and the need for efficient methods to 

evaluate their performance throughout their career. We describe the difficulties 

obtaining sufficient datasets with which to train and assess readers, thus motivating our 

goal to simulate signs of breast cancer in mammograms so that synthetic data may be 

used in place of real data. 

2.1  Breast cancer 

In this section we present a brief description of the adult female breast and the manner 

in which breast cancer develops. 

2.1.1 Anatomy of the breast 

The adult female breast consists of a mixture of parenchyma (functional tissue), fatty 

tissue and connective tissue [52]. The parenchyma is responsible for lactation and is 

composed of 15 to 20 lobes. Each lobe is a tree-like structure comprising a main duct 

that converges at the nipple and numerous branches that eventually terminate to lobules. 

The lobules produce and secrete milk which is drained through the ductal network to the 

nipple. The proportion of tissue types varies throughout a woman’s life, with a general 

decrease in parenchyma and increase in fatty tissue with age, after full maturation. This 

process is referred to as the involution of the breast. In addition to the ductal network, 
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the breast contains a network of lymph vessels that drain lymphatic fluid away from the 

breast. The anatomy of the breast is depicted in Figure 2.1. To describe location, it is 

usual to split the breast along horizontal and vertical planes that bisect the nipple and 

run from the anterior to the posterior of the breast, thus forming the four quadrants 

labelled in Figure 2.1. The distribution of parenchymal tissue is not uniform across the 

breast, with the upper-outer quadrant containing the largest percentage.  

  34

Figure 2.1 The anatomy of a typical adult female breast 
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2.1.2 Breast cancer 

Breast cancer is the most common cancer in the UK, and is the leading cause of deaths 

from cancer in women. In 2006, approximately 45,500 new cases were diagnosed, 

resulting in over 12,000 mortalities [1]. Although the disease can affect men, the vast 

majority of cases are in women. Incidences of breast cancer are very rare in women 

under the age of 30 years, with the rate rising steadily with age from then on. In the UK, 



Chapter 2 - Breast Cancer and Mammography 

  35

four in five new cases are diagnosed in women aged 50 and over [1]. 

The term cancer refers to a group of diseases that cause cells in the body to reproduce 

uncontrollably. Cancer cells divide rapidly and aggressively, and unless destroyed by 

medical intervention, result in death. 

The following description of the progression of breast cancer is adapted from that given 

by Hayes [52]. Stage 1: Primary breast cancer begins as one or more cells of the 

parenchyma lose their normal regulation and proliferate aggressively, but remain 

confined by the duct or lobule membrane. At this stage the cancer is in situ. In the 

second stage, the cancerous cells break through the membrane of the duct or lobule, and 

invade the local tissue; the cancer has become invasive. Finally, in the third stage, the 

cancerous cells are transported via the lymph nodes or blood vessels, and may cause 

secondary cancers (metastases) throughout the body. However, breast cancer is an 

extremely heterogeneous disease, and the time at which the primary tumour develops 

from in situ to being invasive can occur at any time, from very early to very late in the 

cancer’s lifetime. 

If the primary tumour can be diagnosed and treated before it becomes invasive, there is 

a good chance localised treatment will successfully cure the disease. Invasive cancers 

that have metastasised require a systemic treatment of the body, which may ultimately 

prove ineffectual. Thus the earlier breast cancer is diagnosed the better the prognosis. 

2.2 Mammography 

In this section we describe how mammograms are acquired, consider the 

mammographic appearance of normal breast tissue and describe the appearance of 
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abnormalities that may be indicative of breast cancer. We describe the mammography 

screening program implemented in the UK and consider the pressure this puts on the 

human readers tasked with detecting breast cancer in mammograms. We conclude the 

chapter with a discussion of how reader training may be improved and describe the 

potential benefits of using synthesised mammographic abnormalities. 

2.2.1 Mammogram acquisition 

An x-ray mammogram is formed by compressing the breast between two radiolucent 

plates (see Figure 2.2 (a)). X-rays are directed through the breast and are attenuated by 

differing amounts, depending on the tissue they pass through. The x-rays are detected 

either by film or digitally, and a two-dimensional projection of the breast is generated. 

Three-dimensional information may be inferred by taking mammograms from different 

orientations, the two most common of which are the craniocaudal (CC) and mediolateral 

oblique (MLO) views. For a CC mammogram, the compression plates are placed 

horizontally above and below the breast, as shown by the red markers in Figure 2.2 (b). 

For an MLO mammogram, the plates are angled at approximately 45 degrees, with the 

lower end toward the centre of the chest, and the upper toward the shoulder, as depicted 

by the blue markers in Figure 2.2 (b). As a result of acquiring CC and MLO views of 

both breasts, a standard set of mammograms obtained during a single session consists of 

four mammograms. One such set is depicted in Figure 2.3. In general we will refer to 

the set of left and right, CC and MLO mammograms as a four-view mammogram case. 
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Figure 2.2 a) Diagram of mammogram acquisition b) position of the compression plates for a 

mediolateral oblique (MLO) mammogram in blue, and craniocaudal (CC) mammogram in red 
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X-ray mammography is currently the only viable image modality for large-scale 

screening of asymptomatic women, meeting the key criteria of being low cost, 

delivering only a low dose of radiation, and providing very high spatial resolution in the 

image produced. This ensures that in attempting to detect breast cancer, we minimise 

the increase in risk of developing cancer associated with x-ray radiation. A high spatial 

resolution is required to detect the smallest abnormalities (such as microcalcifications 

discussed in section 2.2.4), that may be very early signs of cancer. 

As noted above, mammograms may be acquired on film or as part of a fully digital 

system. Full-field digital mammography (FFDM) has been shown to improve the 

detection of cancer (particularly in younger women with denser breasts) [94, 110, 111], 

whilst reducing the cases in which repeat images must be acquired due to technical 

problems in the acquisition process. With additional advantages afforded by storing, 

transferring and retrieving data digitally, FFDM systems are replacing film 

mammography units throughout the UK, with the aim that every screening centre has 
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access to at least one FFDM system by 2010 [3].  

However, at the time of commencing this project, the majority of screening 

mammograms currently acquired in the UK were acquired as films. To apply computer 

algorithms to film mammograms, the films are first digitised by dedicated 

mammography scanners. As discussed in chapter 5, the mammograms used throughout 

our project are digitised film mammograms. Thus in the next section we consider the 

relationship between the tissue structures in a breast and the appearance of a digitised 

mammogram. 

2.2.2 Relating breast tissue and mammographic appearance 

When viewed on a light box, the appearance of a film mammogram results from 

variations in density across the film. When a film is digitised, the scanner converts the 

range of densities into pixel grey levels. Thus in order to understand the appearance of 

different tissue types in a digitised mammogram, we need to examine how film density 

relates to the imaging process. 

To begin we assume an ( , , )x y z  co-ordinate system such that during mammogram 

acquisition the film lies in the ( , )x y  plane and x-rays pass through the compressed 

breast along the z-axis, and thus perpendicularly to the film. In this system, the intensity 

of the x-ray beam after passing through any location ( , )x y  in the projection of breast 

can be written as 

( ) ( ) ( )0, , exp , ,I x y I x y x y z dzμ⎡ ⎤= −⎣ ⎦∫  

where 0I  is the incident intensity of the x-ray beam and ( , , )x y zμ  describes the 
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attenuation coefficient of tissue at the point ( , , )x y z

( , )E x y

 in the breast. 

The exposure of the film at this location,   is computed as the sum of intensities 

imparted on the film during the acquisition process. Thus if ( ), ,I x y t  is the intensity at 

any given time, we can write 

( ) 0, ( , , ) ( , , )E x y I x y t dt E x y z dzexp μ⎡ ⎤= = −
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⎣ ⎦∫ ∫  

Moreover, by assuming ( , , )x y zμ  is constant during image acquisition, we can write 

the intensity at any given time as 

( ) ( ) )0, , , , exp ( , ,I x y t I x y t x yμ z dz⎡ ⎤= −⎣ ⎦∫

, , )z dz⎡ ⎤
⎣ ⎦

, )

 

and so can rewrite the exposure of the film as 

( ) 0, exp (E x y E x yμ= −∫  

where  is the integral of the incident intensity over time and is defined as the incident 

exposure.  

0E

It is the exposure of the film to the x-ray beam that changes the density of the film. The 

relationship of the change depends on the specific type of film-screen combination used. 

However, the film density will be directly proportional to the log of the exposure for a 

range of exposures. If the mammogram has been correctly acquired, the exposure of the 

film at any location in the projection of the breast will lie within this log-linear range, in 

which case we can write the film density at (x y  as 
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( ) ( )
( ) ( )

0

0

, log ( , ) exp ( , , )

( , , ) log ( , )

D x y E x y x y z dz

x y z dz E x y

α μ β

α μ α

⎡ ⎤= −⎣

= − + +

∫
∫ β

+⎦   (2.1) 

where the values of the constants α  and β  depend of the film-screen combination. 

Thus if a mammogram has been correctly acquired, the density of the film at any 

location in the breast has a linear relationship to the sum of superimposed tissue 

attenuation coefficients at that location. Moreover, if (as in the scanner we use) film 

densities are converted linearly into pixel grey levels, this relationship is passed on to 

the digitised mammograms. Finally, we note that in general, film densities are inverted 

during digitisation, so that high attenuation coefficients correspond to high grey levels 

and vice-versa. 

We can now describe the appearance of particular breast tissue types in digitised 

mammograms.  

2.2.3 Mammographic appearance of breast tissue 

As described in section 1.1, the three main components of an adult female breast are 

fatty tissue, parenchyma and connective tissue. Their mammographic appearance is 

described below. 

Fatty tissue: fat is largely composed of water, and so has a very low x-ray attenuation 

coefficient. As a result fatty regions of the breast appear as areas of low grey level in a 

mammogram and do not obscure denser tissue or tumours. 

Parenchyma: the parenchyma is much denser than fat, and thus has a higher attenuation 

coefficient. As a result the superimposition of parenchymal tissue may obscure 
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malignant lesions present in the breast. For this reason mammography is less suitable 

for younger women, in whom the breast has a high percentage of parenchyma. The 

ducts of the parenchyma appear as bright curvilinear objects on the mammogram. The 

lobules may also be seen as small circular objects, although in older women, the lobules 

have usually diminished and are not detectable. In denser breasts the projection of the 

parenchyma may form a near unbroken high intensity region in the anterior of the 

breast, sometimes described as the fibro-glandular disc. 

Connective tissue: ligaments supporting the breast may also be visible with a similar 

appearance to the parenchymal ducts.  

Blood vessels and lymph nodes may be visible in mammograms. In the MLO view, the 

pectoral muscle appears as a region of denser tissue on the upper chest wall corner of 

the image. 

The two-dimensional projection of complex three-dimensional tissue structures, 

combined with the high resolution of mammography, produces an image that has very 

few homogenous regions within the breast, and is rich in linear structures at multiple 

orientations. 
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Figure 2.3 : A four view mammogram case comprising right CC, left CC, right MLO and left 

MLO mammograms. Both right mammograms are disease-free (normal), however there is an 

invasive cancer visible in the left MLO and CC mammograms, marked by the red arrows 

 

Figure 2.3 depicts the CC and MLO mammograms of the right and left breasts from a 

four view mammogram case. In this instance the right breast is disease free, and thus 
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right MLO and CC mammograms are normal. However, there is a biopsy proven 

malignant mass in the left breast. The mammographic appearance of signs indicative of 

breast cancer, along with the appearance of other abnormalities in the breast, is 

described in the next section. 

2.2.4 Mammographic appearance of breast abnormalities 

In this section we describe the mammographic appearance of abnormalities in the 

breast. 

Before proceeding we make two points. Firstly, not all abnormalities present in 

mammograms are signs of breast cancer. Many lesions are caused by benign processes 

such as cysts, or benign tumours. Secondly, there is no consistent universally applied 

system for classifying and reporting the appearance of lesions in mammograms. The 

American College of Radiology introduced the Breast Imaging Reporting and Data 

System (BIRADS) [14] aiming to standardise a lexicon of terms with which to report 

abnormalities in screening mammograms. However, whilst this has been formally 

adopted in the USA, it has not seen widespread take-up in the UK. The descriptions of 

lesions we give below are based on the classes that we believe are commonly used by 

UK mammogram readers, based both on our observations of their work in a clinical 

setting and through working with readers during our project. For reference purposes, the 

descriptions we give are combination of those given by Tabar and Dean [115], and 

those included in BIRADS [14]. 

We classify abnormalities into five groups: circumscribed lesions; spiculated (or 

stellate) lesions; calcifications; architectural distortions; and breast asymmetries. A 

description of the mammographic appearance of each class is given below. 
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Circumscribed lesions are characterised by their density, boundary, form and size. 

The density of a lesion is categorised into four groups: radiolucent (less dense than the 

surrounding parenchyma); low density radio-opaque (approximately the same density as 

parenchyma); high density radio-opaque (denser than parenchyma) and radiolucent and 

radio-opaque combined. The greater the density of a lesion, the higher its grey levels 

will be in a digitised mammogram. All radiolucent and combined density lesions are 

benign, as are most low density radio-opaque lesions. 

The boundary of a circumscribed lesion may be indistinctly outlined or sharply outlined, 

possibly with an additional halo sign (a narrow radiolucent ring) or capsule (a narrow 

radio-opaque ring) surrounding the lesion boundary. Sharply outlined lesions, 

particularly those with halo signs or capsules are likely to be benign.  

The lesions may have circular, ovular or lobular form and can vary size, from very 

small (1cm or less) to very large (greater than 5cm). A benign circumscribed lesion is 

shown in Figure 2.4 (a). 

Spiculated lesions are radiating structures with ill-defined boundaries. The lesion 

centre may be a distinct solid tumour or contain oval or circular radiolucent areas. The 

radiating structures may have two basic forms: sharp, fine, dense lines (spicules) 

radiating in all directions, with the length increasing as the central mass increases or 

very fine, less dense spicules grouped together (we will refer to such groups of spicules 

as “sheaf-of-wheat” spicules). In general, spiculated lesions are highly likely to be 

malignant. Figure 2.4 (b) shows a malignant mass with an array of fine, dense spicules 

radiating from the centre of the mass. 
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Calcifications appear as small high intensity objects in a mammogram, usually caused 

by benign processes [115]. Microcalcifications are tiny (normally less than 1mm) high 

intensity spots that may be grouped into clusters and are usually malignant. The shape 

of individual microcalcifications may be granular or irregular. Although 

microcalcifications are generally much brighter than surrounding tissue, their tiny size 

may make them very hard to distinguish (being mistaken, for example, as image noise). 

As discussed in section 2.2.1, detecting microcalcification requires that mammograms 

are acquired at a very high spatial resolution. Figure 2.4 (c) depicts a malignant cluster 

of microcalcifications. 

Architectural distortion refers to an abnormal pattern of parenchymal tissue. This 

pattern may appear as thin lines or spiculations radiating from a point, or as focal 

retraction at the edge of the parenchyma. Whilst architectural distortion is often 

associated with other signs of disease, it may occur when a focal mass is either not 

present or not visible. Architectural distortion may be due to previous trauma or surgery 

to a breast, however, if no such history is recorded distortions are suspicious for 

malignancy. Architectural distortions not associated with a visible mass may have a 

very subtle appearance in the breast, and can often be overlooked as normal patterns of 

parenchymal tissue. Indeed, a study by Burrell et al. [20] suggested that architectural 

distortion was the most commonly missed disease sign in interval cancers. Figure 2.4 

(d) depicts a region of architectural distortion in which a focal mass is not visible.  
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Figure 2.4: a: A circumscribed mass; b) a spiculated mass; c) a region of architectural distortion; 

d) a cluster of microcalcifications 

(a) (b) 

(c) (d) 

 

Breast asymmetry, as the name suggests, refers to a difference in appearance between 

mammograms of the left and right breast. Global asymmetry refers to a general 

difference in appearance of breast tissue, for example one breast may have a much 

greater volume of parenchymal tissue than the other. Local areas of asymmetric tissue 

(sometimes described as focal asymmetries) may be caused by a mass or architectural 
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distortion. However, the mass or distortion may not be clearly visible due the 

superimposition of other breast tissue. Whether asymmetries are treated as suspicious 

depends on the presence of other signs of disease, and, if earlier mammograms are 

available, the extent to which an asymmetry has changed temporally. For reference, a 

large number of examples of asymmetrical breasts are presented in the Miller’s PhD 

thesis [82]. 

2.2.5 Mammography screening 

The earliest record of breast radiography dates back to 1913 and by the 1960s 

mammography was recognised as a useful tool with which to screen for breast cancer in 

asymptomatic women [15]. In the late 1980s the practice had developed to the point 

where several large scale national screening programs were established. These included: 

Sweden in 1986; Iceland in 1987; and the UK, Canada and Australia in 1988 [106]. In 

this section we focus on the screening program currently implemented in the UK, 

although more information on the screening policies of other countries can be found in 

the report by Shapiro et al. [106]. 

The National Health Service Breast Screening Program (NHSBSP) was established in 

1988 in response to the recommendations of the Forrest report [46], with the aim of 

reducing breast cancer mortality rates in the UK. Breast cancer may be detectable in x-

ray mammograms before palpable symptoms occur. Screening helps detect breast 

cancer at the earliest possible stage, with the latest figures showing approximately half 

of breast cancers in the UK in the 50 to 69 years age group are detected as a result of the 

NHSBSP. It is estimated that this saves approximately 1,400 lives in England in each 

year [2].  
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In 2005, the upper age limit in the program was extended from 65 to 70, so that all 

women between the ages of 50 and 69 are now invited for screening every three years. 

Under this scheme, in year April 2007 to March 2008 nearly 1.9 million women were 

screened in the UK, resulting in the detection of over 16,000 invasive breast cancers.  

In 2009 a further extension of the age limits to include all women between the ages of 

47 and 73 was trialled regionally. This latest increase in age range is due to be expanded 

nationally by the end of 2010, resulting in a further 400,000 women being invited for 

screening annually.  

In the following section we describe the process by which the mammograms acquired 

during the NHSBSP are analysed for signs of breast cancer. 

2.2.6 Reading mammograms 

In this section we outline the process of reading mammograms, where reading is 

defined as the process in which a human observer visually assesses a mammogram for 

signs of disease. We discuss the current reading guidelines recommended in the 

NHSBSP and consider the workload this enforces on mammogram readers1. 

For each mammogram acquired in the screening program a reader must first decide if 

any abnormality is present. If the mammograms acquired in a single case are normal, 

then no further action need be taken. However, if any abnormalities are found, then a 

decision must be made on whether the abnormality is a benign finding, or whether it is 

 

1 As we note later in this section, in the UK mammogram readers are not confined to breast radiologists, and therefore 

we avoid using the term radiologist synonymously with mammography reader. However, it is current practice that 

at least one consultant radiologist assesses every screening mammogram. 
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indicative of disease. If any abnormality is suspected of being malignant, then the 

woman will be recalled for further investigation. This may include repeat imaging or a 

needle biopsy, to confirm a diagnosis. We note however, that for our work we are 

interested in the reading process up to the point at which a decision on the initial 

screening mammograms is made, and thus reviewing such further investigation is 

beyond the scope of this thesis.   

When assessing mammograms, readers face two competing goals. Naturally they must 

aim to detect as many cancers as possible. However they must minimise the number of 

women without cancer that are unnecessarily recalled for further investigation. These 

false positive cases may cause undue stress to the women involved. Moreover, a high 

numbers of false positives across a population may lead to a reduction in invitation 

acceptance, to the detriment of the screening program. In statistical terminology, the 

goal of detecting true cancers is described as maximising sensitivity, whilst minimising 

false positives is known as maximising specificity. 

The abnormalities described in section 2.2.4 may be very subtle in mammograms, 

particularly as many of the cancers present are at an early stage of development. As a 

result mammograms may be misdiagnosed, even by experienced expert readers. 

Therefore in the UK, it is recommended best practice that all mammograms are assessed 

independently by at least two expert readers. This process, known as double reading, 

has been shown to increase overall sensitivity without reducing specificity [116]. 

Given the number of mammograms acquired during the NHSBSP, double reading 

places a massive workload on human readers. Indeed individual readers in the UK 

typically read between 5,000 and 10,000 films a year (see section 11.5.1). Moreover this 
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workload is due to increase when the current extension in the age range of the NHSBSP 

is complete. Whilst recent studies have shown that combining computer-aided detection 

(CAD) algorithms with a single human reader may provide an alternative to double 

reading [49], such CAD systems are not yet widely used in the NHSBSP. 

From the evidence outlined above, we see that reading mammograms is a visually 

demanding task – both in terms of the difficulty associated with detecting subtle signs 

of disease in individual mammograms and the sheer number of mammograms a reader 

must process. This places a great burden on how readers are trained and evaluated 

throughout their career. Training must be comprehensive to ensure readers are of 

sufficient expertise whilst being streamlined to ensure the staffing requirements 

imposed by double reading are maintained. Meanwhile qualified readers should be 

evaluated throughout their career to ensure they are performing at a sufficient standard. 

Currently, all UK readers are invited to take part in a bi-annual self-assessment program 

(PERFORMS) [32]. In this assessment, readers are presented with a set of films that 

have been specially selected to contain challenging cases. Ground truth for the films is 

obtained by consensus of an expert panel. As with training, this process must be 

streamlined to ensure such evaluation doesn’t end up significantly adding to a reader’s 

workload.  

In the following section, we discuss how we think synthetic data can be used to improve 

methods by which mammogram readers are trained and evaluated. 

2.2.7 Using synthetic lesions to train and evaluate mammogram 
readers 

Trainee mammogram readers must become familiar with the appearance any 
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abnormality that could be found in a mammogram. Therefore it is essential they have 

access to a large set of mammograms containing a wide range of abnormalities. 

Moreover, to enable the provision of feedback and to evaluate progress, the ground truth 

of any mammogram must been known. That is, if there are one or more abnormalities 

present in a mammogram, then at the very least the location and type of abnormality 

must be available. In a learning environment, it may also be beneficial if more detailed 

information is available (for example, a precise demarcation of a lesion boundary). 

Similarly, a dataset of mammograms containing abnormalities with known ground truth 

is required to quantify the performance of current readers. Moreover, in any assessment 

exercise (whether for trainee or qualified readers), a mammogram should only be seen 

once by any given reader. Once a mammogram has been seen, the extent to which a 

reader remembers the content of the image (whether consciously or subconsciously) 

may bias any further readings of the image. Therefore any assessment program must 

have access either to an extremely large dataset of suitably labelled mammograms or 

ensure that their current dataset is continually updated. 

Obtaining sufficiently large sets of real data that meet the requirement outlined above 

may prove problematic. As described in section 2.2.5, huge numbers of mammograms 

are acquired each year. However because the mammograms are obtained from an 

asymptomatic screening population, the large majority are normal. For example, of the 

women screened in 2008 as part of the NHSBSP, only 9 in every 100 mammogram 

cases contained some form of abnormality that required further investigation, whilst 

cancers were detected in only 8 in every 1000 cases [4]. Thus simply obtaining a 

sufficient number of abnormal cases (and particularly cases with signs of cancer) for 
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training and assessment may be difficult.  

Even if a large enough set of data can be acquired, it may not be possible to obtain the 

necessary ground truth for the data without significant input from an expert 

mammography reader. We propose that using synthetic mammographic abnormalities in 

place of real data would be an efficient solution to this problem. 

By construction the ground truth of any synthesised abnormality is known. Moreover, 

once a method for synthesising data is established, new abnormalities can be generated 

to expand a dataset to any size and ensure that data are continually updated. 

Of course, for synthetic data to be used clinically in training and assessing of 

radiologists, we must ensure that synthetic abnormalities share all the appearance 

characteristics of real abnormalities. In addition, we note that one of the major benefits 

we see in using synthetic abnormalities is the ability they give us to create very large 

sets of data. This advantage is mitigated if significant user input is required to generate 

each new synthetic example and therefore, from the outset, we propose that any method 

used to synthesise mammographic abnormalities should be able to run automatically to 

create large sets of data. 

For reader training, we note that a method to automatically generate synthetic 

mammographic abnormalities could be incorporated in an intelligent tutoring system 

(ITS). Broadly speaking an ITS is a software system that interacts with a user, so over 

some period over training, a user is presented with problems specifically tailored to 

their needs. Such systems have been successfully employed to various learning tasks in 

medicine [11, 33, 41, 107]. In particular we note a system RadTutor [11], developed by 
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Azevedo and Lajoie, designed to train a user to differentiate between real and benign 

abnormalities in mammograms. Throughout training, RadTutor selects the most 

appropriate abnormality to display to a user, based on their previous performance. 

However, the system has only a limited supply of abnormalities from which it can 

choose. Therefore we envisage that a method capable of generating, on demand, an 

abnormality of some specified characteristic would be of great benefit to this form of 

system. 

2.2.8 Using synthetic lesions to test mammography equipment 

In addition to improving reader training and assessment as described in the previous 

section, synthetic breast lesions may be used evaluate the performance of 

mammography equipment. For example, both Saunders and Samei [101, 102] and 

Ruschin et al. [99] describe how synthetic abnormalities can be used we evaluating 

image quality in digital mammography systems.  

Finally, where computer-aided detection algorithms (see section 3.1) are based on 

learning the characteristics of real mammographic lesions, we propose that synthesised 

lesions may be used to boost the size of training data, consequently increasing the 

performance the algorithm. 

2.3 Summary 

In this chapter we presented background information on mammography and breast 

cancer relevant to our project.  

We gave a brief description of the anatomy of the female breast, and have described the 

process by which breast cancer develops. We introduced x-ray mammography, and in 

particular, considered how it is used as a screening tool to detect breast cancer at the 
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earliest possible stage. The mammographic appearance of breast tissue and breast 

abnormalities were described. 

We outlined the screening program implemented in the UK (the NHSBSP) and 

highlighted the vast numbers of mammograms that are acquired annually. The process 

by which mammograms acquired in the NHSBSP are visually assessed for signs of 

breast cancer was described in section 2.2.6. We noted that reading mammograms was a 

complex and difficult task and that double reading all films acquired in the NHSBSP 

imposed a great workload on individual readers. As a consequence, we highlighted the 

importance of comprehensive yet efficient training and assessment of mammogram 

readers. In section 2.2.7, we discussed how synthetic data could be used to streamline 

the teaching of trainee readers and make optimal use of limited supplies of real data, 

thus providing the motivation for work presented in this thesis. Finally, in section 2.2.8, 

we noted other possible uses of synthetic lesions in mammography research. 

As a result we state the following goal of our project: we aim to develop a method for 

synthesising the signs of breast cancer in mammograms such that 

i) the synthesised lesions we generate are indistinguishable from real examples 

ii) the method can run automatically to generate very large sets of data 

 

In the following chapter we present a thorough review of previous attempts at 

synthesising mammographic lesions and discuss why we think there has yet to be 

method that satisfactorily meets the two requirements stated above. 
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Chapter 3 : Computer-Aided Mammography 

In chapter 2 we presented our motivation for synthesising mammographic 

abnormalities. In this chapter we review background literature related to this area. The 

review is structured as follows: in section 3.1, we give a brief review of the ways in 

which computer-based research has aided the field of mammography. Section 3.2 then 

includes a thorough review of previous work attempting to synthesise breast lesions in 

mammograms. We discuss the limitations of existing synthesis methods, and highlight 

the areas in which we feel further development is required. 

As a result of this review we identify other areas of computer-based mammography 

research that may be of benefit to our project. Specifically, we consider methods in 

which breast tissue structures are detected, modelled or classified (section 3.3.1); and 

methods in which the main breast shape is automatically segmented in mammograms 

(section 3.3.2). 

3.1 A history of computer-aided research in mammography 

As described in section 2.2.5, mammography has been used as a screening tool for 

breast cancer since the 1960s, with large-scale, national screening programmes 

established across the world from the late 1980s onwards. In parallel to the development 

of the imaging modality, research in the fields of computer science and image analysis 

has attempted to aid the detection and diagnosis of breast cancer in mammograms. 

Within this work, the most prominent application of computer-based research has been 

the development of automated methods to detect signs of breast cancer. Indeed the first 

computer-aided detection (CAD) algorithm was published in 1967 by Winsberg et al. 
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[125]. Since then, research has developed to the point where in 1998 the first 

commercial CAD systems gained approval FDA approval to be used in a clinical setting 

in the United States [48]. There are now several commercial CAD systems being used 

clinically throughout the world. In general, such systems have been designed to provide 

prompts for a human reader. That is, the CAD system automatically flags locations in a 

mammogram that may be suspicious. The reader can then review these prompts before 

making a final decision on whether an abnormality requiring follow-up is present.  

In screening programmes where reading by a single observer is the norm (for example, 

the United States), CAD systems may improve the performance of a single reader. 

Indeed, a recent study has estimated that CAD systems are now used in 25 to 30% of all 

mammograms read in the United States [74]. Meanwhile, in countries where double-

reading is the normal practice, it has been proposed that single-reading with CAD could 

be used as an alternative to double reading, thus reducing workload. Recent large-scale 

clinical trials [49], have shown this may be feasible. 

Related to computer-aided detection is computer-aided diagnosis. As the name implies, 

computer-aided diagnosis concerns making a decision once an abnormal finding has 

been detected. This may involve determining between a benign and an abnormal 

finding, or classifying a detected abnormality more precisely. Diagnosis algorithms may 

be incorporated within computer-aided detection systems (for example, commercial 

systems such as ImageChecker DMax by Hologic/R2 Technology estimate the 

likelihood of cancer for any abnormalities they have detected [58]) or used as 

independent tool by radiologists to help determine future management of a patient [60].   

It should be noted that whilst methods have been developed to detect all signs of breast 
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cancer in mammograms, detection of masses and microcalcifications has proved more 

successful than that of the more subtle abnormalities such as architectural distortion. 

Commercial CAD systems usually target microcalcifications and masses, and a study by 

Baker et al. [13] showed that two of the most widely available commercial CAD 

systems identified less than half of the cases of architectural distortion in their test data. 

As a result, much recent research in CAD has focused on detecting abnormal patterns of 

breast tissue that may be indicative of disease regardless of whether a central mass is 

present [63, 88, 96]. A more detailed review of this work is given in section 3.3.1. 

Aside from computer-aided detection and diagnosis, techniques in image processing and 

analysis have been used to aid a variety of other tasks in mammography. For example, 

as described in sections 2.2.7 and 2.2.8, synthetic mammographic abnormalities may be 

used in several areas, including reader training and assessment and the evaluation of 

mammography equipment. Additionally, computer analysis has proved beneficial in 

assessing breast density (that is, the amount of parenchymal tissue in the breast). Whilst 

not an immediate marker of disease, increased breast density has been shown as an 

important risk factor in developing cancer [19]. Automated methods have been 

developed to either classify mammograms into groups by density [92] or more recently, 

to provide a volumetric quantification of dense breast tissue as imaged in a 

mammogram [35, 55, 89]. Such measures can then be included in risk analysis models 

that may help determine the management of women at high risk of developing the 

disease. 

Finally, we note that to enable top level tasks such as detecting disease or quantifying 

breast density, a large number of lower level image processing and analysis techniques 
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have been developed for mammograms. These include: methods to segment the main 

breast shape [16, 25, 44, 81, 85, 86, 126] and other global structures (for example, the 

pectoral muscle or fibro-glandular disc) [45, 62, 69]; methods to detect and/or classify 

local linear structures (for example, glands, ducts, vessels and spicules) [24, 63, 78, 88, 

103, 121, 129, 130]; methods for registering one mammogram to another (for example, 

comparing left and right views of the breast to determine asymmetries or registering 

temporal pairs of mammograms to assess changes in parenchyma) [118]; and  methods 

for analysing and classifying areas of mammographic texture [62, 91, 92, 98, 120].  

Where we believe such methods have a direct relevance to the work in our project, these 

are reviewed in section 3.3. However, in the following section, we turn to the primary 

goal of our thesis and focus specifically on existing methods for synthesising 

mammographic abnormalities. 

3.2 Synthesising signs of breast cancer 

This section presents a thorough review of literature relating to the synthesis of 

mammographic abnormalities, and is intended to describe the current state-of-the-art in 

the field. 

Synthesising microcalcifications 

Kallergi et al. [61] described a method for synthesising microcalcifications with 

characteristics based on the BIRADS reporting system used by American radiologists. 

The number of microcalcifications in the cluster and the contrast between an individual 

calcification and the background grey levels were determined from a set of 100 real 

clusters (although how exactly these data were used to determine the features is not 

described). New clusters were then created by first selecting the number of 
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calcifications (a random number between 3 and 15) and then manually drawing the 

shapes of calcification boundaries in a binary grid, with a random contrast (in the range 

0.04 to 0.20) assigned to each cluster. The positions in real mammograms at which 

synthetic clusters were superimposed were selected manually. The grey levels of the 

calcifications were then computed using the associated background grey levels and the 

calcification contrast values. Each cluster was smoothed with a randomly chosen 

Gaussian template before being inserted onto the background. Realistic results were 

claimed, however no statistical evaluation of these results was given.  

Lado et al. [70] also synthesised microcalcification clusters and inserted these onto real 

mammographic backgrounds, but used a method more closely based on real data. The 

process first automatically detected microcalcification clusters in a set of real 

mammograms. Features of the cluster (size, shape, density) and individual 

microcalcifications (size, shape, grey levels) were extracted to create a set of model 

parameters. New microcalcifications clusters were generated by randomly sampling 

from the set of features, and were manually inserted into real mammographic 

backgrounds. To evaluate the method, two radiologists and one physicist rated the 

realism of synthetically generated clusters. ROC curves were fitted to the responses and 

the area-under-curve (AUC) calculated. A mean AUC of 0.54 ±0.03 suggested there 

was no significant difference in appearance between real and synthesised clusters. 

Nappi et al. [84], synthesised microcalcifications by generating three-dimensional 

models of calcification clusters and then projecting the clusters onto mammographic 

backgrounds using a simulated model of x-ray acquisition. Individual 

microcalcifications were created using one of three basis models: irregular, ovoid and 



Chapter 3 - Computer-Aided Mammography 

  60

elongated. A three-dimensional model of the breast duct network was generated using 

branching trees, and the individual microcalcifications were placed at the nodes of 

network simulating the way in which microcalcifications are believed to form in real 

breasts. Results were shown in the form of images, however no quantitative analyses of 

the realism of synthetically generated clusters were reported. 

Synthesising mass lesions 

An alternative method for generating synthetic mammograms from a three-dimensional 

model was presented by Bliznakova [17]. Whilst the method was designed to synthesise 

masses and microcalcifications, the main focus of the work was generating three-

dimensional models of the main breast structures, and projecting these to generate a full 

two-dimensional mammogram. However, both lesions and the synthetic mammograms 

in which they were contained were easily distinguishable from real examples. 

Highnam et al. [54] used the hint representation of mammograms to generate synthetic 

masses. In the hint representation, the x-ray acquisition process (and its reverse) is 

modelled to estimate the proportion of interesting parenchymal tissue and fatty tissue 

depicted by each pixel in a mammogram. Partially synthesised mammograms were 

generated by converting a virtual three-dimensional mass into the hint model, adding it 

to the hint model of a real mammogram at a user designated position, and applying the x-

ray acquisition model to generate the two-dimensional image. The virtual three-

dimensional masses were either generated using geometric functions (although exactly 

how is not described) or by obtaining the hint representation of a real mammogram 

containing a mass, and estimating the contribution made by the mass to the hint values. 

Whilst images of synthetic lesions were shown, no quantitative evaluation of the 
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method was presented. 

Skiadopoulos et al. [112] generated synthesised circumscribed lesions by transforming 

local grey levels in real mammographic backgrounds. The user selected the size, shape 

and position of the lesion, which was then generated by transforming the local 

background grey levels with respect to a set of basis functions. This approach has the 

advantage that the grey levels of the abnormality implicitly match the local background 

grey levels, overcoming a common problem when synthetic abnormalities are generated 

prior to being inserted into a real background. The results suggest the synthetic 

abnormalities generated were some of the most realistic in the literature. Six observers 

attempted to distinguish between real and synthetic lesions. ROC curves were fitted to 

the observer responses and a mean AUC of 0.55 ± 0.03 suggested synthetic lesions 

could not be identified at a rate significantly better than chance. 

Ruschin et al. [99], simulated a range of mammographic abnormalities. Benign lesions, 

malignant lesions without spicules, malignant lesions with spicules and 

microcalcification clusters were all synthesised and inserted onto real mammographic 

backgrounds. Benign lesions were synthesised using the method described by 

Skiadopoulos et al. reviewed above. Malignant masses were synthesised using a 

random-walk algorithm to produce an initial irregular shape. Morphological erosion and 

dilation were applied to the shape to produce a continuous border. A linearly decreasing 

grey level profile was added to the modified shape to produce a blurred border, 

completing the synthetic mass. Stellate masses were synthesised by first generating a 

malignant mass using the method described above. Individual spicules were then 

created by generating a super-ellipse (that is, a shape described by the equation 
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( ) ( ) 1n nx A y B+ = 1, where 0 ) of constant grey level before bisecting each 

ellipse along the shorter axis and discarding one half. As with masses, the remaining 

shapes were blurred to achieve a smooth drop-off at the border. A set of between 10 and 

20 individual spicules were sampled, randomly oriented and centred on the centre of a 

simulated mass. Each abnormality was positioned in a normal mammogram and had its 

grey level contrast manually adjusted to match the appearance of local breast tissue.  

Visually realistic results were claimed, although no quantitative evaluation was used to 

justify this. 

n< <

Saunders and Samei [102] generated synthetic benign, malignant, and spiculated 

malignant masses and inserted these into real mammogram regions. A set of 24 masses 

were extracted from the Digital Database for Screening Mammography (DDSM) [53] 

and used to build a model of mass appearance. Models of mass shape and intensity were 

based around an ellipse fitted to each mass outline. For each mass, the average grey 

level along concentric elliptical profiles extending from the centre of the mass to the 

border was computed, producing a trace of average grey levels. A modified sigmoid 

curve was fitted to the trace of each mass, to obtain a finite parameterisation. The 

parameters for each mass within a particular class (benign or malignant) were then 

averaged across the training set to form a model of mass intensity. To complement the 

texture model, shape information was extracted for each mass by measuring the 

deviation of the border from the fitted ellipse. The normalised power spectrum was then 

computed for each deviation profile, and the power spectra averaged for both benign 

and malignant masses. For spiculated masses, spicule appearance was modelled as a 

function of intensity versus length by computing average grey level profiles along a 
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straight line fitted to the length of each spicule, and then linearly regressing intensity 

against length. To simulate a new benign or malignant mass, a random sample of ellipse 

parameters (that is, major axis, axis ratio and orientation) were selected from those in 

the training set to generate a new ellipse. A new border deviation profile was generated 

by randomly sampling Gaussian noise, transforming in to the Fourier domain, filtering 

by the appropriate benign or malignant power spectra before transforming back to the 

spatial domain and scaling to match the ellipse. The deviation profile was used to 

modify the shape of the sampled ellipse into a mass border. For spiculated masses, 

triangles were then added to the mass shape although details on how the triangles were 

selected and positioned are not given. Finally, the appropriate benign or malignant 

texture model was used to generate an array of grey levels that could be superimposed 

on a real normal mammogram. The realism of both benign and malignant synthetic 

masses was evaluated in an observer study involving a single mammography reader. In 

a comparison against real masses, the AUC of a ROC curve fitted to the reader’s 

responses was 0.59±0.08 for benign lesions and 0.61±0.07 for malignant masses. This 

suggests the reader was able to identify malignant masses at a rate significantly better 

than chance.  

In a further paper, Saunders et al. reported the results of an extended study [101]. In the 

latter study, the models of benign and malignant mass appearance were constructed 

from an expanded set of 152 masses drawn from the DDSM. The models were 

constructed in the same manner as described in the earlier paper, however modelling 

and synthesis of spiculations were not described in the latter paper and we presume 

these were omitted from the study. The latter study included three mammography 

readers, for which average AUC values of 0.68±0.07 and 0.65±0.07 were reported for 
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benign and malignant masses respectively. The latter study also included a method of 

synthesising microcalcification clusters, for which an average of AUC of 0.62±0.07 was 

reported. 

Caulkin [23] generated synthetic masses and spiculated masses that were superimposed 

on real normal mammograms. A set of real mammograms, each containing a mass, was 

used as training data. The boundary of each lesion, any associated spicules, the pectoral 

muscle and breast skin-air boundary were annotated by a radiologist in each 

mammogram. To obtain mass-only grey levels, the local tissue background was 

subtracted from each lesion by estimating what the grey level of pixels in the mass 

region would have been if the mass were not present. A principal component based 

appearance model (see statistical models of shape and appearance, described in section 

4.2) was fitted to describe the variation in shape, texture and size of the masses. 

Similarly, a principal component based statistical model was fitted to describe the 

shape, width, brightness and length of spicules in the training data. Because both the 

mass and spicule models were constructed as generative statistical models, new 

examples could be created by randomly sampling from the model distributions. A 

probability distribution was constructed to model the position of lesions within the 

breast. However, whilst a method for positioning synthetic lesions was proposed, this 

was not used to generate the set of synthetic masses that were quantitatively evaluated. 

In the evaluation, 15 breast radiologists attempted to distinguish between real and 

synthetic masses. A mean AUC value of 0.69±0.13 was reported, suggesting the readers 

were able to identify synthetic masses at a rate significantly better than chance. 

Other earlier work on synthesising mammographic abnormalities includes Lefebvre et 
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al. [72], who described a similar, but less advanced, simulation model of 

microcalcifications to the work of Lado et al. Claridge and Richter [26] described a 

simple method for synthesising mammographic masses. Finally, Smith [113] generated 

shape models to synthesise masses in a method similar to the initial steps of Caulkin’s 

method. 

Synthesising other abnormalities 

Other than the methods for synthesising microcalcifications and mass lesions described 

in the preceding two sections, we note that to the best of our knowledge, there has been 

no previously published work in which other signs of breast disease such as 

architectural distortion or global asymmetry have been synthesised. 

3.2.1 Discussion 

In evaluating the work the described above, we focus on how the approaches taken to 

synthesise mammographic abnormalities could be adapted to meet the criteria stated in 

section 2.2.7. This requires that the abnormalities not only are realistic, but that it will 

be possible to automate the generation of new synthetic abnormalities, without 

significant user input. 

A common limitation in many of the methods described above was the manner in which 

the appearance of a synthetically generated abnormality was controlled by manual 

adjustment of parameters [17, 54, 61, 84, 99, 112]. We have two problems with such 

methods: firstly because synthetic appearance parameters are manually adjusted, the 

extent to which a new abnormality is representative of the real population depends on 

the subjective judgement of the user implementing the method. Thus without re-

evaluating every set of abnormalities generated, we cannot be sure such abnormalities 
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can be used in place of real data. Secondly, because manual input is required, the 

methods cannot be automated to produce large sets of synthetic abnormalities. Thus the 

full potential of using synthetic data cannot be realised. 

Exceptions to methods requiring a high level of manual input were Lado et al.’s method 

for synthesising microcalcification clusters [70] and both Saunders et al. [101, 102] and 

Caulkin’s [23] methods for synthesising breast masses. In each case, an attempt was 

made to parameterise the appearance of a training set of real data, and subsequently 

generate new lesions based on the learnt parameterisations. In the case of Lado’s 

method, synthesis was limited to randomly sampling parameters from the training data 

and so only a finite number of unique clusters could be generated (although the final 

mammographic appearance would differ if the same cluster were superimposed on 

different normal backgrounds). Meanwhile both Samei et al. and Caulkin used a more 

general method in which a model of appearance was learnt so that vectors sampled from 

a random Gaussian distribution could be modified to reconstruct unique synthetic 

masses.  

Abnormalities generated by all three methods were evaluated quantitatively. The 

observer study implemented by Lado indicated that the synthetically generated 

microcalcification clusters were realistic enough to be mistaken for real data by 

mammography readers. However, neither of the methods for synthesising malignant 

breast masses were able to produce synthetic lesions of sufficient realism. Thus despite 

the fact that mass lesions are one of the most common signs of breast cancer in 

mammograms, there has yet to be a method developed that both permits automatic mass 

generation and produces lesions of sufficient quality to be used in place of real data. 
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Given the clinical motivation for generating synthetic mammographic abnormalities, as 

discussed in section 2.2.7, this would suggest there is a particular need for developing a 

new method that can successfully simulate the appearance of malignant breast masses in 

mammograms. 

To determine how we might develop a new method for generating synthetic malignant 

(and particularly spiculated) mammographic masses, we first note that methods in 

which a synthetic mass is generated and added to a real normal mammogram [23, 101, 

102, 112] produced far more realistic results than those methods that attempted to 

synthesise whole mammograms [17, 84]. Thus at the broadest level, we intend to 

modify the appearance of an existing mammogram to produce a final synthetically 

generated breast mass, rather than attempting to synthesise whole mammograms. To 

obtain further details on how we might proceed, we present a more detailed comparison 

of the methods for synthesising malignant mammographic masses described by Caulkin 

[23], and Saunders et al. [101, 102]. 

First we consider the way in which the methods attempted to parameterise the 

appearance of a central mass. Of the two methods, we believe the principal component 

model used by Caulkin offers a richer set of descriptors to describe the variation of a 

global population of masses than the parameterised intensity and deviation model used 

by Saunders et al.. In particular we note that: 

i) In Saunders et al.’s model the grey level texture of masses was described by just 

five parameters averaged across the set, whilst Caulkin’s model included 37 

modes of texture variation. This suggests a greater variation in mass texture can 

be described by Caulkin’s model. 
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ii) Mass appearance in the model used by Saunders et al. is strongly constrained to 

the initially fitted ellipse. Both intensity change (texture) and shape variation 

were considered with respect to the ellipse and, as discussed by the authors, the 

model was not well suited to describe the appearance of masses whose shapes 

were non-elliptical. The model used by Caulkin does not enforce such 

constraints. Instead the variation allowed in the model is learnt from the way in 

which a real set of data varies in appearance. Providing the training data 

comprises sufficient variation to represent a global population, the model should 

be flexible enough to learn these changes without requiring that all masses 

conscribe to a particular shape. 

iii) In Caulkin’s model, the step in which the parameters of shape, texture and size 

are combined into a complete appearance model allows for a correlation 

between these components to be learnt. Such correlations may be an important 

part of real data – for example, we might expect that larger (and therefore more 

developed) masses have both a greater intensity (that is, higher grey levels) than 

smaller masses, and have developed a more irregular shape, than smaller, newer 

masses. In the synthesis method described by Saunders the size, intensity and 

shape variation were all sampled independently of one another, and thus such 

correlations cannot be captured in the model. 

For these reasons, we think that the model described by Caulkin provides a good base 

for describing the variation in mammographic appearance of the central density in a 

malignant breast mass. As a result, in the next chapter we take a broader look at 

statistical appearance models, and in particular the principal component models used in 

the active appearance model framework. Later, in chapter 7, we propose a method for 
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optimising the fit of an appearance model so that it generalises to describe new masses 

with significantly lower error than the model fitting method used by Caulkin. 

Aside from describing the appearance of the central density in a mass, we now consider 

how Caulkin and Saunders et al. synthesised mass spicules. A direct comparison of the 

methods is difficult because very few details on how spicules were modelled and 

synthesised were provided by Saunders (indeed, as noted above, a method for 

simulating spicules appeared to be omitted in an extended version of the initial paper 

[101]). However, when discussing his work, Caulkin noted that the appearance of 

spicules was the least convincing aspect of the synthetic masses generated by his 

method. In fact, we don’t believe that a method in which individual spicules are 

modelled separately prior to being added to a central density will ever be sufficient to 

capture the true appearance of a real stellate mass. In particular we propose that such a 

method: 

i) Cannot adequately describe the appearance of clusters of very fine spicules 

(see the mammographic appearance of sheaf-of-wheat spicules described in 

section 2.2.4). 

ii) Does not account for the interactions between the central density, spicules 

and the surrounding breast tissue. 

 

These limitations (and particularly point (ii)) are discussed further in section 8.2. In 

addition, we note that both limitations were raised as areas in which future work would 

be necessary by Saunders et al. in a discussion of their work, although further details on 

how these issues could be addressed were not given [101]. Because the literature on 
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synthesising abnormalities contains few details on how patterns of breast tissue are 

affected by the presence of a malignant mass, we review a wider range of 

mammography in which this subject is considered later in this chapter (see section 

3.3.1). 

We also note that whilst we do not specifically intend to synthesise architectural 

distortions in which a central mass is not present, by considering the way in which a 

spiculated mass affects local patterns of breast tissue we hope our work will go some 

way towards showing how patterns of architectural distortion could be simulated. As 

noted above, we are not aware of any previous methods that have attempted to 

synthesise such abnormalities. 

Finally, we observe that none of the methods reviewed used a method for automatically 

selecting a location for synthesised lesions in a target mammogram. Whilst Caulkin [23] 

described a method for modelling the locations of masses in a set of training data with 

respect to a global breast shape, this method was not extended to permit the realistic 

sampling of new locations in a normal mammogram (this is discussed further in section 

10.1). Therefore a method that allows synthetically generated lesions (regardless of 

lesion type) to be automatically positioned would be of benefit - even to methods that 

have already successfully simulated abnormal appearance given a manually selected 

location (such as the method described by Lado for synthesising microcalcifications). 

We note that to automatically locate a synthetic mass in a whole mammogram, it will be 

necessary to have a method for automatically determining the main breast area in 

mammograms. Thus methods of segmenting the breast (and pectoral muscle in MLO 

mammograms) are reviewed in section 3.3.2. 
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3.2.2 Summary 

In section 3.2, we have presented a detailed review of existing methods for synthesising 

the appearance of abnormalities in mammograms. As a result of this review we have 

concluded that there is a specific need for developing a method in which realistic 

malignant, spiculated breast masses are synthetically generated. In particular we suggest 

that any new method must consider the way in which a mass affects the appearance of 

local breast tissue. We also propose that a method for automatically selecting a location 

within a whole normal mammogram should be developed. In the following section, we 

review work from a broader spectrum of mammography research than that specifically 

looking at lesion synthesis. For each of the topics listed, we are particularly interested in 

how the work reviewed may be of benefit to a synthesis method that overcomes the 

limitations described above. 

3.3 Related areas of mammography research 

In this section we review a selection of work in which techniques from the field of 

image processing and analysis have been applied to mammograms. The reviews are 

structured to match the two key areas in which we intend to develop a method for 

synthesising malignant mammographic masses, as discussed in the previous section. 

Thus in section 3.3.1 we consider various methods in which the mammographic 

appearance of breast tissue is detected, modelled and classified. Meanwhile in section 

3.3.2, we review methods for automatically segmenting the main breast shape in 

mammograms. 

3.3.1 Detecting and modelling breast tissue structures 

In this section we review work in which breast tissue structures (and the patterns they 



Chapter 3 - Computer-Aided Mammography 

  72

form) are detected, modelled and classified. Because the appearance of spicules may 

closely match the appearance of some normal tissue structures in the breast, we include 

the detection and classification of spicules in the appropriate sub-sections below. 

Detecting linear structures 

Because mammograms are formed by the projection of a complex network of ducts in 

the breast, they are usually rich in linear structures at a variety of scales and 

orientations. Thus a natural first task when working with the appearance of breast tissue 

in mammograms is to explicitly detect linear structures. We note that because many of 

the structures in the breast do not form straight lines, they are commonly referred to as 

curvi-linear structures (CLS). A review of work detecting such structures in 

mammograms is given below. 

Early work in this area was undertaken by Cerneaz and Brady [24]. By considering the 

physical characteristics of CLS in addition to a model of both film acquisition and film 

digitisation, a kernel width was selected from which to estimate the second derivative of 

the image surface in a mammogram. Strong features within the derivative were selected 

as candidate CLS pixels. A series of morphological operators was applied to the binary 

map of candidate pixels (thinning, separating, reconnecting segments lying on the same 

line) to produce a final set of CLS pixels. 

Another early CLS detection method was described by Parr et al. [87]. In this method, 

the line operator originally developed by Dixon and Taylor [36], was applied across 

multiple scales to obtain a measure of line strength, orientation and scale at each pixel in 

a mammogram. Non-maximal suppression was applied to obtain a final set of CLS 
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pixels. 

A further method using multiscale directional second order Gaussian derivatives was 

developed by Karssemeijer and te Brake [63]. Again, the maximum filter responses 

across scale were used to compute the line strength, orientation and scale at each pixel 

in a mammogram. Pixels of negative contrast or low strength were discarded. 

Additionally the image gradient was estimated using a first derivative Gaussian filter, 

and any coarse scale pixels with an orientation closely aligned to the gradient normal 

were rejected on the basis that the magnitude response at such pixels was likely to be 

caused by a ripple due to a strong image gradient in the vicinity. 

All of the above methods, and two further line detection methods (using a variant of the 

line operator comprising radial, not rectangular, bins; and applying directional 

morphological opening) were compared by Zwiggelaar et al. [129]. Each method was 

used to detect synthetic lines of varying contrast and profile that had been added to a 

selection of real mammographic backgrounds. It was found that the line operator was 

most successful, although it should be noted the comparison was essentially over the 

operators used to measure an initial line strength, orientation and scale at each pixel and 

not over subsequent processing steps.  

 

We now review three more recent CLS detection algorithms. In each case, local image 

phase is calculated and use to infer structural information in the image. The technical 

details of this concept are discussed in more detail in the following chapter, in section 

4.3.1. 
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Schenk and Brady [103] use a set of steerable complex filters [47] at multiple scales to 

compute local energy, orientation, phase and an approximate width for each pixel in a 

mammogram. A set of candidate pixels are selected by hysteresis thresholding energy 

before using local phase to remove all pixels apart from those with structural shape 

corresponding to an edge or ridge (that is, non-pure features and valleys are ignored). 

Within this candidate set, CLS are determined by searching for parallel sets of ridge 

pixels bordered by step-up and step-down edges. The search is performed by looking 

for suitable edge pixels in the neighbourhood of each candidate ridge pixel, given the 

ridge pixel’s approximate width. The exact width of a CLS at each point can then be 

determined by the normal distance between the two edges. Finally the set of CLS is 

skeletonised, so that in a given region, the number of intersecting linear structures can 

be computed. This information is used to improve the specificity of a calcification 

detector by rejecting high responses that were most likely caused by the intersection of 

two or more CLS in the immediate vicinity of the response. 

Contemporaneously to Schenk and Brady’s method, McLoughlin et al. [78] produced a 

similar CLS detection scheme to reduce the false positives of a microcalcification 

detector. In their algorithm, a mammogram is convolved with odd/even pairs of log-

Gabor filters at six orientations and five scales. At each pixel, a local energy for each 

orientation is defined by computing the vector sum of phase-magnitude pairs across 

scale. Linear features are expected to produce a magnitude peak in one direction only, 

whilst round features such as microcalcifications produce a strong response at all 

orientations. This characteristic is used to specify a line measure that enhances linear 

features and suppresses round features. The resulting line strength image is further 

processed using a relaxation labelling scheme, and the final CLS map used to reject 
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pixels from consideration in a subsequent attempt to detect microcalcifications. 

Work by Wai et al. [121] built on the two methods described above. Again a measure 

based on the congruency of phase across scales was used to construct a local energy 

measure from which CLS could be detected. However, rather than filtering with 

multiple oriented complex filters at each scale, the monogenic signal scale space [42] 

was used to efficiently compute image amplitude, phase and orientation at each pixel. In 

all three of these methods, using local phase helped infer structural information and 

allowed features to be constructed that were more robust to changes in contrast and 

image noise.  

Finally, we note that Rangayyan and Ayres [96] describe a method for detecting CLS in 

mammograms using a bank of 180 oriented Gabor filters of fixed scale and elongation. 

At each pixel the maximum filter response and the associated orientation are recorded. 

NMS is applied to the magnitudes to determine an initial set of candidate pixels. 

Finally, as in Karssemeijer’s method described above, pixels closely aligned with the 

image gradient are rejected. This method appears somewhat more simplistic than the 

recent state-of-the-art methods described above (for example, it uses filters at only one 

scale). However, it was subsequently used to search for architectural distortion patterns 

(see below) and thus is included here for completeness. 

Detecting abnormal patterns of linear structures 

In this section we review work in which patterns of linear structures are modelled and 

classified to detect whether an abnormality may be present in a mammogram. In each of 

the three methods described, an explicit detection of CLS is initially performed using 

one of the algorithms reviewed in the previous subsection. These are the algorithms 
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attributed to Parr [87]; Karssemeijer and te Brake [63]; and Rangayyan [96] 

respectively. The remaining details of each method are given below. 

Parr et al. [88] developed a method for detecting patterns of linear structures associated 

with a spiculated mass. The method uses a training set of mammograms each of which 

contains an annotated spiculated mass. For a given pixel, the local pattern of 

orientations is parameterised by extracting a 512x512 region about the pixel and 

concatenating the orientation associated with the maximum CLS response within each 

32x32 block of the region. To build a statistical model of lesion patterns, an orientation 

pattern is extracted from pixels within the border of each mass in the training data. 

Factor analysis is applied to the resulting set of vectors in order to form a compact 

representation of the data. To detect suspicious patterns in unseen mammograms, 

orientation patterns are extracted in a regular grid across the breast region. By 

computing the factor scores of each pattern using the lesion model, the likelihood of the 

pattern being associated with a spiculated mass can be computed. Applying leave-one-

out testing of the mammograms in the training data, Parr et al. reported a detection rate 

of approximately 80% sensitivity for a fixed specificity of 0.5 false positives per image. 

It was noted that lesions with a diameter as low as 1.7mm were detected. Further results 

for this method, in combination with an algorithm for detecting mass densities, were 

reported by Zwiggelaar et al. [130].    

Where Parr et al.’s method aimed to learn a distribution of orientations from real 

training data, Karssemeijer and te Brake [63] describe an algorithm for detecting stellate 

distortions using an explicitly prescribed pattern of orientations. The aim is to detect 

regions of a mammogram in which an abnormal number of CLS are oriented toward 
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some focal point. For each pixel within the breast region of a mammogram, two features 

are defined that characterise the proportion of CLS pixels within radial segments of a 

local circular neighbourhood that are approximately oriented towards the centre. By 

analysing whether this proportion is statistically greater than the proportion that might 

be achieved by chance, the overall likelihood of having a stellate distortion centred at 

that pixel is computed. Karssemeijer and te Brake reported a detection sensitivity of 

approximately 90% with a corresponding specificity of approximately 1 false positive 

per image.  

Rangayyan and Ayres [96] describe a method using phase portraits to determine regions 

of architectural distortion. Three classes of phase portraits are pre-determined: nodes, in 

which the orientation radiates away from a central point; spirals; and saddles. The 

orientation of CLS pixels within a sliding analysis window are used to compute the best 

matching phase portrait. The focus of the best matching portrait is used to increment a 

vote for that portrait class at the focus location. As a result a map of votes for each 

phase portrait is constructed throughout the mammogram. Peaks within the node map 

are used to determine sites of possible architectural distortion (although in early work 

peaks in all three portrait classes were considered [10]). However, whilst a detection 

sensitivity of 84% was obtained, this came at the price of 7.8 false positives per image. 

Clearly this is a significantly larger rate of false positives than either of the two methods 

described above, although it should be noted that in general architectural distortions are 

harder to detect than distortions explicitly associated with a mass. 

Whilst we are not directly concerned with detecting abnormal patterns of breast tissue, 

the work in this subsection is interesting in that it provides information on the 
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characteristics we expect to find in the region surrounding malignant masses. Moreover, 

the method developed by Parr et al. [88], suggests that a compact representation of 

oriented structure patterns can be constructed for a training set of mammographic data. 

We propose that the framework of the model described by Parr et al. could be adapted 

to allow new patterns of orientation to be sampled. This may provide a template from 

which to base the distortion of breast tissue in mass regions. 

Classifying and modelling general mammogram appearance 

We conclude our review of work related to breast tissue appearance by considering 

methods in which the general appearance of mammograms are modelled and classified 

without assuming the importance of oriented linear structures in the breast.  

Karssemeijer [62] presents a method for characterising the distribution of parenchymal 

patterns in whole mammograms. This is achieved by computing histograms of pixel 

grey levels in concentric regions moving from the skin-air boundary of the breast to the 

centre of the chest wall. For each region, the standard deviation and skewness of the 

histogram are computed and used to form a compact representation of tissue distribution 

in the breast. By computing this representation for a training set of mammograms 

grouped by density, a classification scheme can be employed to determine the density 

class of unseen mammograms. The representation of mammographic appearance 

described is too coarse for our needs, however the method provides useful context for 

the work of Petroudi [92] and Rose [98] described below. 

Petroudi et al. [92] also describe a method for classifying mammograms by density 

given a statistical analysis of their texture. Each mammogram in a training set of data is 

initially filtered using the MR8 filter back [119]. The MR8 bank comprises 38 filters: 6 
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oriented edge and 6 oriented bar filters across 3 scales, a Gaussian filter and a Laplacian 

of Gaussian filter. The maximum filter response across orientation is recorded for the 

bar and edge filters at each scale, and thus a vector of 8 responses is stored at each pixel. 

The training mammograms are split by their BIRADS density class, and the set of all 

MR8 pixel responses aggregated within each class. For each set of data, k-means 

clustering [76] is used to learn 10 cluster centres (termed textons [73]). Every pixel 

within each training mammograms is replaced by its closest matching texton (regardless 

of what class the texton was learned for), and a histogram of textons computed for each 

mammogram. The set of histograms is used as a model of texture within each density 

class. Thus for an unseen mammogram, the MR8 filter is applied and used to compute a 

texton histogram. The closest matching histogram of those learned from the training 

data is computed, and density class associated with the closest matching histogram 

assigned to the unseen mammogram. 

In this method, the texton histogram effectively parameterises the appearance of each 

mammogram in a compact vector, and the training set of all such vectors provide a 

model of whole mammographic appearance. This model is not generative. Whilst 

statistics of the texton vectors could be learned across the training data and used to 

sample new instantiations, appearance cannot then be reconstructed from a texton 

vector. In computing a histogram the spatial arrangement of textons is lost. Moreover, 

because the MR8 filtering scheme is not invertible, even with a spatial map of textons, 

full mammographic appearance cannot be recovered. Of course this is not a problem in 

the task the model is designed for. The results reported by Petroudi indicate 91% and 

94% of low density and high density mammograms were correctly classified. This 

indicates that the model provides a successful analysis tool for classifying density, 
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suggesting the texton vectors provide a good discriminative model of mammographic 

appearance. However, such a model cannot be used towards our goal of synthesising 

mammographic appearance. 

For this reason, we now consider a model developed by Rose [98] that uses similar 

appearance characteristics, but in a generative framework that enables synthesis. Like 

Petroudi et al.’s method, mammograms in a training set are decomposed across scale 

and orientation. However, an invertible decomposition, the steerable pyramid [109], is 

used. A principal component based appearance model (see statistical models of 

appearance in section 4.2 of chapter 4) is fitted to the data to describe the combined 

variation in breast shape and the distribution of coarse scale pyramid coefficients. This 

model encapsulates an approximate global appearance of mammograms. To describe 

detailed tissue appearance, at each pixel a vector comprising the pyramid coefficients 

across scale and orientation is extracted. The distribution of all such vectors sampled 

from the training data is modelled using a Gaussian mixture model (fitted using k-means 

clustering or an expectation maximisation algorithm). A training set of normal 

mammograms was used to build a model of normal appearance. The model can also be 

used to synthesise a new mammograms as follows: first the global model distribution is 

randomly sampled to generate a breast shape and a set of coarse scale pyramid 

coefficients. Next, a set of detailing coefficients can be sampled for each pixel by 

conditionally sampling the local model, given the coarse scale coefficients already 

sampled from the global model. Finally, the set of pyramid coefficients can be inverted 

to reconstruct a fully synthesised mammogram. 

Whilst we do not intend to synthesise whole mammograms, this method has been 
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influential on our work in two ways. Firstly, it describes an explicit separation between 

coarse and fine scale mammographic appearance – later we seek to exploit this by 

maintaining the low-frequency components of a real normal mammogram whilst 

modifying the high-frequency structures. Secondly, it suggests that a generative model 

of decomposed coefficients can be used to reconstruct synthetic mammogram texture. 

Again this is something we will use when modelling the appearance of breast tissue in 

the region of a malignant mass. However, we conclude our review by noting limitations 

of the work. Firstly, when sampling the detailing coefficients, spatial correlations 

between coefficients within the same scale are lost (this is in contrast to the pixel based 

synthesis algorithm also developed by Rose [98] and discussed in section 4.4). 

Secondly, a real valued steerable pyramid was used. As noted in section 4.3.2, the 

coefficients of a real-valued decimating decomposition suffer from shift dependence. 

This issue, and the problems it may cause for model building are discussed further in 

sections 4.3.2 and 8.3.1. 

Summary 

Throughout section 3.3.1, we have reviewed work to contextualise and inform our 

attempt to synthesise the appearance of breast tissue and mass spicules in the region 

around a central density. The key points we summarise from this review are: 

i) Decomposing mammographic appearance across scale and orientation has 

proved vital in detecting linear structures in breast tissue. Moreover recent 

developments have shown an estimation of local phase provides added structural 

information and helps stabilise against noise [78, 103, 121]. 

ii) A statistical model of abnormal orientation patterns in mammograms has been 
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developed [88]. Whilst not strictly generative, the model uses a framework that 

may be adapted to sample new abnormal orientation patterns. 

iii) A generative model of normal mammographic appearance has been proposed 

[98] using the statistical properties of coefficients localised in scale and 

orientation. 

In the next section, we turn to methods for segmenting the breast shape and other global 

structures in a mammogram. 

3.3.2 Breast segmentation algorithms 

As noted in section 3.2.1, one aim of our project is to develop a method for 

automatically selecting a location at which to synthesise a breast lesion in a normal 

mammogram. To achieve this, we require a method for automatically segmenting the 

breast so that a set of possible locations can be determined. 

Of course, segmenting the breast region in a mammogram is a natural first step in a host 

of other tasks and thus numerous methods have been proposed in the literature, as 

reviewed in the following section. 

Segmenting the breast 

An early method for segmenting the breast in mammograms was developed by Bick et 

al. [16]. In this method noise is removed from a mammogram by median filtering. The 

local range of each pixel (that is, the difference between its grey level and the minimum 

grey level is some local region) is calculated, and together with a global histogram of 

grey levels, used to determine pixels belonging to the breast. Such pixels are defined as 

having a local range above some threshold, whilst lying between the peaks in the 

histogram associated with background and off-film pixels. The region of breast pixels is 
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modified by morphological connectivity operators to remove small artefacts, until a 

contiguous region is formed. The outer contour of this region is calculated and used as 

the final breast-air border. 

Chandrasekhar and Attikiouzel [25] describe a method for segmenting the breast region 

in a mammogram in which the cumulative grey level histogram of the mammogram is 

used to compute an initial estimate of the background region. A measure based on the 

local variance of the mammogram background is used to characterise the image, and 

direct a sequence of steps that refine the initial border. The final breast border is 

computed from the set union of binary images generated by fitting polynomial surfaces 

of varying degrees to thresholded regions of the original mammograms. 

Ojala et al. [85] described a method for obtaining an initial segmentation of the breast 

using a process similar to that described by Bick et al. (that is, thresholding based on 

histogram analysis followed by morphological operators to obtain a contiguous breast 

region). In addition, three further methods were compared for refining the initial 

segmentation given a set of control points spaced along the breast-air contour. In the 

first, a Fourier transform is computed and used to remove high-frequency components 

from the boundary. In the second, an active contour algorithm [64] is applied to 

determine the final border. Finally the third method uses a B-spline interpolant [117] to 

calculate a smooth border between control points. Of these methods the active contour 

method was deemed most successful. 

Ferrari et al. also use an approach in which an initial segmentation is refined using an 

active contour model. However, additional constraints were placed on the active contour 

to improve the fitting process [44]. A similar approach was also employed by Wirth and 
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Stapinska [126]. 

Finally, an alternative method was developed by Pan et al. [86] in which the monogenic 

signal (see section 4.3.1) is used to infer orientation and structure information across 

multiple scales in a mammogram. Using thresholds based on complex phase and 

orientation at a coarse scale, an initial breast region is formed. The final skin-air 

boundary is determined using a local amplitude based measure similar to that used by 

Wai et al. [121] when detecting CLS (see section 3.3.1). The method is designed to 

remove the dependence on the grey level histogram used in the segmentation algorithm 

methods described above. As a result the authors propose it should be more robust to 

changes in intensity range or contrast, and thus may be more flexible when segmenting 

the breast in mammograms acquired from different imaging systems. 

Segmenting the pectoral muscle 

In addition to defining the main breast border at the skin-air boundary, it is often 

necessary to delineate the edge of the pectoral muscle in MLO mammograms. As 

discussed in section 2.2.3, the pectoral muscle generally appears as an approximately 

triangular region in the upper corner of the chest wall side of the MLO view. In a 

mammogram the pectoral muscle usually has a higher grey level than tissue in the 

breast and therefore may confound methods that analyse the intensity of tissue. In 

addition, the position of the pectoral muscle provides a useful anatomical reference 

point in MLO mammograms. 

A simple approach for fitting a straight line to the pectoral muscle is described by 

Karssemeijer et al. [62]. In this method, a region in the upper corner of a mammogram 

in which the muscle is located is extracted, and filtered using a Sobel edge detector to 
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enhance the edge of the muscle. A Hough transform [37] is then computed to detect the 

most suitable straight line, given constraints on the angle of the line. This initial 

approach is adapted by both Kwok et al. [69] and Ferrari et al. [45] to obtain a more 

precise delineation of the pectoral muscle that was not confined to a straight line. 

3.3.3 Segmenting the fibroglandular disc 

Having segmented the main breast region, it may be useful to extract more specific 

regions within the breast, such as the fibroglandular disc. For example, the shape of the 

fibroglandular disc between left and right breasts may be used as an asymmetry 

measure, examined for local distortions or selected as a region within which malignant 

masses are most likely to be found. With regards to a synthesis method, the 

fibroglandualr disc could be used to influence the location of synthetic masses in a 

target normal mammogram. However, as we discuss in section 10.3.4, this is not an 

option we pursue further. For completeness, we note that attempts to segment the 

fibroglandular disc include work by Byng [21], Ferrari et al. [43], Saha et al. [100] and 

Zhou et al. [128]. For further details on this work the reader is directed to the respective 

papers. 

3.4 Summary 

In this chapter we have reviewed a selection of work in which techniques from the field 

of image analysis and processing have been applied to mammograms. In section 3.1, we 

presented a brief history of this general field of work and discussed the main top level 

tasks that researchers have attempted to solve. Such tasks include the automated 

detection and diagnosis of mammographic abnormalities, and the quantification of 

dense tissue within the breast. 
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This general synopsis was followed with a detailed review of existing methods for 

synthesising breast abnormalities in mammograms. This review was intended to show 

the current state-of-the-art in the literature and highlight the areas in which we believe 

further work would be beneficial. In particular, we noted that there has yet to be a 

method in which malignant, spiculated masses have been synthesised to a standard that 

they could be used in place of real data when training or assessing mammogram readers. 

As a result, we identified the development of such a method to be the key goal of our 

thesis.  

More specifically, we proposed two areas in which further work was required: firstly, a 

new method must take into account the way in which a mass distorts surrounding tissue; 

secondly, the new approach should include a method for placing a synthesised mass 

within a normal mammogram without requiring a manual selection of the location. 

Given these goals, we identified various other areas of mammography research that 

would be relevant to our project. 

In the next chapter, we continue our review of background literature. However, rather 

than focusing our search on methods that have previously been applied to 

mammograms, we consider more general techniques from the field of image processing 

and analysis. 
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Chapter 4 : Image Analysis and Processing Techniques 

4.1 Introduction 

In this chapter we present a review of various methods and techniques from the general 

field of image analysis and image processing. This review serves two purposes: firstly, 

it provides further context for much of the computer-aided mammography research 

described in the previous chapter. Secondly, the review provides technical details on 

specific methods and tools that are used and developed in later chapters of this thesis.   

We concentrate on three areas of research: statistical models of shape and appearance 

(and in particular, the models used in the active appearance model framework 

developed by Cootes et al.); wavelets and other multiscale transforms of images; and 

texture synthesis algorithms. 

4.2 Statistical models of shape and appearance 

In section 3.2, we described the method used by Caulkin [23] to model the appearance 

of the central density in a training set of mammographic masses. In this method, a 

principal component based statistical appearance model was used to describe the 

variation in shape, texture and scale of the training data. In a comparison with existing 

mass synthesis methods, we proposed that this was a sensible base from which to 

develop our own synthesis method. Thus in this section, we give a general review of the 

field of research that led to the development of the statistical model used by Caulkin, 

and consider the current work within this area.  

Statistical models provide an efficient representation of the variability in shape and 

appearance of objects in image data. For example, assume we are working with some 
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class of object (say a human face, an organ in a medical image, or, as in our work, a 

mammographic mass) and have a way of parameterising the appearance of each 

instance of the object in an image. If we have training data containing many instances of 

the object, we can construct a statistical model that encodes the probability with which a 

particular parameterisation is likely to occur. Thus the model describes the variation in 

appearance of the object across the set of training data. Moreover, if the training data 

contains sufficient variation to be representative of a global population of the object, 

then a good statistical model will provide both a general and specific representation of 

object appearance. That is, it will be general in that the parameterisation of any valid 

instance of the object will be deemed as likely under the model distributions. It will be 

specific in that parameterisations that are likely under the model distributions only 

describe the appearance of valid instances of the object. Thus a model with good 

specificity will not represent the appearance of image objects of a different class. 

Further, if the appearance of an object can be reconstructed from its parameterisation, 

then the model fitted to the data is generative. Generative models have several 

advantages. For example, as used in this thesis, they can generate new unique instances 

of an object that can be used as training data for other applications. Generative models 

can also be used to search for instances of an object in unseen images. Indeed this is the 

area which has seen most development of statistical appearance models, and a review of 

this work is given below.  

4.2.1 Models of shape 

We start by focusing on statistical models of object shape. Early work in this field 

included a method by Goodall [50] in which a set of corresponding landmark points was 
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used to describe the shape of each instance of an object in a training set of data. The 

shapes were then rotated, scaled and translated to minimise the sum of squares distances 

between corresponding points on different shapes. This process, known as Procrustes 

Analysis [50], aligned the shapes so that mean shape and covariances between landmark 

points could be computed. These summary statistics were then used to assess the 

differences between sets of shapes. 

Cootes et al. [29] expand this idea by applying principal component analysis (PCA) to 

the deviation of each shape from the mean shape. In appendix A.1, a detailed 

description of principal component analysis applied to any arbitrary dataset is given. 

Here we note that as a result of applying PCA, a compact representation is established 

in which each shape in the training data is parameterised by its coordinate along a finite 

number of principal modes of variation (where the number of modes is typically much 

smaller than the number of landmark points originally used to describe each shape). By 

construction, the parameters along each mode are linearly independent. By sampling 

new parameterisations subject to the variance associated with each mode, valid 

instances of an object’s shape can be reconstructed from the model. Such models are 

known as point distribution models (PDM).  

 As a further development to PDMs, active shape models (ASM) were developed by 

Cootes et al. [30] so that instances of an object shape can be located in a new image. 

The idea is that given a set of training data and a PDM describing the shape of objects 

in the data, the local grey level information at each landmark point can be used to 

determine the optimal instantiation of the PDM in an unseen image. 

This is achieved by extracting grey level gradient profiles normal to the boundary of 
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each landmark point for all images in the training data. PCA is then applied to compute 

a separate statistical model of the variation in grey level gradients for each landmark. 

Thus given a new image and some initialisation of landmark points, an iterative search 

can be performed in which the positions of individual points are optimised subject to the 

constraint that the set of all landmarks must be a valid instance of shape under the PDM. 

The optimal position of an individual point is defined as the position at which the grey 

level gradient profile extracted normal to its current position minimises the Mahalanobis 

distance to the appropriate model mean. 

ASMs have been shown to be useful in segmenting object shape in numerous 

applications. However, whilst ASMs use local grey level information when searching 

for an object, the full appearance of an object – that is, the distribution of pixel 

intensities throughout its shape – cannot be reconstructed from the model. Below we 

describe how shape models can be extended to include a complete description of object 

appearance. 

4.2.2 Models of combined appearance 

To develop a statistical model that includes a more complete representation of an 

object’s appearance, Lanitis et al. [71] extract a texture vector from each object to 

describe its full appearance. To ensure that there is a suitable correspondence between 

elements of the texture vectors across different objects, the texture vectors are extracted 

from shape-normalised copies of each object. That is, having constructed a PDM to 

learn object shape, each image is warped so that the landmarks within that image 

assume the mean shape of the PDM. PCA can then be applied to the set of shape-

normalised texture vectors to build a compact statistical model of texture. As a result, 
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any object in the training data can be described by its parameterisation in both the shape 

and texture models. 

However, Edwards et al. [38] note that there may be further correlations between the 

shape and texture parameterisations of an object. Therefore if shape and texture are 

treated independently, combinations of shape and texture could arise that are not 

parameterisations of valid instances of the object. In this case, the model would lack 

specificity. To overcome this, Edwards et al. apply an additional level of PCA to 

concatenated vectors of shape and texture model parameters. The principal modes in the 

resulting model describe the combined variation in shape and grey level texture of 

objects across the training data. By sampling parameters from the combined model, 

vectors of shape and texture parameters can be reconstructed which in turn can be used 

to reconstruct the image object. Thus the combined appearance model provides a fully 

generative, compact representation of the data. 

Cootes et al. [27] further refine the process of building a combined appearance model, 

and, in the active appearance model (AAM) framework, develop an efficient method for 

using combined appearance models to perform segmentation. The key to the AAM 

algorithm is learning a priori how changes to model parameters affect the extent to 

which the synthetic object, as reconstructed from the model, matches the real object in 

an image. This relationship is learnt using the training data, so that when attempting to 

fit the model in a new image, by considering the residual error between the image and 

the current model reconstruction it is possible to choose the best way of adjusting the 

model parameters during each iteration. Because a consistent relationship between 

changes in model parameters and model fit can be learnt only for small changes, AAM 
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searches require a good initialisation of landmark points to be successful. To improve 

the capture range of the model, statistical appearance models can be learnt for multiple 

resolutions of images in the training data. The models are then fitted using an AAM 

search from coarse to fine resolution, with the best fit at each resolution projected up to 

the next finer scale.  

The AAM algorithm has been used successfully to segment a wide variety of image 

data [12, 27, 83]. As noted above, however, in our project we are more interested in the 

manner in which a combined statistical appearance model describes a set of training 

data than how the search algorithm is constructed. With regard to this, we note that one 

of the issues addressed by Cootes et al. [27] is how the individual texture and shape 

vectors should be scaled to account for the difference in metrics between the two 

components. In the earlier work by Edwards et al. [38], it was proposed that shape and 

texture were scaled so that the overall variance contributed by the two components was 

equal. However, Cootes uses a more sophisticated method in which the magnitude of 

the change caused to the shape-normalised texture vectors by varying parameters in the 

shape model is calculated. This allows weights to be selected so that a unit change along 

each shape mode causes a unit change in the resulting texture vector (by construction, a 

unit change along any texture mode also causes a unit change in texture). As we show in 

chapter 7, this issue is crucial in fitting a combined statistical model of appearance to 

mammographic masses. 

4.2.3 Further work on statistical appearance models 

In the previous section we described the basic construction of a statistical appearance 

model that encapsulates the combined variation in shape and texture of a training set of 
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image objects. Below we consider some further extensions of this work. 

Automatically selecting correspondence points 

The first step in building PDMs (and consequently full combined appearance models) is 

to place a set of corresponding landmark points on each image object in the training 

data. Doing this manually can be very time consuming and is subject to human error 

and interpretation. The problem becomes even harder when marking points in three-

dimensional volumes (see extension of model into 3-D below). As a result there has 

been significant research aimed at automating the process of obtaining correspondences 

between images. 

Given a set of continuous shape boundaries of a particular object (obtained for example, 

by automatically segmenting an object across a set of training images), Davies et al. 

[34], developed a method for obtaining optimal correspondences between the shapes. 

This is achieved by constructing an objective function termed the minimum description 

length (MDL). The idea of the MDL function is that it quantifies the amount of data that 

would need to be transmitted to fully describe the training set given some set of 

parametric statistical models. The better a model fits a set of training data, the less 

information that needs to be transmitted to encode the data. However, the cost of 

transmitting the model modes is also included in the function. Thus a model that 

minimises the MDL of a set of data provides the best compromise between model 

complexity and model fit. In the formulation by Davies et al., a set of landmark points 

placed on the boundary of each shape are iteratively refined until the MDL of the shape 

data and the PDM built from the current set of landmarks is minimised. The final 

positions of the sample points on each shape are used as optimal landmark points from 
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which to build further statistical models. 

This idea was extended by Cootes et al. [31] to determine optimal correspondences in a 

set of images, without requiring a predetermined set of shape boundaries. In this method 

a set of initial sample points is placed on a grid in each image across a training set of 

data. The sample points are iteratively refined using piecewise affine deformations until 

the MDL of the image data and a full combined appearance model (built using 

correspondence defined by the sample points) is minimised. The method effectively 

simultaneously registers and models the images. This idea is further extended to include 

an explicit segmentation of parts of the image in work by Petrovic et al. [93]. 

Modelling non-linear variation 

In the statistical models described in sections 4.2.1 and 4.2.2, it is assumed that 

parameters along separate modes can be varied independently of one another. PCA 

removes linear dependencies from a set of input data, and thus if the data contain no 

non-linear correlations, the parameters in the transformed principal component model 

space will be fully independent. Thus the distribution of the model parameters can be 

described by a single multivariate Gaussian distribution with zero mean and diagonal 

covariance matrix. 

However, if non-linearities exist in the input data, then a Gaussian distribution may not 

be sufficient to describe the distribution of parameters in the model space. As a result, 

parameterisations deemed valid under the assumption of a Gaussian distribution may in 

fact reconstruct non-valid instances of the object. That is, the model would lack 

specificity. In a search framework such as the AAM, noise in the data could lead to 

illegal parameter combinations being selected, thus reducing the robustness of the 
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algorithm. Moreover, when generating synthetic data, as in Caulkin’s work [23] and as 

we intend to do, then illegal instances of an object could be created. 

Various attempts have been made to allow for non-linear variations in a statistical 

appearance model. These include the use of Gaussian mixture models by Cootes and 

Taylor [28]; the use of kernel PCA by Romdhani et al. [97]; and, more recently, the use 

of Gaussian process latent variable models by Huang et al. [59]. 

Modelling three dimensional image data 

We conclude this section by noting that although the descriptions of statistical models 

discussed thus far refer to modelling two-dimensional image data, the models can be 

extended into three dimensions. Mitchell et al. [83] described the first fully complete 

adaption of the AAM using three-dimensional image data. However, throughout the 

remainder of this thesis, only two-dimensional image data are considered. 

4.3 Wavelets and other multiscale transforms 

In section 3.3, we reviewed work in which the appearance of breast tissue structures in 

mammograms were detected, classified and modelled. A common theme through many 

of the methods was the use of some form of multiscale filtering to obtain structural 

information localised in scale and orientation [63, 78, 103, 121, 129, 130]. Because 

mammograms are rich in linear structures of different sizes and orientations this kind of 

approach makes sense. 

A large number of multiscale image transforms have been developed in the field of 

image (and signal) analysis and processing. Indeed, as we saw in section 3.3, 

considering just a subset of applications in mammography research we noted the use of 
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the MR8 filter bank [92]; Gabor filters and log-Gabor filters [78, 96, 103]; the 

monogenic signal [86, 121]; the multiscale line operator [88, 130] and the steerable 

pyramid [98]. However the goal of these transforms is essentially the same. That is, 

given a location in an image and some set of frequency scales, we want to know 

whether a structure is present at the location and if so, at what scale and orientation. If 

the decomposition allows it, information on the type of structure present (for example 

an edge, a ridge etc.) may also be beneficial. 

In the following sections we describe three multiscale transforms: the monogenic signal; 

the steerable pyramid; and the dual-tree complex wavelet. As noted above, the first two 

transforms have already been applied to mammograms. We propose that the dual-tree 

complex wavelet has great potential in analysing, modelling and synthesising breast 

tissue structures in mammograms. 

4.3.1 The monogenic signal 

In the field of signal processing, the analytic signal is constructed from a real-valued 1-

D signal by combining the signal with its Hilbert transform. In the frequency domain, 

this has the effect of removing negative frequency components, leaving only positive 

frequencies. As a result, in the time domain the analytic signal represents the original 

signal as a phase-magnitude pair at each point. This representation provides more 

information than the real values contained in the original signal alone. The magnitude 

encodes the energy (amplitude) of the signal at any point, whilst the phase contains 

local structure information. 

Moreover, if the analytic signal is combined with a bandpass filter to separate the signal 

across frequency scales, then phase and amplitude measures can be computed at each 
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scale for a given time point. Given such a decomposition, the idea of phase-congruency 

was proposed as a feature detector by Kovesi [68]. At a particular location in a signal, 

phase congruency measures the extent to which phase across scales match. This is based 

on the idea that features such as pure steps or impulses are self-similar across scale, and 

thus have a constant phase response.  

If we now consider an image, and take the projection of the image at some fixed 

orientation, we obtain a 1-D signal to which the concept of phase, and consequently 

phase congruency apply. Thus phase describes the local cross-sectional structure of the 

image surface at some location, orientation and scale, and phase-congruency provides a 

measure of feature strength at that location. Because phase-congruency uses information 

from all scales and does not rely solely on magnitude, it should be less affected by noise 

and has been shown to be a robust feature selector [68]. 

However, computing phase in the scenario above requires selection of an orientation at 

which to project the image at each location. To achieve this, Kovesi [68] filtered the 

image using a bank oriented log-Gabor filters at each scale – a method that was also 

employed by Schenk [103] in the mammogram CLS detection algorithm reviewed in 

section 3.3.1. However, this approach is intrinsically computationally expensive and 

coefficients generated have a high degree of redundancy. 

To overcome this, Felsberg and Sommer [42] introduced the monogenic signal as a 

direct 2-D extension of the analytic signal. In the monogenic signal, the Riesz transform 

[114] is applied to an image. This produces a vector triple at each location in the image 

from which local amplitude, orientation and phase can be calculated. In this 

formulation, if the orientation and phase computed at some location are φ  and ϕ  
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respectively, then a 1-D analytic signal in the direction of φ  would be expected to 

produce a local phase of ϕ . As with the analytic signal, bandpass filters can be applied 

with the monogenic signal to compute amplitude, orientation and phase across multiple 

scales (Mellor and Brady [79, 80] discuss the optimal choice of filters to use). Using 

this approach, local phase (and phase congruency) can be computed and has been shown 

to be a robust measure of image features in several tasks [42, 79, 80, 86, 121]. Because 

phase-based measures computed from the monogenic signal are invariant to changes in 

contrast and intensity, they are ideally suited to applications such as cross modality 

registration. This was demonstrated by Mellor and Brady in their work registering MR 

and ultrasound volumes of the brain [80]. It may also be advantageous in 

mammography where different imaging equipment and different physiological factors 

(breast size and density) can produce images with greatly varying contrast ranges. 

In this section we have looked at the benefits the monogenic signal yields as a tool for 

analysing medical images. However, we conclude this section by considering a 

disadvantage of the monogenic signal when modelling breast tissue in mammograms. 

By its construction, the monogenic signal only encodes information on cross-sectional 

shape at one orientation for any given location and scale. Thus it can only fully 

represent the embedding of intrinsically 1-D features (that is, lines and edges) in a 2-D 

signal. In a mammogram, features of a greater dimensionality may arise when one or 

more linear structures cross or branch, or for round objects such as calcifications. To 

completely represent such structures it is necessary to be able to infer cross-sectional 

shape in multiple orientations at a given location. We note that recent work by Wietzke 

and Sommer [124], proposes a further extension of the monogenic signal into a 

complete 2-D analytic signal, however, in the following two sections we consider an 
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alternative approach to obtaining structural information at multiple orientations for each 

location in an image. 

4.3.2 The steerable pyramid 

In the initial formulation of phase congruency for images described in the previous 

section, multiple oriented complex Gabor filters were applied to images at a range of 

scales. Whilst this approach is significantly less efficient than applying the monogenic 

signal, it does enable structural information to be captured at multiple directions for any 

location in any image. With this in mind, we describe the construction of the steerable 

pyramid in this section. This wavelet-like transform combines the concept of filtering an 

image with a bank of oriented filters with the efficiency gained by downsampling low 

frequency components in the image signal. 

The complex steerable filter was introduced by Freeman and Adelson [47], and 

extended into a multiscale decomposition by Simoncelli and Freeman to form the 

steerable pyramid [109]. In the steerable pyramid, the number of orientations at which 

to filter the image can be chosen (hence its steerability). To form the decomposition, an 

image is initially low-pass and high-pass filtered. The following steps are then applied 

recursively to the low-pass image: 

1. Apply a complex band-pass filter at the selected number of orientations 

2. Low-pass filter 

3. Down-sample the new low-pass image by a factor of two in each direction 

The result is pyramidal structure of complex valued subbands localised in scale and 

orientation. The decomposition shares many of the properties of a standard real-
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valued, discrete decimating wavelet transform, with the added advantages of directional 

selectivity, shift invariance (see below) and the computation of complex phase from 

which structural information can be inferred. Like a wavelet transform, the steerable 

pyramid is invertible: the filters are self-inverting and thus image reconstruction is 

achieved by reversing the decomposition process. 

Despite the factor of two down-sampling, for an original m n×  image, each orientated 

subband in the L-th level of the pyramid has  -1 -1L

n
2 2L

m⎡ ⎤ ⎡ ⎤×⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
 complex coefficients. As a 

result, the decomposition is redundant by a factor of 8 :13
k  , where k is the selected 

number of orientations. 

The pyramid can be constructed using non-complex filters (as used, for example, in the 

model of mammograms constructed by Rose [98] we reviewed in section 3.3.1), in 

which case the redundancy is reduced by a factor of two. However, not only does this 

remove the possibility of using phase to infer structural information, the resulting real-

valued coefficients will not be shift-invariant. 

What is shift invariance? 

In any decimating multiscale decomposition (that is, one in which the number of 

coefficients is down-sampled between each frequency level) the coefficients at each 

level form a sampling grid with respect to the original image (or signal in 1–D). Small 

shifts in the image prior to decomposition change the relative position of this grid. 

However the distribution of energy (that is, the magnitudes of the coefficients) through 

the levels of the decomposition should not change. They should be shift invariant. 
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Using complex filters, the magnitudes of pyramid coefficients will be shift invariant, 

whilst shifts in the decimation grid produce a global offset in coefficient phase that is 

cancelled out when local phase measures are computed. However, the real valued 

steerable pyramid, along with standard real discrete wavelet transforms (DWT), does 

not have this property. In this case the coefficients are shift dependent. This is because 

the filters do not separate positive and negative frequency components in the pyramid 

(analogous to the frequency spectrum of a real valued signal prior to computing the 

analytic signal). The negative frequency aliasing terms that cause shift dependence are 

cancelled out when the pyramid is inverted, and thus do not affect the reconstruction of 

the image. However, they prevent meaningful analysis of individual pyramid 

coefficients, and, as discussed later in section 8.3.1, would confound the models of 

mammographic appearance we construct. 

As a result, we can either accept the 8 :13
k  redundancy inherent in the complex valued 

steerable pyramid, or, as we discuss in the next section, consider a different complex 

wavelet transform. 

4.3.3 The dual-tree complex wavelet transform 

The dual-tree complex wavelet transform (DT-CWT) was developed by Kingsbury [65]. 

Like the complex steerable pyramid it was designed to overcome the two main 

disadvantages of discrete wavelets as a tool in image processing, namely the lack of 

shift invariance and poor directional selectivity. 

The dual-tree complex wavelet transform is formed by computing two parallel real 

discrete wavelet transforms (trees) with a 90º phase difference. Combining the 

responses of the two trees as the real and imaginary part of a complex wavelet 
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produces coefficients with magnitudes that are shift invariant. The filters used in each 

tree have been the subject of careful development work to ensure the resulting dual-tree 

of wavelets has the desired properties. The key features of the filters are that they: 

i) allow perfect reconstruction 

ii) are linear phase 

iii) are odd-length in one tree and even-length in the other 

iv) are near orthogonal 

v) are composed of rational coefficients 

Further details on the design of such filters can be found in the article by Selesnick et al. 

[105]. 

The DT-CWT extends into two-dimensions by filtering along columns then rows. Like 

a real DWT, wavelet coefficients at each scale are produced from the high-pass/low-

pass (hi-lo), lo-hi and hi-hi filter combinations, whilst the lo-lo band is passed to the 

next level. However in the DT-CWT, each filter also has a complex conjugate, thus 

there are 12 possible hi-lo, lo-hi and hi-hi combinations at each scale. The complex 

nature of the filters allows for each filter and its conjugate to select either positive or 

negative frequencies in the horizontal and vertical directions. As a result the 12 filter 

responses can be manipulated to produce 6 directional subbands of complex wavelet 

coefficients at each scale. By construction, these subbands are aligned at approximately 

±15º, ±45º and ±75º. The filters required to reconstruct the image are simply time 

reversed copies of the analysis filters. Thus the DT-CWT can be efficiently inverted by 
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separable filtering along rows and columns of the decomposed subbands. 

Unlike the steerable pyramid, the number of oriented subbands cannot be changed, and 

their directions are fixed. However, for an original m n×  image, each orientated 

subband in the L-th level of a DT-CWT has  
2 2L L

nm⎡ ⎤ ⎡× ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

 complex coefficients. As a 

result the transform has a redundancy of just 4:1, which is lower than any steerable 

pyramid containing two or more orientations (and a factor of four smaller for an 

equivalent number of six orientations). Moreover, because the dual-tree is computed 

using separable filters, it is possible to move between the wavelet domain and the image 

domain with greater speed and efficiency than the steerable pyramid.  

That said, as noted by Kingsbury [66] and Anderson [6], because the DT-CWT 

partitions the frequency domain with rectangular co-ordinates, the six subbands at any 

frequency level are not equidistant from the origin (the ±45º subbands formed from the 

hi-hi filter combinations will be a factor of approximately 1.34 further from the origin 

than the four bands formed from hi-lo combinations). This can be remedied by 

weighting the coefficients in the ±45º subbands. Alternatively, the ±45º subbands could 

be replaced by band-pass filters designed to match the radius of peak response of the 

remaining subbands, as recommended by Kingsbury [66]. Applying the extra set of 

filters adds to the computational cost of the DT-CWT and results in a loss of perfect 

reconstruction (although the effect should be small). However, such a step may be 

necessary if the intention is to use DT-CWT coefficients to compute rotationally 

invariant features in an image. In contrast, the steerable pyramid partitions the 

frequency domain with respect to radial co-ordinates and the peak response frequencies 
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of all subbands are equidistant from the origin.  

With regards to its use in image processing and analysis applications, we note that the 

DT-CWT has yet to be applied to mammograms in any published literature. However, 

work by Anderson et al. [6-8] has shown how measures analogous to phase congruency 

can be computed using the DT-CWT. As we discuss later in chapter 8, we intend to take 

advantage of these features in the DT-CWT when we attempt to model the appearance 

of breast tissue in the region around mammographic masses. 

4.4 Texture synthesis 

We complete our review of general techniques in image processing with a review of 

texture synthesis algorithms. Whilst we have already stated our intention to synthesise 

the central density in mammographic masses using a statistical appearance model 

similar to those discussed in section 4.2.2, we have not yet determined how we might 

synthesise mass spicules and the distortion of breast tissue in the region of a mass. In 

section 3.3.1, we reviewed a method by Rose [98] for modelling and synthesising the 

appearance of whole mammograms. Work towards the formation of this model was 

influenced by techniques from the field of texture synthesis in images. Thus in this 

section, we review some key texture synthesis papers including further details of a 

statistical modelling approach developed by Rose [98]  to synthesise local patches of 

mammographic texture. 

The first algorithm we consider is a non-parametric sampling method proposed by Efros 

and Leung [40]. In the algorithm, a source texture sI  is used to generate matching 

texture in a target image tI . The target image can be blank, in which case the algorithm 

must be initialised by selecting a random patch of pixels from the source texture to 
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act as a seed. Alternatively, the target may be a patch of unfilled pixels in an image, in 

which case it may be possible to use the remainder of the image as the source texture. In 

either case, the algorithm is controlled by fixing some patch of size κ  (  must be odd 

and greater than 1), and proceeds as follows. First the set of all unfilled boundary pixels 

are obtained (that is, unfilled pixels 8-connected to a filled pixel – if 

κ

tI  was initially 

blank, these will be the pixels neighbouring the randomly chosen seed). One of these 

pixels, say ) ( ,p x y=  is randomly selected, and the κ κ×  patch surrounding p 

extracted: 

( ) ( ) 1, , , , 0,1,..., 2t tW i j I i y j i jx κ −± ± = ± =  

Of course some of the elements in W tracted from as yet unfilled pixels, and thus 

no valid val  (in particular 

±

re ex

have 

t a

ue ( )0,0tW  will alwa  be blank). Next the set of all 

κ κ×  patches in 

ys

sI  (the exemplars) are compared to tW . In this comparison, a distance 

measure is computed (for example, the sum of squares difference, weighted by a centred 

Gaussian kernel to give more importance to pixels closer to p than at the edge of the 

patch) using only those elements of tW  that have valid values. The set of exemplars 

with a distance measure below some preselected tolerance are con ered as possible 

candidates, from which one exemplar is chosen at random. If 

sid

sW  is the selected 

e value of the central pixel in exemp sW  is use  to popula
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lar, then th d

t

te p, that is  

. This process is r  until all p xels in ( )0,0 I( ,I x )t sy W= epeated i  are filled. 

Despite its simplicity, Efros and Leung’s algorithm has been shown to be one of the 

most effective and flexible texture synthesis algorithms in the literature. Moreover, it 

can be seen as the basic template for local patch-based texture synthesis, and, as a 
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the feature space of exemplars [98]; 

constraining the sampling by image features [127]. 

result has been extended in a myriad of ways. These include: extensions to work with 

colour images [9, 39, 122, 123, 127]; using more sophisticated methods than an 

exhaustive search to select the best exemplar [122, 123]; synthesising at multiple 

resolutions from coarse to fine [123]; adding patches rather than single pixels to the 

target image [9, 39, 127]; explicitly parameterising 

Of these extensions, we consider three in more detail. Firstly, Efros and Freeman [39] 

extend the algorithm described above by adding patches rather than single pixels to the 

target image tI . At first glance this is a trivial extension – rat ply placing the 

centre pixel of the selected exemplar in the target image ( ( )( , ) 0,0t sI x y W= ), all the 

v plar corresponding to unfilled pixels are used 

( ( ) ( ), ,t s

her than sim

alues of the exem

I x i y j W i j± ± = ± ±  for all 1, 0,1,..., 2i j κ −=  and ( ),tI x i y j± ±  unfilled). 

However this leaves discontinuities at the boundary of the patches that give a tiled 

appearance to the generated texture. This is solved by computing the optimal cut in the 

overlapping region between tI  and sW , subject to an error function defined on the 

overlapping region. Thus in the overlapping region, some of the pixels will be 

maintained from tI , whilst the remainder are substituted from sW . Efros and Freeman 

term this algorithm image quilting, and like the original Efros and Leung algorithm, it 

has been shown to produce realistic results for a diverse range of textures. The 

advantage of image quilting over pixel-by-pixel synthesis is twofold: firstly, it is 

computationally faster as many pixels are added to the target texture during each 

iteration. Secondly, it is more stable – a risk in pixel-by-pixel synthesis is that the 

algorithm can fall into a part of the search space not well populated by exemplars, in 
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ently generating a target image that 

does not match the properties of the sample texture. 

val

which case pixel values not representative of the sample texture are sampled. These 

pixels in turn are used to constrain the next set of unfilled pixels, locking the algorithm 

into the wrong part of the search space and consequ

The second extension of the original Efros and Leung algorithm we consider was 

developed by Rose [98]. In this work, rather than simply storing all exemplars from a 

sample texture, the set of exemplars are treated as vectors populating a multi-

dimensional feature space. The probability density of this space is modelled using a 

mixture of multivariate Gaussian distributions (fitted either by using k-means clustering 

or by using the expectation maximisation algorithm). During synthesis, the filled pixel 

ues in the target patch tW  are used to condition the distribution. Thus a sample patch 

sW  can be generated from the existing values in tW  and a random sample from the 

marginalised distribution. As above, sW  can be used to add either a single pixel or a 

whole patch to tI . In the latter case, by virtue of the conditiona  sampling, the pixels at 

overlap boundary of 

l

sW  should match the existing pixels in tI , and thus the quilting 

procedure used in Efros and Leung’s later algorithm is not required. 

The advantage of this approach is that because the model building stage need only be 

performed once, increasing the number of feature vectors (for example, by using a 

larger sample texture or a training set of images) does not increase the computation 

required during synthesis. This makes the algorithm proposed by Rose more suited to 

synthesising texture given a large training set of image data than exemplar based 

methods such as Efros and Leung’s algorithm. Because of this, we intend to develop an 

extension of this algorithm to model and synthesise mass regions (see section 8.6). 
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ure space in our work is discussed further in section 

8.6.6. 

g 

However, it should be noted that for the synthesis to be successful, it is vital that enough 

training data is used to adequately learn a model distribution with strong specificity. If 

not, then there is an even greater danger than in the original Efros and Leung algorithm 

of sampling texture not representative of source texture. Once one unlikely pixel is 

sampled, this may force future conditioning of the model to the edges of the distribution 

space, from which increasingly extreme sample patches may be generated. The issue of 

suitably populating the model feat

Returning to non-parametric sampling, Wu and Yu [127] present a method in which in 

addition to sampling exemplar patches, a feature map is used to constrain the synthesis. 

This feature map is composed of binary elements, specifyin either strong lines or edges 

in the target image. During synthesis, a suitable exemplar sW  is selected with respect to 

the match of pixel values in the ove ap region (as in Efros and Freeman’s algorithm) 

and also to the match of features in 

rl

sW  to the existing feature map. Once sW  is selected, 

the features within sW  are deformed to be continuous extensions of the existing feature 

map. This deformation is then used to warp the pixel intensities in sW , and this is then 

added to the image. With regards to our work, this form of hybrid synthesis in which 

binary features are used to control local texture patches may provide a way of 

simultaneously generating spicules whilst deforming the appearance of the surrounding 

breast tissue. The possibility of using such hybrid models is discussed further in section 

8.7. 

We conclude our review of texture synthesis research by examining an algorithm of 

markedly different properties to those described above. Portilla and Simoncelli [95] 
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 to exploit when synthesising the appearance of breast 

describe a method in which a set of parameters are used to define the appearance of a 

sample texture. To synthesise a new texture, a random field of Gaussian noise is 

sampled. This random field is then iteratively modified so that it matches each of the set 

of sample texture parameters in turn. Although convergence of this process is not 

guaranteed, the authors report that it has never failed to converge over a test set of many 

hundreds of input textures. The final synthesised texture should match the complete set 

of parameters that describe the sample. To parameterise a sample texture, a set of 

statistics based on its complex steerable pyramid decomposition (see section 4.3.2) are 

computed. These include marginal statistics of the lowpass images at each scale in the 

pyramid; autocorrelations of the lowpass images; cross-correlation of magnitudes in 

each of the oriented subbands; and cross-correlation of an interscale measure of 

coefficient phase. The last statistic is particularly interesting, as it uses the idea of 

complex phase representing image structure as discussed in section 4.3, and is very 

similar to the inter-level coefficient (ILP) transform of dual-tree complex wavelet 

introduced by Anderson et al.[7] (the ILP transform is discussed in more detail in 

section 8.4.3). However, by taking the expectation of each statistic across each image, 

we do not think the parameter that captures local structure is optimally used by Portilla 

and Simoncelli. Where the algorithm is of particular interest, is the idea that by 

modifying the coefficients in a complex valued decomposition of an image to match the 

statistics of some model (in this case the decomposition of a sample image), the 

resulting reconstructed image has matching appearance properties to the sample image. 

Whilst we will use a different framework (including a different choice of statistical 

constraints and the use of a model learnt from training data as opposed to a single 

image), this is an idea we seek
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f masses. 

4.5 Summary 

In this chapter we have provided a review of statistical appearance models; a review of 

wavelet transforms and other multiscale image transforms; and finally, a review of 

Whilst these topics may appear somewhat diverse they are linked by a common theme. 

The statistical models discussed in section 4.1 provide a global description of 

appearance. That is, given a sample of parameters from a model, the complete set of 

grey level intensities belonging to an image object are specified. We propose this form 

of model is suitable for describing the appearance of the central density in 

mammographic masses. However, such global models cannot cope with the 

heterogeneity of appearance present in the breast tissue surrounding a mass. In such 

regions there is a complex array of local structures. The multiscale image 

decompositions we reviewed in section 4.3 provide us with tools that can better describe 

such structures. Finally, the texture synthesis methods reviewed in section 4.4 describe 

appearance as series of local interactions. As we discuss further in chapter 8, we intend 

to combine multiscale descriptors of local structure with a texture synthesis algorithm 

for combining local structure patches to produce a realistic simulation of breast tissue in 

the surrounding region of a mass. Coupled with the global model of central density 

appearance, this would achieve a complete method for synthesising malignant breast 

We have now completed our review of background material and can proceed to describe 

in detail how we have developed the models of mass and breast tissue appearance 

tissue in the region o

texture synthesis techniques.  

masses in mammograms. 
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Because our method is based on learning the appearance characteristics of real data, the 

first step in our method is to collate a suitable set of real mammographic masses on 

which to train our models. This process is described in the following chapter. 

outlined above.   
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Chapter 5 : Data 

5.1 Data Acquisition 

The mammograms used throughout the project were provided by the Nightingale Breast 

Centre, University Hospital of South Manchester. The original mammogram films were 

acquired during 2004 as part of the UK national breast screening program. Sets of 

mammograms acquired at the 2004 screening appointment consisting of four films – the 

left and right CC and MLO views, were selected if they contained at least one film with 

an abnormality that was subsequently biopsy-proven to be malignant. The cases were 

selected in a sequential order, however, as no patient data was used in the selection 

criteria, the cases were assumed to be a random sample from the screening population. 

In total 540 films from 142 cases were used.  

5.1.1 Film digitisation 

The films were digitised on a Vidar scanner, at a resolution of 40μm per pixel and a 

grey level range of 12 bits (4096 grey levels). The bit depth was later reduced to 8-bit 

resulting in mammograms with a grey level range of 0-255. The scanner generates pixel 

grey levels that have an approximately linear relationship to the film density. As 

discussed in section 2.2.2, this imparts a linear relationship between grey level in the 

digitised mammograms and the sum of tissue attenuation coefficients superimposed at 

any location. This linear relationship is important to the work we present in the 

following chapter.  

All digitized mammograms were fully anonymised, and no patient data was used at any 

stage in the project. On this basis ethics approval was not required for the work 
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presented in the remainder of the thesis.  

5.1.2 Identifying abnormalities 

Once the films were digitised, a consultant radiologist from the Nightingale Breast 

Centre confirmed the type of abnormality present in each mammogram and its 

approximate location of within the image. Table 5.1 gives the number of abnormalities 

present in the set of mammograms, separated by view. Note that in several 

mammograms more than one type of abnormality was present. 

Table 5.1: Number of abnormal image signs present in the mammograms included in the dataset 

 RCC RML LCC LML 

Mass 43 46 44 48 

Individual cluster of 
microcalcifications 14 14 42 40 

Architectural distortion or 
abnormal asymmetry 2 2 1 1 

No abnormality present 76 74 64 63 

 

In total there were 181 separate masses in 159 different mammograms from 87 cases. 

Where an MLO mammogram had multiple separate masses that were also visible in the 

corresponding CC view, the masses were identified and labelled by the radiologist such 

that we knew which masses corresponded in the two views. 
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5.2 Annotating masses 

The methods we present in the remainder of this thesis require an accurate annotation of 

the border of each mass. Obtaining an annotation of sufficient accuracy is a non-trivial 

task – as described in section 2.2.4, breast masses, and particularly malignant masses, 

often have ill-defined borders; in addition a mass border may be obscured by 

superimposed dense tissue in the breast. For these reasons, annotation should ideally be 

carried out by expert mammogram readers. 

Previous solutions to this problem include having readers annotate each breast lesion by 

hand on acetate overlaid on the mammogram film before scanning in the annotation and 

aligning with the digitised mammogram. Whilst this method allowed readers to make an 

accurate demarcation of the lesion border on the acetate, errors were introduced in the 

process of aligning the scanned images. Alternatively, readers have been asked to 

annotate directly on digitised mammograms using proprietary image software (for 

example, the polygon tool in Microsoft Paint). However, such software is not designed 

for the specific needs of mammogram annotation and may suffer from a lack of suitable 

features (for example, zoom and contrast control, or editing of previously defined 

borders) or require a greater degree of training for the reader. 

To overcome these limitations, we designed and implemented a mammogram 

annotation tool using the graphical user-interface toolbox in Matlab®. The software 

allowed the user to demarcate the border of each mass in the dataset, mark further 

features of interest associated with the mass (such as spicules), and locate the position 

of the nipple in the mammogram. In addition the user could review and edit any 

previously saved annotations.  
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To enable accurate annotations, the software allowed the user to zoom within a region 

of a mammogram to any magnification, whilst simultaneously viewing copies of the 

region displayed at both the original grey-scale contrast and a contrast in which the 

dynamic range was maximised. To aid the annotation of spicules, we experimented with 

using an additional view in which lines in a region were enhanced using the line 

operator [36] (discussed previously in section 3.3.1). However, after consultation with 

the breast radiologist that subsequently used the software to annotate the masses in our 

data, this feature was not deemed useful. Instead, an additional view in which a region 

was displayed using a colour scheme that further enhanced visual contrast was included. 

Further details of the software are given in appendix B. 

Using the software the 181 masses in the dataset were annotated by a breast radiologist 

from Nightingale Breast Centre. Figure 5.1 shows two such examples, one with and one 

without spicules marked. 

Whilst annotating the masses, the radiologist was asked to rate how well the border was 

defined on a scale from 1 to 5, with 1 being the least well defined. Note that this rating 

should not be seen as equivalent to the way a radiologist might score a lesion boundary 

to determine lesion type, but rather a general measure of how accurately the radiologist 

felt they could mark the limits of a mass using the software. Thus rather than being 

solely a measure of the mass, the rating took into account other factors, such as dense 

parenchymal tissue obscuring the border. 
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Figure 5.1: Two masses from the dataset with the border, as marked by a breast radiologist, 

shown in blue. On the right hand mass, several spicules are also marked in red  

 

Of the 181 masses annotated, two were assigned a rating of 1 by the radiologist. In 

conjunction with the radiologist it was decided these masses were not suitable for 

inclusion in any further models. In both cases, the rating of 1 was assigned because a 

large portion of the mass was obscured by dense parenchymal tissue, and thus 

attempting to delineate the mass border was impossible. It was deemed that this was a 

feature of the breast as opposed to a particular feature of the two masses. As such we do 

not believe that excluding the two masses from subsequent datasets biased the models 

we develop. 

5.3 Selecting a dataset of independent masses 

As a result of discarding two masses following expert annotation, the dataset comprised 

179 mammographic masses that were projections of 101 breast masses from 86 separate 

cases. 
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We use these masses to form a training set from which to build the statistical models of 

appearance described in the remainder of this thesis. However, we note that the CC and 

MLO mammographic projections of the same mass are likely to have highly correlated 

appearance properties, especially as the two projection angles are not orthogonal. In 

particular, the size, average grey level and boundary properties of a single physical mass 

projected in the two views will be closely related.  

Further, not all of the 101 masses are visible in both CC and MLO views. Thus, if a 

training set was formed using all 179 mammographic masses, then the set would 

contain a bias towards the appearance properties of masses that were visible in both 

views. To prevent this bias, where a mass was visible in both CC and MLO views, only 

one of the views was included in the training set. In these cases, the mammogram view 

to be included was randomly selected. Where a breast contained more than one mass, a 

single projection of each separate mass was included. Other ways of selecting a training 

set given the data that were available are discussed in the following section. 

As a result of the selection process outlined above, the final training dataset comprised 

101 masses, of which 31 were from left MLO mammograms, 20 from left CC 

mammograms, 27 were from right MLO mammograms and 20 were from right CC 

mammograms. 

For computational efficiency, in every mammogram containing a mass, a rectangular 

region containing the mass was extracted. Each region was selected to contain the mass 

in its entirety (including any spicules marked by the radiologist) with an additional 

buffer of 200 pixels (~80mm). Thus from here until chapter 9 we refer to our training 

data as comprising mammogram regions. In chapter 10 we return to considering full 
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mammograms when we discuss how to automatically locate synthesised masses. 

5.4 Discussion 

In section 5.2, we described how masses in our data were annotated by a breast 

radiologist. We developed software to allow the radiologist to demarcate the border of 

each mass as accurately as possible. However, this task involves a subjective judgement 

and, despite the radiologist’s expertise, may be prone to human error – particularly for 

masses with an ill-defined border. Because of this, it may have been advantageous to 

have had masses annotated by multiple experts. This would allow us to compute the 

variability between experts and set a measure on the confidence we had in the 

annotations as ground truth for the data.  

However, because we attempt to model the variation in appearance across whole mass 

regions, our method is less sensitive to inaccuracies in the annotated borders than if we 

modelled only the image data contained within each mass border. As we show in the 

next chapter, pixel grey levels in each mass region are split into data used to model 

central mass densities and data used to model the surrounding tissue. Thus varying the 

annotated border of a mass may change how grey levels in the region are split between 

the two datasets, but does not affect the overall content of data modelled.  

In section 5.3, we described how following annotation, we selected a subset of masses 

that would be used to train the models of appearance we build in subsequent chapters. 

Treating the mammographic projection of each physical mass as a separate image 

object, we randomly selected a single CC or MLO projection of each mass to be 

included in the training set. We now consider whether this was the best method for 
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choosing a dataset. 

Firstly, we might instead have used all 179 mammographic masses. However as 

discussed in section 5.3, the appearance characteristics contained in this set, and 

consequently learnt by the models, would be biased towards the appearance of masses 

that were visible in both CC and MLO views. As a result, synthetic data sampled from 

the models would also be biased towards these appearance characteristics. Thus whilst 

using all the mammographic masses may provide a richer set of data from which to 

build statistical models of appearance, we could not trust synthetic data sampled from 

the models to be representative of the global population of masses. This would limit the 

use of such synthetic data, and thus we do not think using all 179 mammographic 

masses is a sensible solution. 

An alternative solution would be to use both MLO and CC projections, but include only 

those masses that were visible in both views. There are 78 masses visible in both views 

and so such a set would comprise 156 training examples. However because the 

appearance characteristics of each CC/MLO pair are strongly correlated, this set 

contains less variation in appearance than the set generated using a single view of all 

101 masses. That is, in discarding 23 masses because they were not visible in both 

views, we have lost more variation than we gain by adding the extra projection of the 

remaining 78 masses.  

A further point to consider is whether it is valid to build a model from masses using a 

mix of CC and MLO views. In building statistical appearance models we are assuming 

there is some underlying distribution that describes how a mass can appear in a 

mammogram. By including masses from both views, we are making the assumption that 
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this underlying distribution does not differ between the two. If we consider the physical 

3-D location of a mass within a breast, then this assumption is equivalent to saying that 

the alignment of a mass (and any local structures associated with mass) with respect to 

the x-ray source for one view, is as likely to occur as an equivalent alignment with 

respect to the other. Whilst we acknowledge the theory that masses grow in ducts 

radiating from the nipple [52], we are not aware of any data in the literature showing a 

constraint on the specific rotational alignment of a mass. Thus we believe it is valid to 

build appearance models from a dataset containing a mix of mammogram views. This 

may however be an area for further research. 

Under the assumption that it is valid to build appearance models from a dataset 

containing both MLO and CC views, the selection criteria described in section 5.3 for 

constructing a training set maximises the variability in mass appearance without 

introducing bias into the data. 

Finally, we may consider whether we should try and learn the appearance relationship 

between the projections of a physical mass in two mammogram views. Learning this 

relationship would be necessary to generate complete cases of synthetic data (as 

opposed to individual mammograms containing a synthetic abnormality). However, an 

attempt at a building such a model is beyond the scope of this thesis, although would 

again be an interesting area for further research. This is discussed further in section 

12.2.2. 

5.5 Summary 

In this chapter we have described the origin of the mammograms used throughout the 

project. We have described the process by which the masses present in the 
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mammograms were identified and annotated by a breast radiologist. 

The method for selecting a suitable training set of masses from all those available was 

discussed, with the conclusion that for our models choosing a single mammogram 

projection of each separate physical mass was most appropriate. This ensured the 

assumption that the objects in the training set were independent examples drawn from 

the global population distribution holds true, whilst maximising the number of examples 

in our training set. 

In the following chapter we describe the pre-processing steps required to convert 

mammogram regions containing masses into regions from which appearance models 

can successfully be built. 
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Chapter 6 : Separating a Mass from the Background 

Following our review of mammography literature, we determined that we would 

attempt to synthesise malignant mammographic masses by modifying the appearance of 

real normal mammograms (see section 3.2.1).  

Recalling the mammographic appearance of breast lesions described in chapter 2, we 

observe that the central density of a malignant mass appears as an area of higher grey 

level than the neighbouring breast tissue. This occurs because the cancerous cells 

comprising a mass have higher x-ray attenuation coefficients than normal breast tissue. 

In simulating the presence of a mass in a normal mammogram, we are effectively 

simulating this pattern of increased attenuation.  

In the previous chapter we described how we have constructed a set of real masses from 

which we will attempt to learn a model of mass attenuation. To do this, we make use of 

the fact that there is a linear relationship between pixel grey level in the digitised 

mammograms and the sum of attenuation coefficients corresponding to superimposed 

tissue (see sections 2.2.2 and 5.1.1). As a result, an increase in x-ray attenuation due to 

the presence of a mass causes a proportional increase in pixel grey level. If we can 

i) model the pattern of increased grey level for each mass in our training data 

ii) synthesise new patterns of increased grey level that match the appearance of the 

real data included in the model; 

then adding the synthesised grey levels to a normal mammogram is equivalent to 

simulating a pattern of increased attenuation corresponding to the presence of a mass in 
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the breast2. Thus, our appearance model of image grey levels corresponds to a physical 

model of mass attenuation. 

In this chapter we describe how we compute the increased pixel grey level 

corresponding to the central density of each mass in our training data. We refer to this 

process as separating a mass and describe the two sets of data we form as a result of this 

process. Finally, we discuss how this motivates the work we present in chapters 7 and 8. 

 

Figure 6.1: A mass region from the dataset. The mass border (as annotated by a radiologist) is 

marked in blue. Several (although not all), spicules have been marked in red 

6.1 Introduction 

We now consider the appearance of a mammogram region from our dataset, as for 

example, shown in Figure 6.1. The principal feature of the region is the area of 

increased intensity due to x-ray attenuation through the mass, causing a blob-like object 

                                                 

2 Assuming the normal mammogram is also obtained using the same film-screen and digital scanner. Further details 

of this limitation are given in the discussion in section 6.6.  
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in the centre of the region, marked by the blue border. In addition there are spicules 

associated with the mass, some of which have been labelled in red. Finally the region 

contains the projection of all the normal breast tissue in the area (some of which may 

have been distorted by the presence of the mass) that produces the characteristic 

textured appearance of mammograms. 

Our aim in this chapter is to represent the grey level of every pixel in the region as being 

the sum of two sources of attenuation:  

i) the central mass density, which we assume is a contiguous object 

ii) the combination of mass spicules (and any other abnormal structures such as 

microcalcifications) and all other normal breast tissue in the region 

Figure 6.2 shows a schematic of this idea. Throughout the remainder of this chapter we 

will refer to the first source as mass attenuation and the second source as background 

attenuation. 

 

+

Figure 6.2: Schematic of the process for separating the central density in a mammographic mass. 

Green lines represent breast parenchyma, red lines represent mass spicules. 
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At first it may seem odd to include mass spicules in the background attenuation, as 

opposed to the mass attenuation. However we make this choice for three reasons.  

Firstly, the central mass can be considered as a single object, of which we have exactly 

one in each region of the training set. This allows us to model the population of masses 

using the statistical appearance model presented in the next chapter. However, there is 

no consistent set of structures associated with a mass across all training examples. For 

example, some masses are highly spiculated, whilst others have few or no spicules; 

some masses may contain clusters of microcalcifications, whilst others do not. Thus 

attempting to include these abnormal structures in the model of mass appearance would 

prevent us from finding a consistent set of correspondences across each object in the 

training data, thus confounding the model. 

Secondly there is a practical consideration: whilst the increased image intensity 

corresponding to the central density of a mass can be successfully separated from the 

background (as we show in the remainder of this chapter); the fine-scale, low contrast 

characteristics of many spicules make them very difficult to separate from the 

background. This process would be further complicated by the similarity in appearance 

between mass spicules and some normal linear structures in the region. 

Finally, and related to the point above, mass spicules are inextricably linked with the 

normal breast tissue. Indeed, as described in our review in section 3.2.1, failing to 

account for the interaction between a mass and its surrounding background was one of 

the principal shortcomings of previous attempts to synthesise mammographic masses. 
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Overcoming this failure is one of the key aims of this project. It is between mass 

spicules and the existing normal breast tissue that the majority of this interaction takes 

place. Separating the central mass, whilst leaving any spicules produces a set of training 

regions from which we can learn to model (and synthesise) this interaction. 

6.2 Representing a region as the sum of mass and background 

To proceed with separating the regions in our dataset, we first formalise our definition 

of how mass attenuation and background attenuation combine to form pixel grey levels 

in each region. 

Assume we have a X Y×  pixel mammogram region containing a single mass. We can 

define the grey levels at each pixel throughout the region by the function: 

( , ), 1,..., , 1,...,R x y for x X y Y= =  

Because the relationship between x-ray attenuation and image grey level is linear, using 

equation (2.1) from chapter 2, we can rewrite the grey level at any pixel in the region as 

( ) ( )0( , ) ( , , ) log ( , )R x y x y z dz E x yα μ α= +∫ β+  

where ( , , )x y z dzμ∫  is the sum of superimposed tissue attenuation coefficients, 

0 ( , )E x y  is the incident exposure of the film to the x-ray beam and α  and β  are 

constants that depend on the film-screen combination and scanner used to obtain the 

digitised mammogram. We can then separate the sum of superimposed tissue so that 

( )0( , ) ( , ) ( , ) log ( , )M BR x y A x y A x y E x yα α α= + + β+  

where MA and  represent mass attenuation and background attenuation respectively. BA
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Now let the annotated mass border obtained in section 5.2 define the set of pixels that 

have an increase in grey level attributed to mass attenuation. We can label this set of 

pixels 

  { }( , )M x y=  

so that 

( , ) 0 ( , )MA x y x y M= ∀ ∉  

Finally, we can rewrite the pixel grey level as 

( , ) ( , ) ( , ) , ( , ) 0 ( , )M B MR x y R x y R x y R x y x y M= + = ∀ ∉  

where ( , ) ( , )M MR x y A x yα=

( , )B

 is the increased grey level due to the presence of the mass 

and R x y  represents a background grey level corresponding to the sum of breast 

tissue attenuation coefficients and the incident exposure at ( , )x y . 

Applying this representation across a region, we have effectively separated the region 

into two new images MR  and BR . We define these as the mass image and the 

background image respectively. 

Having described a region in this manner, the task for the remainder of this chapter can 

be defined as finding the best estimates for the unknown background image grey levels 

(that is, ( , ), ( , )BR x y x y M∀ ∈ ) for each region in training data. In the next section, we 

look at an initial method for estimating BR  using thin-plate spline interpolation. 
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6.3 Estimating background images using thin-plate spline 
interpolation 

Our first attempt at estimating the background image in a region is based on the method 

developed by Caulkin [23]. The idea is to use a thin-plate spline interpolant to estimate 

the unknown ( , )BR x y  at each pixel within the mass border, based on the pixel grey 

levels sampled from a set of locations in concentric rings outside the mass border. 

This is equivalent to setting the image surface as an infinitely extending thin-plate of 

metal, with known heights at each of the sampled locations. The resulting interpolant 

gives the height at any other location such that the total energy of the thin-plate is 

minimised. Formally, if we define our set of sample locations as L , then we seek the 

function ( )f x y,  that minimises 

2 2 22 2 2

2 2f
f f fE d

x x y y

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎜ ⎟= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ ∫ xdy  

Given the constraint that 

( , ) ( , ) ( , )f x y R x y x y L= ∀ ∈  

Solutions to this system were published by Bookstein [18], and the solution we use is 

given in appendix A.2. Having determined ( )f x y,  we can then set 

( , ) ( , ) ( , )
( , ) ( , ) ( , )

B

B

R x y f x y x y M
R x y R x y x y M

= ∀ ∈
= ∀ ∉

 

However, one problem with this approach is that the interpolating function ( )f x y,  is 

susceptible to large fluctuations if any of the grey levels at the sample points are 

unusually high or low. In a mammogram, and especially in the region of a malignant 
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mass, there is the particular problem of sampling a high grey level from a pixel lying on 

a structure such as a spicule, duct or microcalcification, or even simply a pixel of high 

intensity speckle. To overcome this, we first smooth the region with a Gaussian kernel 

of standard deviation σ   to obtain 

( )2' 0,R G Rσ= ∗  

and then reset the constraint 

( , '( , ) ( , )
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)f x y R x y x y L= ∀ ∈  

It remains to specify the set of sample locations . Clearly there are many ways of 

selecting , however the method employed by Caulkin uses three parameters to specify 

a set of sample points that lie in a bounded concentric ring of the annotated mass border. 

The parameters are described below, and diagrammatically in 

L

L

Figure 6.3. 

-  defines the distance in pixels from the mass border to the first ring of 

sample locations 

1n

-  defines the width of the ring from which sample points are selected. 2n

-  defines the distance between each sample point in the vertical and horizontal 

directions. 

d

In the next section, we describe how suitable values for , ,  and 1n 1n d σ  can be 

determined experimentally. 
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Figure 6.3: Parameters controlling the selection of sample points for the thin-plate spline 

interpolating function used to estimate background grey levels 

 

6.3.1 Experimentally selecting parameters 

To determine values for , ,  and 1n 2n d σ  experimentally, we used regions for which 

the true values in BR  are known.  

To obtain such regions, we added masses that had already been separated to normal 

mammographic background, thus generating an approximate simulation of the masses 

in our training set. Of course this required making an initial separation of the masses in 

our data, which in turn requires choosing an initial set of parameter values.  

To choose an initial set of parameters, we observed that previously Caulkin had used 

values of , ,  and 1 20n = 2 20n = 5d = 5σ = . Next we noted that the mammograms we 

are using were digitised at a spatial resolution of 40μm per pixel compared to 100μm in 

Caulkin’s work. As all four parameters are directly related to pixel distances, we scaled 

each value accordingly to obtain 1 50n = , 2 50n = , 12d =  and 12σ = . We then 

separated the mass intensities in each of our 101 training examples using the thin-plate 
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spline method outlined above. From this set, we randomly selected 50 separated masses, 

each of which was superimposed on a normal mammogram randomly selected from our 

data. In doing so, we effectively obtained 50 mass regions for which we knew true 

values for M , MR and B R . Thus for each of these test regions, we can compute the 

error of an estimated background BR  as RMSBR . Taking the mean of all such 

errors across the test regions provides a measure of performance for a given parameter 

set. As a result we were able to systematically test different combina on of 1n , 2n d

Be R= −

ti s , 

and 

  

σ . 

Firstly, all combinations of 1 0,10,...,100n =  and 5,10,...,35σ =  were tested with 

2 20n =  and 10d = . The mean error using each of these parameter combinations are 

in sho  
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wn

25

Figure 6.4. It was observed that  of a combination 1n 60=  and 

σ = produced the lowest errors. 

Fi d es on err ociated with combinations of  and 

 

gure 6.4: Backgr 1n σ ; 2n  = 20 and oun timati ors ass

d = 10 were fixed 
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 Next, 

 

values of 10,20,...,50n2 =  were tested for fixed values of 60n = , 251 σ =  and 

10d = . It was observed that varying n  made negligible difference to the mean error, 

 of n efficiency. Finally, for fixed 

, 25

2

 was selected for comand thus a v

1 60n =

alue putational 2 10=

σ = and 10n =  values of 5,10,20,...,50d2 =  were tested. In this case, 

10d =  returned the lowest mean error, although there was only a small increase in error 

associated with the other values. 

of n  and 

From the results, it is clear the most important choices of parameter are the combination 

1 σ . After smoothing the region, the increased intensity corresponding to the 

 should be. However, the further the first set of sample points are from the region to 

must be a c

central density will be dispersed outside of the mass border. If sample points are 

ed too close to the mass border, the resulting interpolating function will return 

ities h gher than desired. Therefore the greater the degree of smoothing, the larger 

tim  less accurate the interpolated estimates are likely to be. Thus there 

mpromise between selecting a small  and applying a large degree of 

ing m

select

intens

be es

i

ated, the

o

1n

1n

smoothing. 

Because of this interaction, add asses to our test regions was crucial to make a 

realistic judgement of the best ( ),n1 σ  pair to use. If we had not added the masses, then 

the parameters selected would have been biased towards high σ  and low n  1

combinations that in the presence of a real lesion would cause high mass intensities to 

be blurred into the region of sample points. 
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Figure 6.5: Estimating background intensities using the thin-plate spline method for four regions 

from the dataset. In each row, the left column: original region R , centre: estimated background 

intensities BR , right: separated mass MR   
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6.3.2 Evaluating background estimation in real masses 

Having selected parameters of  1 60n = , 2 20n = , 10d =  with which to define sample 

locations, and Gaussian kernel with a standard deviation of 25σ =  to smooth each 

region, we used a thin-plate spline interpolant to estimate values for BR  and MR  for 

each real mass. Figure 6.5 shows four such regions from our data. In the left-hand 

column the original regions are shown. The centre column displays the estimated BR , 

whilst the right-hand column shows the resulting separated masses, MR . 

From the nature of the problem, it is hard to evaluate how well we have estimated BR . 

However a simple qualitative test is that the estimated region should have the 

appearance of real tissue in a mammogram. Looking at the regions in Figure 6.5 this 

clearly isn’t the case: whilst we have achieved a good average approximation of the 

intensities, the estimated regions are much smoother than the real appearance of breast 

tissue. 

By construction, the thin-plate spline interpolating function is only suitable for 

predicting a surface that comprises low frequency components. As a result, the 

estimates for BR  in the region M  contain no high frequency structures such as 

individual ducts or mass spicules. Consequently these structures are instead included 

with the mass intensities MR . Unlike the ideal separation of intensities represented in 

Figure 6.2, the separation we have achieved is summarised by the schematic in Figure 

6.6. 

  134



Chapter 6 -Separating a Mass from the Background  

+

Figure 6.6: Schematic of the separation achieved by the initial thin-plate spline interpolation. 

Within the mass border, breast parenchyma and mass spicules have been included with the mass 

image 

 

Caulkin’s method for generating synthetic masses proceeded to fit appearance models to 

the separated masses at this stage. However we believe this separation method is 

unsatisfactory. There will not be consistent correspondences between the high 

frequency components across the set of separated masses. As we see in the following 

chapter, this greatly reduces the quality of fit for the texture component of the 

appearance model, and ultimately reduces the ability of the method to generate realistic 

synthetic masses. In the next section, we make a crucial modification to the separation 

method that resolves this problem. 

6.4 Adding high-frequency components to the estimates 

In the previous section we showed how the thin-plate interpolation method gives a good 

initial approximation to the average intensities of BR  in the region M . The aim in this 

section is to show how more realistic, pixel-by-pixel estimates for BR  can be computed. 

The key, as we show below, is to transfer the high frequency components in the region 
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M , from MR  to BR . 

 

Before introducing the new method for estimating BR  and MR , we first summarise the 

four key stages of the existing method. 

1) Smooth the original region R , with a Gaussian kernel , to obtain G

'R G R= ∗  

2) Select sample locations , and compute the interpolating function of minimum 

energy 

L

f , subject to the constraint that 
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( , ) '( , ) ( , )f x y R x y x y L= ∀ ∈  

3) Use f  as the estimates for BR  in the region M  

( ,
( ,

B

B

) ( , ) ( , )
) ( , ) ( , )

R x y f x y x y M
R x y R x y x y M

= ∀ ∈
= ∀ ∉

 

4) Compute the mass-only intensities 

( , ) ( , ) ( , )M BR x y R x y R x y= −  

Figure 6.7 shows each stage of the method for one of the regions included in Figure 6.5. 

To aid visualisation, at each step a three-dimensional representation of the region is 

shown alongside the two-dimension intensity image. From this representation, it is clear 

the extent to which all the high-frequency components of the background tissue are 

instead included with the mass. 
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Figure 6.7: Step-by-step application of the initial estimation method for a mass in the dataset  

Original region  R

M BR R R= −  4) Compute the mass intensities 

 M
 in the region BR as the estimates for f3) Use 

 f2) Compute interpolating function 

1) Compute smoothed region  'R G R= ∗
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Figure 6.8: Step-by-step application of the modified estimation method to a mass in the dataset 

Original region  R

1) Compute smoothed region  'R G R= ∗

f2) Compute interpolating function  

3) Compute the mass intensities 
( , ) '( , ) ( , ) ( , )
( , ) 0 ( , )

M

M

R x y R x y f x y x y M
R x y x y M

= − ∀ ∈
= ∀ ∉

 

4) Compute the background intensities 

B MR R R= −  
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Our proposed update to the method involves a re-ordering of the process at stages 3) 

and 4) as described below 

3) Use the smoothed region 'R , and the interpolating function f , to compute 

estimates for MR  in the mass region3 

( , ) '( , ) ( , ) ( , )
( , ) 0 ( , )

M

M

R x y R x y f x y x y M
R x y x y M

= − ∀ ∈
= ∀ ∉

 

4) Now use MR to compute the background intensities 

( , ) ( , ) ( , )B MR x y R x y R x y= −  

All four stages of the new method are shown in Figure 6.8. Note how the high-

frequency components are now included in BR . As a result the estimated background 

appears as a realistic rendering of mammographic tissue, and the separated central mass 

is free from artefacts that would otherwise confound the appearance models presented in 

the next chapter. 

To conclude this section, in Figure 6.9 we display the results of the new method for 

each of the four masses previously shown in Figure 6.5.  

                                                 

3 To ensure we don’t have a sharp cut-off at the mass boundary, we also expand M  to include all pixels up to the 

first ring of landmark location 
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Figure 6.9: Estimating background intensities using the modified estimation method for four 

regions from the dataset. In each row, the left column: original region R , centre: estimated 

background intensities BR , right: separated mass MR  
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6.5 Iteratively updating the initial estimates 

In section 6.3.1 we described the compromise between choosing the first ring of sample 

points close to the mass border (by varying ), and choosing a degree of smoothing 

large enough so that the thin-plate spline interpolating function isn’t overly perturbed by 

noise (by varying the standard deviation of the Gaussian kernel, 

1n

σ ). Values of  and 1n

σ  were chosen such that the support of the smoothing filter overlapped the mass region 

and the first set of sample points. Across the dataset, these values were deemed optimal, 

however in masses that have a significant amount of intensity near the mass border, this 

intensity may be smoothed into the sample points. The result is an interpolation that 

produces higher values in f , and subsequently BR , than we would expect.  

This phenomenon is best observed by analysing intensity profiles of affected regions. 

For example, Figure 6.10 (a) shows one such region, from which intensity profiles have 

been sampled at the dashed yellow line. In Figure 6.10 (b), the intensity profile through 

the smoothed region 'R  is plotted in blue, together with the intensity profile of the 

interpolating function f  in the region M (the dashed red line).  

One solution could be to try and adapt the parameters used for individual masses, 

however it is not obvious how this could be achieved automatically. Instead we have 

developed an iterative algorithm for estimating BR , as described below. 

For each region, we proceed as before, smoothing the region before computing the thin-

plate interpolating function. However, rather than continuing to compute MR  and BR , 

we transfer the interpolated intensities into the original region, and compute a new 

smoothed region. If the new smoothed region has as a lower average intensity than the 
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old, we iterate again. If the average intensity doesn’t decrease, we terminate the 

algorithm and proceed to compute MR  and BR . The algorithm is described formally 

below: 

Compute the smoothed region 'R G= ∗R , and the interpolating function f  as previously 

Transfer the interpolated intensities into the original region 

( , ) ( , ) ( , )R x y f x y x y M= ∀ ∈  

Compute a new smoothed region newR G R  and initialise 'oldR R=  = ∗

while new oldR R<  

 Set old newR R=  

 Compute new interpolating function f based on the constraint that 

  ( , ) ( , ) )old ( ,f x y R x y yx= ∀

( , )

L∈  

 Set  

  ( , ) ( , )R x y f x y M= ∀ x y

new

∈  

R G R= ∗ Compute new smoothed region  

end 

Compute 'M newR R R= −  

Compute B MR R R= −  

Algorithm 6.1: Iteratively updating a TPS interpolation to estimate background intensities in mass 

regions 

In cases where the intensities of sample points were not affected by the mass, the 

algorithm terminates after the first iteration and the estimates for BR  and MR  remain 

unchanged. However, consider a region where the intensities of the sample points in the 

smoothed region R  have been increased as a result of the mass. When the interpolating 
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function f  is computed, the values of f  in the mass region M will be higher than 

desired. However, they will of course be lower than the intensities in the original 

smoothed region. Thus when we compute the new smoothed region, there is less chance 

of high intensities from M  unduly affecting the sample points. As a result the new 

values of the interpolating function should, on average, decrease as desired. The process 

repeats until no intensities from the region M  are affecting the intensity at the sample 

points, this being the condition we were seeking to achieve.  

Figure 6.10 (c), shows an intensity profile of the smoothed region at each iteration of 

Algorithm 6.1, again sampled at the dashed line in Figure 6.10 (a). For this region, the 

algorithm terminated after the fourth iteration, with the final smoothed estimates 

marked by solid blue line in Figure 6.10 (c). Note that at the point of highest intensity, 

the final interpolated intensity is 6 grey levels lower than the initial interpolation, a 

change equivalent to 25% of the mass intensity at that point. 

MRThe iterative interpolation algorithm was applied to compute  and BR  for  each 

region in the dataset, completing the separation process. 

6.6 Discussion 

In this chapter we have shown a method for separating each region in our dataset into a 

mass image and a background image. In each region, the mass image comprises grey 

levels that correspond to mass attenuation. The appearance properties of the set of mass 

images can be modelled and used to synthesise new examples. These synthetic mass 

images can then be superimposed on normal mammographic background to simulate the 

increased attenuation associated with a real mass. 
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Figure 6.10:a) a region in which high intensity near the mass border results in a higher than desired 

initial TPS interpolant; b) intensity profiles sampled from  (blue) and S f  (dashed red) at the 

location of the yellow line marked in (a); c) intensity profiles of successive iterations of f  

(b) 

(a) 

(c) 
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The physical model underpinning this work is the assumption that there is a consistent 

linear relationship between image grey level and tissue attenuation for all the digitised 

mammograms in our data. Thus if g Aα=  is the grey level associated with tissue 

attenuation A in any mammogram, then adding g  to the grey level of a pixel in any 

other mammogram is equivalent to simulating an increase in attenuation of A  at that 

pixel. As a result we can synthesise increased attenuation corresponding to a mass in a 

normal mammogram without having to explicitly calculate  α . 

However this only holds true for digitised mammograms with the same constant of 

proportionality α between image intensity and attenuation. For example, consider a 

normal mammogram obtained using a film-screen/digital scanner that also imparts a 

linear relationship between the two, but with a constant of proportionality 'α . 

Following the equations described in section 6.2, we see that  would now correspond 

to an increase in attenuation of 

g

'
Aα

α
.  

Thus our model of mass image appearance only corresponds to a valid model of the 

physical properties of mass attenuation for mammograms acquired using the same film-

screen combination and digital scanner.  

Given the relative rates of normal/abnormal mammograms (discussed in section 2.2.7), 

in obtaining (and digitising) a training set of mammograms containing real masses from 

a screening population, it should be possible to obtain a much larger set of normal 

mammograms in which to synthesise masses. 

However, if obtaining normal mammograms with the correct linear relationship 
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ram regardless of how it 

was acquired. This may be an interesting area for further work. 

 

relationship between image intensity and attenuation hold.  

landmark points, the region was smoothed using a Gaussian kernel of standard deviation 

between grey level and attenuation is a problem, an alternative solution would be to 

apply the separation method shown in this chapter (and consequently the remainder of 

the synthesis method described in the following chapters) to mammograms that have 

explicitly been converted into a standard form. For example, Highnam et al. have 

defined a model of standard mammographic form (SMF) [56]. We recall that in section 

3.2 we reviewed a synthesis method presented by Highnam and et al. [54]. In this 

method synthesis was performed within mammograms that had been converted into 

SMF. The actual synthesis method described was relatively simplistic (effectively 

cutting and pasting the attenuation patterns of real masses into normal mammograms). 

However, applying our synthesis method within such a framework might provide a 

successful method of simulating a mass in any normal mammog

As a final point on this topic, we note that henceforth, wherever we describe a normal 

mammogram in this thesis, we refer to one in our dataset, so that the consistent linear

With regard to the process of separating mass intensities, we have based our method on 

one earlier described by Caulkin [23]. In this method, unknown grey levels in each 

background image were estimated by fitting a thin-plate spline interpolant. The thin-

plate spline was controlled by sampling grey levels from a set of landmark points placed 

in concentric rings outside the mass border. Prior to sampling the grey levels at the 

σ . 

s The positions of landmark points were controlled by three parameters 1n , 2n  and d , a
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described in section 6.3. Values for σ , 1n , 2n  and d  were determined experimentally 

(section 6.3.1). In section w portance of choosing a suitable 

combination of and 

6.3.1 e discussed the im
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1n σ .  

 and

Here we note that there are many other ways in which landmark points could have been 

selected – for example, points could have been placed along radial profiles from the 

mass instead of on a rectangular grid. However, we have found that varying 2n  or d  

made little difference to the resulting background estimation error. This suggests that 

aside from choosing suitable combination of 1n  σ , the position at which addition

ot ed further, although it 

we describe the 

ffect this mod atio as on a mo itted to the set of mass images. 

al 

sampling points are located is not important. 

An alternative method for selecting sample points would have been to apply a linear 

feature detector (for example one of the methods reviewed in section 3.3.1, or a method 

we develop in section 8.4.5). We could then ensure sample points are not placed on 

linear structures that can destabilise the thin-plate spline. As a result we would not need 

to apply such a high level of smo hing

del f

. This idea was not explor

may be an area for further work. 

Finally, in section 6.4 we described a method for transferring high-frequency 

components from the mass image to the background image. Our motivation for doing 

this was discussed in section 6.1. In the following chapter (section 7.5) 

e ific n h

 

 



Chapter 6 -Separating a Mass from the Background  

  148

The 

background image represents the appearance of all other breast tissue in the region. 

, we have effectively generated two 

new sets of image data, as depicted in Figure 6.11. 

 have decomposed our data into two logical 

groups that can be modelled in parallel.  

 objects by fitting a principal component based 

appearance model to the mass images. 

6.7 Summary 

In this chapter we have described how a mammographic region containing a mass lesion 

can be represented as the pixel-by-pixel sum of a mass image and a background image.  

In this representation, the mass image contains grey levels corresponding to the pattern 

of increased attenuation associated with the central density of the lesion. 

We described a method for separating the mass image from the background for each 

region in our dataset. In performing this separation

By separating the data in this way, we

In the mass images we have isolated the single object present in every region – the 

central density of each lesion. As we show in the next chapter we can encapsulate the 

variation in shape and texture of these

Having removed the central density, the background images do not have a shared global 

appearance for which we can define a correspondence between each image. Instead they 

comprise a series of local interactions of texture and structure. By learning the patterns 

of these interactions we aim to understand how the appearance of breast tissue from 

which a mass has been separated differs from the appearance of breast tissue in a 

normal region. To emphasise this difference, in future chapter we will refer to 

background images as mass backgrounds. If the difference between mass background 
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earned, we can model the way in which a mass distorts 

normal structures in the breast.  

 in the following chapter we focus our attention on modelling the 

set of mass images. 

and normal background can be l

Our work on constructing models of mass background appearance is described in 

chapter 8. However,
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Original regions 

Mass images Background images 

Figure 6.11: The original dataset of mass regions is separated into two sets of regions: 1) the mass 

intensities 2) the background intensities 
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Chapter 7 : Modelling the Appearance of Masses 

7.1 Introduction 

In chapter 6 we described a method for representing each region in our training data as 

the linear sum of two images. We defined the two images as the mass image and the 

mass background such that: 

i) The mass image contained grey levels corresponding to the pattern of increased 

attenuation associated with the central density of the lesion 

ii) The mass background represents the appearance of all other breast tissue in the 

region including spicules 

In this chapter, the set of mass images becomes our sole data, as depicted in Figure 7.1. 

Because these are the only data we use, we no longer need to disambiguate between 

other uses of the term mass. As such, we drop the image suffix. 

 Our aim is to model the statistical variation in appearance of these data. The principal 

application of our model is to produce realistic synthetic masses, and thus in addition to 

describing the data, the model must be generative. This chapter describes how, using an 

existing model of mammographic masses as a base, we have developed a generative 

statistical model that optimally fits our data. A description of the remaining chapter 

sections is given below. 

In the next section we describe in detail a model of mass appearance developed by 

Caulkin [23]. This was reviewed in section 3.2 and identified as a good starting point 

on which to base our method. 
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Original regions 

Masses Mass backgrounds 

Data used in chapter 7 

Figure 7.1: Separating mass regions into two sources of intensity: masses and mass backgrounds. 
The separated masses become the sole source of data in this chapter. 
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Having established the basic framework for a generative statistical model of our data, 

in section 7.3 we discuss the properties required of the model. In particular we look at 

how well the model fits the dataset of masses, and, importantly, show how we can 

measure model fit directly from the data. 

In sections 7.4 to 7.6 we use the measures of model fit to show how three of the main 

components of Caulkin’s model can be optimised resulting in a significant 

improvement in model fit. The resulting improvement to the full model of mass 

appearance is presented in section 7.7. 

Finally, in sections 7.8 and 7.9, we show how the generative nature of the model can be 

exploited to produce realistic synthetic examples of masses. We qualitatively evaluate 

the appearance of such masses when superimposed on regions of normal breast tissue, 

and describe how this motivates the work on background modelling presented in the 

following chapter. 

7.2 Caulkin’s model of mass appearance 

In section 4.2 we reviewed the class of statistical models developed as part of the active 

appearance model framework [27]. These models were designed to describe the 

variation in appearance of a training set of image objects. Here the term objects is 

necessarily vague – the only requirement of the object is that it has some characteristic 

shape and texture (where texture refers to the spatial distribution of grey level across the 

object) such that a correspondence can be established between each example of the 

object in the training data. 

By design, the set of masses obtained using the separation process described in the last 
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chapter meet this requirement. In each mass, we can define a shape using the mass 

border (as annotated by a radiologist). This in turn defines mass texture as the pattern of 

grey levels across the shape. Approximately speaking, we expect these grey levels to be 

highest in the centre of the shape, tapering to a value of zero at the mass border. As 

such, there should be an approximate correspondence between each mass in the training 

data. 

In our review of previous attempts to synthesise mammographic masses, we described a 

method developed by Caulkin [23] in which a statistical appearance model was applied 

to a similar set of masses that had been subtracted from mammographic backgrounds. 

Having fitted the model to the training data, Caulkin used the generative properties of 

the model to synthesise new masses that could be superimposed on real normal 

mammograms. 

In section 3.2.1, we discussed the reasons why we think this was a good approach to 

modelling masses. As a result, we chose to use the model developed by Caulkin as the 

basis for our own synthesis method. Therefore in this section we describe the model 

fitted by Caulkin in more detail.  

The three main components of the model were: a model of mass shape; a model of mass 

texture; and a combined model of shape, texture and mass size. We look at each 

component in turn below. In each case we describe the results of model fitting reported 

by Caulkin (in terms of the number of modes comprising each model) and also the 

results we have obtained applying the model to our own training data. 
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Shape 

The mass border, as demarcated by a breast radiologist, defines the shape of each mass. 

To construct shape vectors, Caulkin first defined two reference points. These were the 

points of intersection of the mass border with a line connecting the nipple to the mass 

centroid, labelled as 1p  and 2 1np +  in Figure 7.2. Shape vectors ... ...1 1( , , , , , )shape n nx x y y=x  

were then completed by placing n equally spaced points between the two reference 

points along each mass border (as depicted Figure 7.2). The number of points, n = 150, 

was chosen to be as small as could adequately describe the most complex of mass 

borders. 
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Figure 7.2: Caulkin's method for placing landmark points on a mass outline 

To the nipple 
1p  

npCentroid of the 
mass 

 

 

Having defined a set of landmark points on each mass border, a point distribution model 

(PDM) was built (see section 4.2.3) to capture shape variation. That is, the set of mass 

/ 2np  

2p  

/ 2 1np +  
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shapes were aligned using Procrustes analysis [50], and a compact model of shape 

variation was built by applying principal component analysis such that for each mass 

shape shape shape shape≈ +x x P b , where 
shapeP  is a matrix of principal modes (with modes of negligible 

variance discarded) and ( )T

shape shape= xshape shape−b P x is the vector of model parameters stored for 

each shape. After discarding modes of negligible variance, Caulkin’s original model 

comprised 23 modes describing 98% of the total shape variance. Applying this method 

to our data resulted in a shape model consisting of 25 modes. Given that our dataset 

contains nearly double the number of training examples (101 compared to 56), the fact 

that only 2 more modes of variance were required to describe our data suggests the 

shape model has captured the intrinsic shape characteristics of a mass boundary. That 

said, in section 7.4, we show the shape data can be further compacted to construct a 

model with improved generality and specificity. 

Texture 

Using a thin-plate spline interpolant [18] each mass border was warped to the shape 

mean (see appendix A.2.1), mapping the regions into a common coordinate frame. 

Shape free texture vectors were then extracted from each region. The size of the mean 

was chosen such that the texture vectors had 10,000 elements, again as a compromise 

between fidelity and compactness. As with shape, PCA is used to build a model of 

texture variation: tex tex tex tex≈ +x x P b . Again keeping 98% of the total variance, Caulkin’s 

original model yielded 37 modes. To give a direct comparison to Caulkin’s method, we 

fitted the texture model to our data using subtracted mass images that had not had high-

frequency background components removed (that is, masses obtained using the initial 

separation method defined in section 6.3 without further applying the methods 
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described in sections 6.4 and 6.5). This resulted in a model comprising 77 modes. We 

note that this large increase in the number of modes is most likely to be due to the  

increase in image resolution between our data (40μm per pixel) and that used by 

Caulkin (100μm per pixel). In section 7.5 we describe the effect of modelling the 

texture of masses obtained using the complete separation method described in chapter 6. 

Combined appearance 

A model of combined appearance was built by concatenating the weighted shape and 

texture parameters 
shapeb and , together with the size parameter returned from 

Procrustes alignment

texb

4, and applying PCA to compute 
com com com com≈ +x x P b  as before. Note 

that the size parameter is not usually included in appearance models (and is usually 

treated separately as part of pose) but was included by Caulkin to account for any 

correlations between mass size and appearance. This correlation is likely to exist as, for 

example, larger masses would be expected to cause greater x-ray attenuation, and would 

thus correspond to higher grey levels in a digitised mammogram.  The weighting 

accounts for differences in metric between the three components (shape, texture and 

size), and was computed as the inverse of the average variance per mode. Thus for each 

component, iW k λ= ∑  where  is the number of retained modes, and k iλ  the variance 

along each mode. The number of significant modes retained in Caulkin’s combined 

                                                 

4 This parameter is usually described as the scale parameter in Procrustes alignment. However, we use the term size 

to make clear the relationship to the physical property of the mass; and also to avoid confusion when we discuss 

scaling the magnitudes of model parameters in section 7.6. 
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model was not recorded; however applying the method to our data constructed a 

combined model containing 65 modes (using the same texture model as before). 

Having learned the distributions of mass appearance, new examples were generated by 

randomly sampling from the model as follows: 

1) Sample a new combined appearance vector , and compute '
comb

' '
com com com com= +x x P b  

2) Separate ' cx  and invert the weighting to form '
shapeb , '

texb and '
sizeb  

3) Compute ' '
shape shape shape shape= +x x P b  etc. 

4) Map the new texture to the new shape '
texx '

shapex , scaled by '
sizex , to produce the 

new synthetic mass MS  

The process above highlights a major advantage of using the appearance model 

framework as a basis for mass synthesis. Having built the models, no user parameters 

are needed to generate new examples. The appearance of a new mass is completely 

determined by a vector that can be randomly (and thus automatically) sampled from the 

model distribution. As a result, the process can be repeated to produce limitless 

examples of unique masses that match the appearance properties of real lesions. 

However, as we show in sections 7.4 to 7.7, we do not think the model described by 

Caulkin adequately fits our data. As a result the model distributions learnt from the data 

are not truly representative of the variation in appearance of the global set of masses. 

This, in turn, would mean that synthetic masses generated from the model could not be 
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used in place of real data. To determine how we can improve model fit, in the next 

section we expand on the desirable properties of this form of statistical model and 

describe how we can measure model performance. 

7.3 Measuring model errors 

In this section we define a method for quantifying how well a statistical model fits a set 

of training data. To do this, we first consider what properties we require a model to 

have. Throughout we reference the particular application of modelling mammographic 

masses, although we note the properties and measures we discuss are applicable to any 

class of image object. 

7.3.1 Model properties 

From the description of how a mass appearance model is constructed (section 7.2), it 

should be apparent that a statistical model provides a compact representation of our 

training data. Where previously, each mass was defined by several hundred thousand 

pixels, it is now fully described by its vector of combined model parameters . Thus 

the complete set of training data is defined by the set of vectors 

comb

{ }comb , and the matrix 

of principal modes of variation for each component, shapeP , and . texP comP

However, in using the model to generate synthetic masses, we make two important 

assumptions about the model that extend its use beyond simply representing the data we 

already have. Firstly, we assume the model can describe any mass appearance from the 

global population. Secondly, we assume that anything that doesn’t match the 

appearance of a mass cannot be represented in the model. These two model properties 

are usually known as generality and specificity, respectively. If we can measure the 
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generality and specificity of a given model, we can compare the performance of one 

model relative to another, enabling us to find the optimal model for our data. 

7.3.2 Specificity 

We assume specificity is directly linked to the compactness of the model, which itself 

can be measured by the total variance in the model. With the mean mass appearance at 

the centre of the model, the variance along each mode defines how the probability 

density reduces moving away from the mean. As the variance increases, the probability 

is spread further from the mean, increasing the likelihood that an object whose 

appearance does not match that of a mass has non-negligible probability in the model. 

One way of reducing the amount of variance stored in a model is to reduce the number 

of modes retained. Taken to the extreme, a model with no modes only allows the mean 

mass to be generated and is therefore guaranteed to be specific. Of course such a model 

suffers from a total lack of generality, and is unable to explain any of the variance in 

the population of masses (or indeed in the training sample). Thus in constructing each 

of the component models, we choose to retain a fixed amount of the total variance, 

selecting the number modes required to match this threshold. For this work 98% of the 

total variance was chosen as a sufficient compromise between specificity and 

generality. As a result, our aim in improving the specificity of the models is to reduce 

the total variance in the data, prior to discarding modes of negligible variance. An 

alternative measure would be to try and use an objective function to measure model 

specificity as was described by Cootes et al. [31]. 
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7.3.3 Generality and the residual errors for an unseen mass 

To get a measure of model generality, we assume we have built shape, texture and 

combined appearance models from a training set of masses. In addition, we assume we 

have a mass not used in building the models, which we refer to as an unseen mass. The 

more general the full combined appearance model, the better it will be able to represent 

the unseen mass. To measure this, we can transform the unseen mass into a point in 

model space, and then reconstruct a representation of the mass from the model. 

We can then compute the residual error of the unseen mass as the difference between its 

original form and its reconstruction in the model. Below, we give a fuller description of 

this process. In addition, the error calculation is depicted diagrammatically in Figure 

7.3. 

We call the unseen mass 
M

R , and assume this is in the same form as those used to train 

the model (i.e. with a continuous border outlined and the original position relative to the 

nipple known). This allows us to obtain vectors shapex  and sizex , and, after warping to 

the shape-free space, . Using the principal modes of the shape model, we can 

calculate the model parameters 

texx

( )T
shape shape shape shape= −b P x x , and similarly, compute  

and 

texb

sizeb  (step 1 of Figure 7.3). Now we regenerate the shape, texture and size vectors as 

approximated by the individual models: '
shape shape shape shapeb= +x x P

'

  etc. as depicted by step 2 

in Figure 7.3. From here the full mass region 
M

R  can be regenerated. The root mean 

squared error between the mass regions 
M

R  and '
M

R  and/or the individual vectors can 

be used to quantify how well the individual models represent the new mass. 

  161



Chapter 7 –Modelling the Appearance of Masses  

 

  162

Figure 7.3 Calculating the residual errors in the model representation of a mass MR . For the 

error to be unbiased MR  must not have been used in the construction of the model 
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Of course, the individual models are further combined into the full appearance model, 

and so returning to shapeb ,  and texb sizeb , we build the combined vector and compute comx

( )− xT

com com com com=b P x  as depicted in step 3 of Figure 7.3. This is the representation of 

the original mass in the full model space and, following the reconstruction described in 

section 7.2, can be used to generate "
M

R (steps 4 and 5 of Figure 7.3). As with the 

approximation from the individual models, we can use the root mean squared error 

between 
M

R  and "
M

R  to quantify how well the full appearance model has described the 

original mass. It is also useful to consider the difference between '
M

R  and "
M

R . This 

shows the added error induced by the combining the individual models in the full 

appearance model, and as we see in section 7.6, will be useful when we optimise the 

weighting of the shape, texture and size parameters in the combined appearance vectors. 

7.3.4 Leave-one-out testing 

The process above describes how we calculate residual errors for a single mass 

represented by the model. For this error to be unbiased the mass should not have been 

used to build the model. To have a useful measure of the performance of the model, we 

need to calculate this error for a sample of masses large enough to be representative of 

the global population. However, we only have a limited number of masses available, 

and require all of these to construct the model. To satisfy both needs, we employ leave-

one-out testing to calculate residual errors for each of the N masses in the dataset. The 

set of errors can then be used to quantify how well the model can describe unseen 

masses in the global population, and so provides our measure of the model’s generality. 

The leave-one-out testing algorithm we apply is summarised below: 
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for i = 1 to N 

 construct model from the set of masses { }, | 1 ,M jR j N j i= ≠…  

 compute residual errors for mass ,M jR  

end 

Algorithm 7.1: Leave-one-out computation of residual errors 

Such a scheme works on the assumption that the model constructed from any N-1 subset 

of masses is negligibly different from the model built from all N masses. This 

assumption holds true if we believe our set of masses sufficiently represents the global 

population, which itself is a condition of constructing the models. Thus using leave-one-

out testing does not require any further assumptions about data than had been made 

already. 

Having described how we can measure the desired properties of specificity and 

generality of a model, in the next two sections we show how we can construct an 

optimal model of mass appearance given a set of masses (complete with annotated 

borders). 

7.4 Optimising the shape model 

The key to building a compact representation of mass shape is to establish a set of dense 

correspondences between the annotated borders. Finding such a set may be problematic 

due to the lack of features present in each mass border. In section 7.2, we described how 

Caulkin defined two common feature points on each mass shape, and used these to 

determine the location of a further set landmark points. The reference points were 

constructed by extending a line from the breast nipple through the centroid of the mass, 

before setting the point of origin 1p  as the intersection of this line with the mass 
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border nearest to the nipple, and a halfway point 2 1np +  as the point of intersection 

furthest from the nipple, as was shown in Figure 7.2. Fixing the origin in this manner 

aimed to introduce a correspondence based on the theory that masses form in ducts 

approximately radiating from the nipple, as in the simplified depiction of masses in 

Figure 7.4.  

If all the masses in the dataset followed such an alignment to the nipple, then after 

adding in the remaining equally spaced border points and applying Procrustes analysis, 

we would expect to obtain a compact shape model. However, analysis of our data 

suggests no evidence for masses radiating from the nipple. A more realistic diagram of 

mass alignment is presented in Figure 7.5. In this case, the two shapes will not 

correspond after Procrustes analysis, so in fact fixing the origin simply introduces 

rotational variance in the model. That is, objects that have the same shape but differing 

orientations are described differently in the model. This has two negative effects: firstly, 

and most obviously, the model will not be optimally compact, as additional model 

parameters are required to describe the differing orientations of the same shape. 

Secondly, subtle variations may be discarded from the model because the retained 

modes describe a fixed amount of the total shape variation, and a significant amount of 

this would be due to the rotational variance. This would reduce the model’s ability to 

represent masses in the dataset, and more generally, those in the global population. 
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Figure 7.4: Depiction of two mammographic masses oriented towards nipple. With a fixed point 

of origin, the mass shapes form a compact alignment after Procrustes analysis 

 

Figure 7.5: Depiction of two mammographic masses with random alignment. By fixing a point of 

origin, Procrustes alignment will not align the mass shapes despite their similarity 
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7.4.1 Optimising the point of origin on mass shapes 

A solution to remove the rotational variances from the model is to allow the optimal 

origin of each mass border to be selected during Procrustes alignment. This requires 

modifying the iterative Procrustes algorithm. The new algorithm is given in detail below 

(note as all vectors in the algorithm refer to shape, we will drop the shape suffix for 

convenience, for example x  instead of shapex ). 
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Select a random seed shape as the target t i=x x for some 1i N= …  

for each shape i = 1 to N 

for each point j = 1 to n 

permute  so that the j-th element is now the first ix

align  to  to find optimal rotation, scaling and translation ix tx

record the distance from the aligned shape to the target:  j td = −x xi

n

 

end 

set  min( | 1,..., )i jD d j= =

and set the origin of  as the associated j ix

end 

Compute the mean of the differences across the set: 
1

1 N

i
i

D D
N =

= ∑  

Compute the mean shape: 
1

1 N

i
iN =

= ∑x x  

Set ,  and oldD D= 0newD = t =x x  

while  old newD D>

 repeat  

 set , and old newD D= newD D= t =x x  

end 

Algorithm 7.2: Procrustes alignment of shape, with optimisation of shape origin 

To check the algorithm is robust to the choice of initial seed shape, the algorithm is 

repeated for a random selection of seed shapes. In each case the difference between the 

resulting mean shapes is calculated to establish whether choice of seed affects the 

algorithm outcome. In our experiments there was negligible difference between the 
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mean shapes obtained from any of the randomly selected seed shapes, satisfying the 

desired robustness. 

7.4.2 Applying MDL optimisation to mass shapes 

Whilst allowing the origin of each mass border to vary removes much of the rotational 

variance in the data, there may still be a better set of shape correspondences we can 

obtain. In section 4.2.3, we reviewed a method developed by Davies et al. [34] for 

computing the optimal set of correspondences for a training set of shapes. In this 

method, the locations of points on the continuous shape borders are allowed to vary (as 

opposed to sampling equally spaced points) during the alignment optimisation. The 

objective function used in the optimisation is a measure of compactness termed the 

Minimum-Description Length (MDL) that quantifies the amount of data that is required 

to fully describe the set of shapes given their parameterisation under the model. 

In addition to allowing the origin of each shape to be optimised as described in the 

previous section, we applied the MDL optimisation algorithm to our set of mass shapes 

to see if further improvements in correspondence could be made. The results of 

applying each alignment method are given in the following section. 

As noted in section 7.2, the spatial resolution of digitised mammograms in our data was 

greater than that used in Caulkin’s original experiments. For this reason, we required an 

increase in n, the number of points sampled along the demarcated border of each mass. 

The mean length in pixels of the masses in our dataset was 1560 (compared to 700 in 

Caulkin’s work) and thus a value of n = 400 was chosen (compared to n  = 150 in 

Caulkin’s work). 
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7.4.3 Results 

After applying the standard Procrustes alignment algorithm to the set of 101 mass 

shapes, the total variance was . As noted in 52.37 10× 7.3.2, the total variance of the 

aligned data provides a measure of how specific the resulting shape model will be, with 

lower variance resulting in increased specificity. 

To measure model generality, the residual shape error '
RMSshape shape−x x  was computed 

for each mass using leave-one-out testing (see sections 7.3.3 and 7.3.4 for more details), 

and the mean of these errors taken. For the standard Procrustes algorithm, the mean 

generalisation error was 3.78. 

Applying the origin optimisation alignment algorithm described in 7.4.1 to our dataset 

reduced the total shape variance by 48% to . The mean generalisation error 

was also reduced to 3.64. 

51.24 10×

Applying MDL optimisation in addition to allowing the origin of each shape to vary 

further reduced the total shape variance to . This was associated with a 

reduction in model generalisation error to 3.60. These data are summarised in 

51.21 10×

Table 7.1. 

Table 7.1: Model generalisation error and variance for methods of aligning mass shape 

 Model generalisation 
error Variance 

Procrustes analysis 3.78 52.37 10×  

Procrustes analysis using 
optimised origins 3.64 5  1.24 10×

MDL optimisation 3.60 51.21 10×  
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As a result of optimising the origin of each shape and applying MDL optimisation, we 

have greatly reduced the total variance in the shape model, making the model more 

specific and thus less likely to generate unrealistic shapes when used to synthesise new 

masses. Further, because the model is not required to describe the rotational variances 

present in the mass shapes aligned using the standard Procrustes algorithm, the model 

modes are better able to describe subtle variations in the mass shape. This allows the 

model to be more general, as seen in the reduced mean generalisation error. To test the 

statistical significance of the reduction in model error, we applied the Wilcoxon signed-

rank test to compare the three methods. The results of the test show that allowing the 

origin of each shape to optimised during Procrustes alignment produced a significant 

reduction in errors (p < 0.0001). Subsequently applying MDL optimisation produced a 

further statistically significant reduction model error (p < 0.0001). 

7.5 Modelling mass texture 

With regards to modelling mass texture, the only change we have made to the method 

described by Caulkin is to increase the length of texture vector extracted, from 10,000 

to 50,000 pixels (controlled by scaling the size of the mean shape used to warp the 

masses into a shape-free coordinate frame). As with mass shape, this was to 

accommodate the increase in mass size within each image as a result of the increased 

spatial resolution of the mammograms in our data. 

However, as a result of changing the process by which mass intensities were separated, 

as described in chapter 6, the data modelled is very different. Most importantly, we 

have transferred high-frequency components that previously were included with mass 

intensities into the background region. To recap, we observe that the majority of such 
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structures do not belong to the mass (that is, their intensity can be attributed to x-ray 

attenuation through normal structures in the breast superimposed in the mass region). If 

these structures were included in a synthetic mass, then when we added the mass to a 

normal mammogram we would be simulating a localised increase in attenuation above 

that corresponding solely to the presence of a mass.  

Where high frequency components do belong to the mass (principally, spicules), these 

are better accommodated in the background regions because: 

i) They do not form a consistent set of correspondences that can be captured using 

the form of appearance model described in this chapter. Analogous to the 

discussion on rotational variance (section 7.4), this reduces model compactness 

(because extra modes of variance will be needed to describe the individual 

structures) and may cause subtle variations in texture that are characteristic of 

the central density to be discarded from the model (because the high frequency 

components have used up the total variance retained). 

ii) By including them in the background regions we have a set of data from which 

the interaction between mass spicules and normal tissue can be modelled. As 

we show in the following chapter, we design models to capture and synthesise 

high-frequency texture components that do not have a consistent global 

correspondence across an image 

In this section we give evidence to support the first point. Using the optimised shape 

model described in the previous subsection, we built texture models of our set of masses 

both with and without high frequency components included. We then computed the 
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mean texture generalisation error '
RMStex tex−x x  for each mass using leave-one-out 

testing. The errors for masses with high frequency components removed were 

dramatically reduced, the mean errors across the set being 3.80 and 1.73 respectively 

(Wilcoxon signed-rank p < 0.0001). We also note the number of modes required to 

maintain 98% of texture variance was reduced from 77 to 28. 

7.6 Weighting shape, texture and size 

The final step in building the full model of mass appearance is to combine the model 

parameters of shape, texture and size for each mass before further applying PCA. As 

noted previously, the inclusion of the size parameter is unusual in appearance models, 

but is important in this instance to account for the expected correlation between the size 

of a mass and its shape and, in particular, texture.  

However, including size makes correctly weighting the individual components in the 

combined appearance vectors crucial. Prior to weighting, the size parameters { }sizeb of 

our dataset of masses have an order approximately 103 smaller than the texture 

parameters { }texb . Thus, if unweighted, real size variation would be equivalent to 

random texture noise and would be discarded when removing negligible modes from 

combined model. 

We recall that Caulkin used the inverse of the mean variance per mode in each 

component. That is, for each of shape, texture and size, 
1

k
i

i

W k λ
=

= ∑  where  is the 

number of retained modes, and 

k

iλ  the variance along each mode (by construction 1k =  

for size, and thus sizeW  is just the inverse of the size variance). In the following sections, 
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we show why we do not think these are a good of choice weights and present three 

alternative methods for computing component weights. In section 7.6.4, we 

quantitatively evaluate each method and thus choose the best method to use in our 

model. 

7.6.1 Equalising mode variance 

We presume that dividing each set of model parameters by the mean variance for that 

component was an attempt to equalise the variance of shape, texture and size in the full 

model. This appears to be a sensible idea, however because variance has the order of the 

square of the parameters, equality will not be achieved by dividing by the variance. As a 

simple example, assume the texture parameters { }texb  have, on average, a magnitude A 

times larger than the size parameters { }sizeb . Then 2
size texW A W= , and so, after weighting, 

we have simply reversed the problem such that { }size sizeW b now have, on average, 

magnitudes A times larger than { }texW b tex . 

In the previous section we stated that in fact A is approximately 103 and so computing 

weights proportional to the inverse of each components total variance results in the size 

parameter of the combined appearance vectors being 1000 times larger than the texture 

parameters; and by a similar calculation, 200 times larger than the shape parameters. As 

we see in 7.6.4, this weighting does not produce a model that fits the data well. 

The solution to this problem should be clear: if we are trying to equalise the mean 

variance of shape, texture and size in the model, we should be dividing each component 

by the mean standard deviation. Thus for each component 
1

k
i

i

W k λ
=

= ∑ . We will show 
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in section 7.6.4 that using mean standard deviation does indeed improve on weights 

calculated using the mean of the variances. However in sections 7.6.2 and 7.6.3 we 

describe two further methods for computing weights that produce models that describe 

mass appearance with significantly lower residual error. 

7.6.2 Equalising texture displacement 

Having shown how to equalise the total variance of each component in the combined 

model, we now consider whether this is in fact desirable. It may be that shape, texture 

and size have different magnitudes of effect on mass appearance and thus should have 

different magnitudes of representation in the combined model. 

A better method for computing the model weights would be to quantify the magnitude 

of the effect of each component on mass appearance. Such a method was used in the 

original active appearance model work by Cootes et al. [27]. Below we show how this 

method is applied to our data. 

Consider any mass MR  from our dataset, comprising shape, texture and size vectors 

shapex ,  and 
texx sizex  respectively, with texture model parameters , ...,1

tex tex

tex texkb b⎡ ⎤= ⎣ ⎦b . Due to 

the linearity of the model, if we displace any mode in  by a unit then we cause a unit 

displacement in the model approximation to . That is, if we define 

texb

texx

 
'

, ..., , ...,1

'

, 1tex tex tex
tex

tex tex

tex tex textex

i kb b a b i k⎡ ⎤= + ≤⎣ ⎦
= +

b

x x P b

≤
 

and 
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 " '
tex tex tex tex= +x x P b  

then 

 " '
tex tex a− =x x  

Since the shape and size vectors determine the texture vector sampled, we can estimate 

the displacement of the sampled texture vector caused by systematically displacing each 

mode of the shape and size model parameters, and subsequently calculate the weight 

needed to cause a unitary shift in the texture vector. We apply this process to the full set 

of masses to approximate the mean weight needed so that a unitary displacement along 

any mode of the shape, texture or size model parameters results in an equivalent 

displacement in the resampled texture vector. The algorithm for calculating the shape 

weight is given below: 
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for each mass ,M iR  

 calculate '
shape shape shape shape= +x x P b  

 resample ' given texx '
shapex scaled by sizex  

  for each shape mode 1... shapej k=  

   displace parameter j by a constant 

  set ; '
, ..., , ...,1

shape shape shape

shape shapej kb b a b⎡ ⎤= +⎣ ⎦b

   calculate " '
shape shape shape shape= +x x P b  ; 

   resample given "
texx "

shapex  scaled by sizex ; 

   define " "
,

1
tex texj id

a
= −x x ; 

  end 

 end 

 set ,

1

1 N

j j

i

D d
N =

= i∑  

 set
1

1 shape

shape

shape

k

j
W D

k =

= ∑ j   

Algorithm 7.3: Computing the effect of shape mode variance on shape-normalised mass texture 

Note that we could use the texture displacement per unit shape displacement for each 

mode ,
1

1 N

j
i

D
N =

= ∑ j id  to define a weight for each individual shape mode as in the method 

described in by Cootes. However, the per unit displacement was found to be 

approximately constant across the modes, and computing the resulting model error as 
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described in section 7.3.4, no significant difference was found between using individual 

mode weights and a combined weight. 

To calculate sizeW  we apply a similar algorithm to above, with the obvious change that 

the re-sampled textured vectors are calculated given the original shape vector multiplied 

by a displaced size parameter, as opposed to a displaced shape vector multiplied by the 

original size parameter. By construction, 1texW = . 

7.6.3 Directly optimising weights 

The methods described in sections 7.6.1 and 7.6.2 attempt to calculate weights that 

make the individual components theoretically commensurate in the combined model. 

However, an alternative approach to the problem is to see the weights as variables to be 

optimised given some objective function. 

For a suitable error function, we refer back to the method for quantifying model 

generality in 7.3. Using leave-one-out testing, for each mass MR  we showed how to 

calculate '
MR  and "

MR  as the approximations of the mass given the individual models 

and the full appearance model respectively. The root mean squared error between "
MR  

and '
MR  is the added error caused only by the approximation of the combined model. If 

we fix all aspects of constructing the combined model except the component weights, 

then any change in " '
RMSM MR R−  is associated with the weights. Thus, in combination 

with leave-one-out testing, we can compute a mean generalisation error for the dataset 

associated with any given set of weights, as described in Algorithm 7.4. 
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 for each ,M iR  

 construct model from the set of masses { }, | 1 ,M jR j N j i= ≠…  

 compute approximations '
,M iR and  "

,M iR  for mass ,M iR  

 compute " '
, , RMSWi M i M ie R R= −  

end 

set 
1

1 N

w Wi
i

E e
N =

= ∑  

Algorithm 7.4: Computing the mean residual error associated with component weighting in the 

combined model for a set of masses using leave-one-out testing 

Having defined an objective function, we consider the variables we seek to optimise. 

Given the linear nature of the models, it is only the relative magnitudes of the weights 

that are important, and so without loss of generality, we can fix , and optimise 1sizeW =

shapeW and . In addition, we note that the sign of the weights is irrelevant and so fix 

the constraints that 

texW

shapeW , . Computing a set of weights is now formulated as a 

constrained non-linear optimisation over two variables, minimising the objective 

function . All that remains is to choose an optimisation algorithm. For this we use 

the sequential quadratic-programming (SQP) method implemented in the Matlab® 

toolbox, and described by Schittkowski [104]. This has been shown to be one of the 

most accurate and efficient algorithms over a large range of problems [104]. 

0texW >

wE

To narrow the range over which we apply the optimisation, we first computed  for a 

coarse grid of values 

wE

shapeW and . texW shapeW  was varied from 0 to  at intervals of 

, whilst  was varied from 0 to 

35 10−×

31 10−× texW 31 10−×  at intervals of .  The resulting 

error map is shown in 

30.2 10−×

Figure 7.6. This confirms that wE  behaves suitably as an 
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objective function, and provides an approximate region to start the SQP algorithm. Of 

the range of values initially tested, ( ) ( ),
32 10 ,0.2 10shape texW W −= × × 3−  corresponded to the 

lowest value of . Four pairs of wE ( ),shape texW W

)

 values were chosen symmetrically about 

this minima ( ( ) ( ( ) ( ){ } 3, 1.5,0.3 , 2.5,0.3 101.5,0.1 , 2.5,0.1 −× ) and used in turn to 

initialise an SQP optimisation. To aid computational efficiency, only a randomly 

selected subset of the full training data (25 out of 101 masses) was used during each 

optimisation. However, when each optimisation had converged, the final weights were 

used to compute wE  for the full set of data. The weights corresponding to the lowest 

overall error were selected.  
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Figure 7.6: Map of mean generalisation error  associated with component weights ( ) for varying 

combinations of 

wE

shapeW and  ( ) texW sizeW =1

 

7.6.4 Results 

In the previous section we showed how we can calculate the residual error in 

wE

texW

 

shapW  e
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approximating a mass as a result of combining the shape and texture models into a 

single model of appearance ( " '
, , RMSj M i M ie R R= − ). By keeping all other aspects of model 

building the same, we were able to associate this error with changes to the weights 

applied to the shape, texture and size parameters so that they were commensurate. 

Again employing leave-one-out testing we used this error to define a mean 

generalisation error for the dataset, given a particular set of component weights ( ).   wE

We have discussed four methods for selecting component weights shapeW ,  and texW sizeW . 

These were: 

1) Computing each weight as the mean variance per mode (as used originally by 

Caulkin) 

2) Computing each weight as the mean standard deviation per mode so that the 

total variance in shape, texture and size parameters were equal in the combined 

model 

3) Applying the texture displacement method described in section 7.6.2 

4) Directly optimising  as described in section wE 7.6.3 

We used wE  to compare the performance of each of the four methods. The individual 

models used during the evaluation were the optimised shape and texture models 

described in 7.4 and 7.5 respectively, built from the dataset of 101 mass regions. To 

recap, this produced a shape model comprising 32 modes and a texture model of 28 

modes. The parameters along each shape and texture mode, complete with the single 

size parameters, produced 61-element combined appearance vectors for each mass. 
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Boxplots of the set of errors ({ }je  in the notation above) for each method are shown in 

Figure 7.7, whilst the mean errors ( wE ) are summarised in Table 7.2. 

Table 7.2: Comparison of error  for different methods of selecting component weights wE

 
wE  

1. Mean variance per mode 3.10 

2. Mean standard deviation per mode 1.76 

3. Texture displacement 1.00 

4. Direct optimisation 0.82 

 

Method 1 was included to enable a comparison with Caulkin’s model. However there is 

little theoretical justification for dividing each component by the mean variance per 

mode and, as expected, it produced the highest errors. Dividing instead by the mean 

standard deviation, as in method 2, equalises the variance of the pooled set of 

parameters for each component. This assumes shape, texture and size affect appearance 

equally, and whilst producing lower errors than method 1, method 2 performed poorly 

relative compared to methods 3 and 4. 

By construction, we would expect direct optimisation to generate the lowest errors5, and 

indeed this was the case. However we were interested to see whether computing weights 

using the texture displacement method produced similarly low errors. In fact the 

                                                 

5 Although we recall that each optimisation was trained only on a subset of the full data and thus wasn’t guaranteed to 

produce a lower  than the other three methods wE
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reduction in error using method 4 compared to method 3 is statistically significant (p < 

0.0001). As a result, the combined appearance model was constructed using the weights 

computed using the direct optimisation method. 

Figure 7.7: Boxplots of model generalisation error for different component weighting methods 

 

 { },W je

7.7 Results 

Using our dataset of 101 masses, we built a combined model of appearance using the 

steps described in sections7.4, 7.5, and 7.6 for improving model fit. That is, we 

constructed a shape model having first aligned the set of mass borders using the MDL 

optimisation algorithm [34]; we then constructed a texture model using masses, 

separated from background regions using the completed method described in chapter 6; 

finally we weighted the parameters of shape, texture and size to form combined 

appearance vectors for each mass, using weights that had been directly optimised to 

reduce the generalisation error associated with the combined model. This model was 
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compared to the model we constructed using Caulkin’s method without modifications 

(see section 7.2).    

To compare the two models, we define the total model error for a given mass MR  as the 

difference between itself and its regeneration from the combined appearance model 

(that is, "
RMSM MR R− ). Again, leave-one-out was employed to compute unbiased errors 

for the full dataset, and allowing us to compute the total mean generalisation error 

(MGE) for each model. These data, along with the respective number of modes 

contained in shape, texture and combined models are given in Table 7.3. The 

improvements to individual stages of the model building process have resulted in a 

model that produces significantly lower generalisation errors (Wilcoxon signed rank test 

p < 0.0001). Moreover the model is more compact requiring just 32 combined 

appearance modes compared to 65. 

In the next section, we describe how we can use the model we have constructed to 

sample new synthetic masses. 

Table 7.3: Comparison of total model generalisation error and number of model modes 

  Caulkin’s model Optimised model 

Total MGE 3.11 1.26 

  

 Shape 25 32 

Number  
Texture 77 28 

of modes

Combined 65 
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7.8 Synthesising new masses 
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)

Having constructed a model of mass appearance we use the model to generate synthetic 

masses. The first step in this process is to sample new appearance vectors from the 

model distribution. To do this, we assume a Gaussian distribution  over the 

space of combined model parameters. The covariance matrix  is diagonal such that 

( ,N 0 Σ

Σ

( , ) ii i λ=Σ , where iλ  the eigenvalue associated with the i-th mode (and equal to the 

variance of model parameters in the training data along that mode). Because  is 

diagonal, we can sample independently from the univariate Gaussian distribution 

Σ

( )0, iN λ  along each mode. 

If we label a new appearance vector sampled from the model as , then we can 

reconstruct a synthetic mass in the same way we reconstructed real masses to compute 

model generalisation errors. 

comb

In Figure 7.8 we show six synthetic masses generated using the method outlined above. 

Qualitatively, these masses appear to have a good likeness to real masses in the training 

data. Of course the ultimate test of the synthetic masses will be how realistic they 

appear when added to real normal mammograms. Thus we do not attempt to 

quantitatively evaluate their appearance in this chapter. This evaluation is performed in 

chapter 11 when we have completed a model of the interaction of mass appearance with 

the appearance of surrounding breast tissue in mammograms. 

With regards to this, Figure 7.9 shows one of the six masses depicted in Figure 7.8 

super imposed on two regions of mammographic background. The first background is a 
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region from a normal mammogram (Figure 7.9 (b)). The second is a real mass 

background obtained in the previous chapter (Figure 7.9 (c)). We can see that the mass 

background contains spicules associated with the mass that has been subtracted, and that 

existing breast tissue in the region appears to have been distorted (with the appearance 

that breast parenchyma has been pulled in toward to the centre of the region). Figure 7.9 

(d) and (e) show the synthetic mass added to the two background regions. When added 

to the normal region, the mass does not appear to match its surroundings. Meanwhile 

when added to the mass background, the synthetic mass appears to be a very convincing 

simulation of a real malignant mass. 

From this example we can see that whilst the model developed in this chapter provides a 

good description of the central density in mass lesions, to model the full mammographic 

appearance of real malignant masses we must also consider the mass background. 

7.9 Discussion 

In this chapter we have shown how to fit a statistical appearance model to our dataset of 

masses. The form of model used has several advantages with regard to our goal of 

synthesis. Most obviously, it is generative, thereby allowing masses to be synthesised 

simply by sampling from the learnt model distribution. In addition the model provides a 

flexible representation of appearance. For example, rather than imposing a pre-

determined shape as a template for masses (such as an ellipse [101, 102]), the model 

constraints are learnt directly from the data. 
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Figure 7.8: Six synthetic masses randomly sampled from the combined appearance model 
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Another advantage of the models used in this chapter is the fact that the combined 

appearance model allows for a correlation between shape, texture and size to be learnt. 

Our model of image appearance is designed to correspond to a physical model of x-ray 

attenuation through a mass. In the physical model we would expect there to be a strong 

correlation between the size of a mass and the amount by which it increases attenuation. 

Therefore it is important our model is able to represent this correlation as it appears in 

digitised mammograms. 

The main weaknesses of the model (as applied to our data) are: the difficulty in defining 

correspondence between mass objects that do not contain obvious physical landmarks; 

the assumption of linear variability across the model space. We discuss each point 

below. 

With regards to the problem of finding correspondence between masses, our solution 

has been to avoid imposing a theoretical correspondence that is not in fact evidenced by 

the real data. Instead, we try and select the best match in the shape of mass borders by 

using the MDL optimisation algorithm. We saw that this produced a statistically 

significant improvement in the ability of the shape model to generalise to unseen mass 

borders, whilst compacting the shape space. 

However, as reviewed in section 4.2.3, Cootes et al. [31] have further extended the idea 

of using MDL to optimise shape correspondence so that optimal correspondence is 

searched for directly in the training images (and thus accounts for texture 

correspondence in addition to shape). We have not attempted to apply such a technique 
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to our data, although this may be an interesting area for further development. 

As described in section 7.8, to sample new masses we assume a Gaussian multivariate 

distribution over the model space. This model may not be appropriate if there are non-

linear correlations between the model parameters. PCA removes all linear correlations 

in the data, however any non-linear dependencies will remain in the model space. Given 

the heterogeneity of mass appearance, it is possible that the appearance vectors 

describing each mass will lie in a non-linear manifold of the space. In section 4.2.3, we 

discussed various attempts at modelling non-linearity in a model space (for example, 

fitting a mixture of Gaussians rather than a single multivariate distribution). However, a 

visual inspection of the model parameters (using, for example, pair wise scatter plots of 

the parameters along each mode) indicates no clear non-linearities. For example, the 

data have not fallen into two obvious clusters as did the brain stem MR data described 

by Cootes and Taylor [28]. To judge whether there are more subtle non-linearities in the 

data we would need a much larger training set of masses. 

In Figure 7.9, we highlight the difference in appearance between a normal region and a 

mass background region. In Figure 7.9 (a) we show a mass sampled from the 

appearance model developed in this chapter. In Figure 7.9 (b) we show a normal region 

alongside a real mass background region in Figure 7.9 (c). We can see in the mass 

background region a pattern of spicules and a general distortion of structures in the 

region. In Figure 7.9 (d) and (e) we show the synthetic mass added the normal and mass 

background region respectively. Figure 7.9 (e) is a much more convincing simulation of 

a real malignant mass than Figure 7.9 (d).  
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Figure 7.9: a) a synthetic mass b) a region of normal mammogram c) a mass region d) adding the 

synthetic mass to the normal region e) adding the synthetic mass to the mass region 

(d) 

(b) 

(a) 

(c) 

(e) 
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Thus our goal for the next chapter can be summarised as developing a method to modify 

normal regions (as depicted in Figure 7.9 (c))  so that the have the appearance of mass 

background regions (as depicted in Figure 7.9 (c)). 

7.10 Summary 

In this chapter we have presented a method for modelling and synthesising masses. In 

this context, the term mass has specific meaning, and refers to the images we obtained 

in chapter 6 by separating the pixel grey levels corresponding to attenuation through the 

central density of lesion from background. 

We described a method developed by Caulkin for modelling this form of image object. 

The model learned the variation in appearance of masses across a training set of data, 

and could subsequently be used to sample new synthetic masses. 

We observed that the basic model described by Caulkin did not adequately fit our 

training data. To formalise this observation, we discussed the properties we would like 

a model to have, and described how such properties could be measured directly from 

the training data. In particular, we introduced the idea of model generalisation errors 

that could be used to quantify how well various components of the model might 

describe a global set of data. 

Given a method for measuring model performance, we attempted to optimise the model 

with respect to our data. In particular, we improved how mass shapes were aligned prior 

to applying PCA and improved the method for selecting weights with which to scale the 

parameters of shape, texture and size so that they were commensurate in the combined 

model. In addition, we showed how changing the way masses were separated from the 
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background (see sections 6.4 and 6.5) improved texture model fit. 

We believe the changes were necessary improvements to the model, as evidenced by the 

statistically significant reduction in mean generalisation error. Having implemented 

these changes, we believe the model we have constructed from our data provides a good 

representation of mass appearance. 

We showed several examples of synthetic masses that had been generated by randomly 

sampling from the model distribution. These masses were similar visually to the real 

data, although a quantitative evaluation will not be performed until such masses are 

added to real mammograms (see chapter 11).  

Finally, it was noted that we have only described a model for the appearance of the 

central density in malignant mass lesions. Our goal is to synthesise the complete 

appearance of malignant mass lesions – including spicules associated with the central 

density and the distortion of normal breast tissue in the mass region. This additional 

appearance information is stored in the background images from which masses were 

subtracted (see section 6.6). The difference in appearance between a normal 

mammogram region and mass background, and the difference this makes when a 

synthetic mass is superimposed, was highlighted in Figure 7.9.  

Thus in the next chapter, we focus on these background images and show how their 

appearance can be synthesised in normal mammograms. 
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Chapter 8 : Modelling the Appearance of Mass 
Backgrounds 

8.1 Introduction 

To understand the motivation for this chapter, we first recall the steps we have taken 

towards modelling and synthesising mammographic masses in the preceding two 

chapters. 

In chapter 6, we described how we could represent each mass region in our dataset as 

the linear sum of two images:  

Original mass background → mass + mass background 

In chapter 7, we showed how we could model, and subsequently synthesise, masses. 

However, as we showed in Figure 7.9, simply adding these to a region of a normal 

mammogram does not replicate the realistic appearance of a malignant mass. A normal 

mammogram region does not have the same appearance properties as a mass 

background.  

Thus the aim in this chapter is to be able to synthesise the appearance of a mass 

background in a previously normal region of mammogram. To achieve this we will 

attempt to learn the appearance properties of the dataset of mass backgrounds obtained 

by the separation process described in chapter 6. As such, these become the sole data for 

consideration in this chapter (we will examine the correlation between masses and mass 

backgrounds in the following chapter), as highlighted in Figure 8.1. 
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Original regions 

Masses Mass backgrounds 

Data used in chapter 8 

Figure 8.1: Separating mass regions into two sources of intensity: masses and mass backgrounds. 

The mass backgrounds become the sole source of data in this chapter. 

 

A description of the remaining sections in this chapter is given below. 
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Section 8.2 gives a brief description of previous attempts to synthesise mass spicules, in 

each case as part of a larger method to generate synthetic malignant masses. We 

describe how focusing on spicules alone cannot reproduce the complete appearance of a 

mass background and use this to motivate the work for the remainder of the chapter. 

In section 8.3 we return to the topic of multiscale image transforms and their use in 

analysing mammographic structures. We reintroduce the dual-tree complex wavelet 

transform (DT-CWT), reviewed earlier in section 4.3.3, and describe how its properties 

may be beneficial when analysing and synthesising mammograms. 

Section 8.4 then presents two further transformations of the DT-CWT, the inter-level 

product (ILP) and inter-coefficient product (ICP). We show these transformations in 

their original form as published by Anderson et al. [7, 8] and in addition describe our 

own modifications to the transforms. We show how the modified transforms can be 

used to gain greater information about linear structures in the mammogram regions.   

Having selected the DT-CWT as a useful tool for decomposing mammogram regions, 

sections 8.5, 8.6 and 8.7 present three methods for synthesising mass background 

appearance in normal regions. In each case, we take the DT-CWT of a normal region 

and modify the coefficients, before inverting the decomposition to reconstruct 

synthesised mass background appearance. 

8.2 Previous models of spicule appearance 

When a malignant mass is spiculated (as are the majority of the masses in our dataset), 

the most obvious difference between a normal region and the region surrounding the 

mass is the appearance of the spicules. These represent additional structures to those 
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already present in normal tissue. Of the literature on synthesising mammographic 

abnormalities reviewed in section 3.2, three papers explicitly describe simulating 

spiculated masses [23, 99, 102]. We provide a brief reminder of the method for 

generating spicules in each case below. 

Ruschin et al. [99] simulated mammographic abnormalities, including spiculated 

masses, using various pre-defined parameterised functions. As such, an individual 

spicule was generated by first generating a ‘super’-ellipse (that is, a shape described by 

the equation ( ) ( ) 1n nx A y B+ = 1, where 0 n< < ) of constant intensity, before 

bisecting the ellipse along the shorter axis and discarding one half, and finally blurring 

to achieve a smooth drop-off at the border. A set of between 10 and 20 individual 

spicules were sampled, randomly oriented and centred on the centre of a simulated 

mass. Judging how well the model described spicule appearance is difficult because no 

quantitative evaluation of synthetic mass realism was reported. However, it appears to 

be an overly simplistic representation of spicule appearance, based neither on a physical 

model of spicule composition nor an image model of how spicule appearance varies in 

real data.  

Saunders and Samei [102] also used a predetermined shape model to simulate 

individual spicules, however an attempt was made to learn grey level appearance from 

real data. Triangles were used as a template of spicule shape. Spicule intensity was 

defined in profiles perpendicular to the longest axis of the triangle, based on a set of 

intensity profiles measured from real spiculated masses. Details of how many spicules 

per mass were generated, and their locations and orientations, were not given. In an 

evaluation of how realistic simulated masses appeared to a radiologist, spiculated 
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masses were rated less real than non-spiculated masses6. This indicates that the 

appearance of synthetic spicules may not have been realistic. 

Finally Caulkin [23] fitted a statistical shape model to learn the shape of individual 

spicules from a dataset of 602 real annotated spicules (drawn from a set of 57 masses). 

New spicule shapes were randomly sampled from this model. As in Saunders and 

Samei’s work, grey level texture was described with respect to grey level profiles 

sampled perpendicularly to the spicule shape. In this case, elliptical profiles were fitted 

to the set of grey level profiles extracted from the training data, and the resulting 

distribution used to specify the texture of a spicule sampled from the shape model. The 

position of each spicule in the training data was measured with respect to its location on 

the mass border, the distance to the centre of the mass, and the orientation relative to the 

radius at the point. The joint distribution of these three parameters was learnt and used 

to generate a position for each new spicule. Finally the distribution of the number of 

spicules associated with a mass was learnt from the data and used to specify how many 

spicules should be generated for each synthesised mass. Of the three methods reviewed 

this included the most thorough description of how spicules could be modelled and 

synthesised. However, in a discussion of his work, Caulkin reported that many of the 

synthetic spicules appeared unrealistic. As a consequence, synthetic spiculated masses 

were distinguishable from real masses by mammogram readers in an observer study. 

 

6 An exact breakdown of numbers is not reported, however this fact is visually apparent from a histogram of the 

radiologists ratings included in the paper 
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From this review we see that attempting to synthesise spiculated masses has proved a 

difficult problem, and one that has yet to be fully addressed. Although the methods 

described above used different models of spicule appearance, all three are based on the 

same idea: that spicules can be modelled as individual objects, a number of which can 

be generated independently and added to a mass. Whilst this approach may be capable 

of generating some examples of malignant masses, we believe it will never be able to 

generate the complete appearance of breast tissue in a mass background. In particular, 

we think the approach suffers from the following three drawbacks: 

i) Modelling and generating spicules individually does not allow for correlation or 

interaction between spicules. For example, adjacent spicules of a particular mass 

may share appearance characteristics (especially those relating to position and 

orientation). 

ii) Some spiculated masses contain areas of spicules that are very hard to describe 

as groups of individual spicules. Recall from Tabar and Dean [115] in section 

2.2.4 the ‘sheaf of wheat’ appearance of some spiculated regions. Figure 8.2 

depicts one such example. In the enlarged region, the spiculated area appears as 

a striped linear texture. Assigning individual spicules within this area would be a 

near impossible task, and would not sufficiently describe the appearance of the 

region. 

iii) Modelling spicules independently from the background region into which they 

are inserted fails to account for any interaction between local background 

structures and the spicules. An often described feature of malignant masses is 

how the spicules anchor the mass within the surrounding breast tissue, distorting 
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local structures. The appearance could be described as a tension between the 

breast parenchyma and the mass spicules. This effect suggests that in addition to 

adding spicules to a normal region, the region itself must be modified. 

Whilst the first drawback could be addressed by learning the joint appearance 

distributions of spicules associated with a mass (indeed this is discussed by Caulkin in 

his thesis [23]), it is hard to see how an individual model of spicule appearance can 

overcome the limitations described in points ii) and iii). Instead, we propose a more 

complete solution to the problem. Using techniques influenced by the texture synthesis 

literature, we propose jointly synthesising any structures associated with a mass in 

addition to any distortions to the surrounding tissue in regions of normal mammograms. 

To the best of our knowledge, no previous methods for synthesising signs of disease in 

mammograms have attempted such a complete reconstruction of the appearance of mass 

backgrounds. 

Figure 8.2: Left image: A malignant mass with associated "sheaf-of-wheat" spicules. The image 
on the right shows an enlarged area where such spicules are evident 
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To achieve this requires a richer description of the appearance of tissue structures 

present in mammograms than that provided by the grey level intensities alone. In the 

following section we describe how mammographic texture can be decomposed across 

multiple scales and orientations, producing a rich description of local structure. 

8.3 Multiscale decompositions of mammograms 

In this section we return to the topic of multiscale image transforms and their use in 

decomposing mammographic texture. A review of previous work in this area was given 

in section 3.3.1, whilst a technical review of three particular transforms (the monogenic 

signal, steerable pyramids and the dual-tree complex wavelet transform) was given in 

section 4.3. 

8.3.1 Introduction 

Mammograms are rich in features across a range of scales and orientations. When 

analysing a mammogram region, a useful first step would be to obtain information on a 

structure or feature at any location in the region. For example, at any pixel we might 

ask: 

- Does this pixel belong to part of a larger structure? 

- If so, what type of structure (for example, linear, blob-like)? 

- What size (or scale) is the structure? 

- How is the structure oriented? 

Clearly this information cannot be inferred from the pixel grey level alone. Instead, a 

commonly used solution is to decompose a region in terms of orientation and scale 
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using a bank of filters. The filter responses at each orientation and scale provide a rich 

set of data from which the information above can be inferred (either explicitly or 

implicitly) and subsequently used to solve a variety image analysis tasks. 

Table 8.1: Summary of literature in which decomposition across scale and orientation have been 

used in particular mammographic applications 

Author Filter bank/decomposition Mammographic 
application 

Wai et al. [121] Monogenic signal Detecting curvi-linear 
structures (CLS) 

Pan et al. [86]  Breast segmentation 

McLoughlin et al. [78] 

Schenk and Brady 
[103] 

Complex log-Gabor filters  

(at multiple orientations and 
scales) 

Detecting CLS 

Petroudi et al. [92] MR8 filter bank Texture analysis and 
classification 

Rose [98] Steerable pyramid Texture analysis and 
synthesis 

 

In the literature review in section 3.3 we discussed several examples of this approach 

from the mammography literature, describing in each case the choice of filters used and 

the task they were employed to solve. Table 8.1 lists notable examples of this work. 

Of the work reviewed, Rose’s [98] attempt at synthesising mammogram texture is most 

closely related to our goal for this chapter. In this case a real-valued steerable pyramid 
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was used to decompose mammograms across scale and orientation. The idea behind this 

approach is that modelling and synthesising in the domain of the pyramid coefficients 

(that are separated in subbands localised in scale and orientation) is easier than trying to 

model and synthesise original image intensities directly. In keeping with this approach, 

we used the steerable pyramid in our initial attempts to synthesise the appearance of 

breast tissue in mammograms. However, as previously discussed in section 4.3.2 of 

chapter 4, the coefficients of a real-valued steerable pyramid are not shift invariant. 

The models for synthesising mammographic texture we propose in sections 8.6 and 8.7 

rely on learning how patterns of decomposed coefficients within each subband 

correspond to particular patches of mammograms. For this to work successfully the 

relative position of a patch within an image should not affect the pattern of decomposed 

coefficients it produces at a particular frequency. If the coefficients of a decomposition 

are shift dependent, this property won’t hold. Thus we require a shift invariant image 

decomposition. 

Returning to the multiscale transforms reviewed in section 4.3, we note that shift-

invariant pyramid features could be obtained by using the complex steerable pyramid. 

However, this doubles the redundancy of coefficients in the pyramid. With this in mind, 

we choose instead to use the dual-tree complex wavelet transform (DT-CWT). The DT-

CWT has a lower redundancy and is more computationally efficient than the complex 

steerable pyramid.  

In the following section, we give a brief reminder of how the DT-CWT is constructed 

and describe the set of filters we have used in our work. 
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8.3.2 Dual-tree discrete wavelet transform 

The dual-tree complex wavelet transform (DT-CWT) was developed by Kingsbury [65] 

to overcome the lack of shift invariance and poor directional selectivity inherent in 

standard real discrete wavelet transforms. 

Shift-invariance and directional selectivity are achieved by computing two parallel real 

discrete wavelet transforms with a 90º phase difference. The responses of the two 

transforms are combined to form 6 complex valued subbands at each frequency level of 

the transform. By construction the subbands are strongly oriented at angles of 

approximately ±15º, ±45º and ±75º. The magnitudes of the coefficients are invariant to 

shifts in the input image, whilst the phase of coefficients can be used to infer local 

structural information in an image. 

The DT-CWT matches the properties that originally led us to choose the steerable 

pyramid as useful tool for modelling and synthesising mammographic appearance. That 

is, it is able to separate an image into subbands localised in scale and orientation, whilst 

the invertibility of the filters provide a suitable framework for the synthesis methods we 

propose in sections 8.6 and 8.7. Given the additional property of shift invariant 

coefficient magnitudes and the possibility of capturing structural information through 

local changes in coefficient phase, we use the DT-CWT throughout the remainder of the 

chapter. 

In all our work we used an implementation of the DT-CWT kindly supplied by Nick 

Kingsbury. The implementation used orthogonal near-symmetric filters comprising 13 

and 19 elements for the first level, and 14 element Q-shift filters from the second level 

onwards. Further details on the design of these filters are described by Kingsbury [67]; 
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here we note that the filters: 

i) allow perfect reconstruction 

ii) are linear phase 

iii) are composed of rational coefficients 

The impulse responses for each subband obtained using these filters are shown in Figure 

8.3, highlighting the directionality of the subbands. 
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Figure 8.3: Impulse responses for the real and imaginary parts of the 6 DT-CWT subbands 

Real 

Imaginary 

 
Having selected the DT-CWT as a suitable tool with which to continue our work, in the 

next section we describe how the phase of DT-CWT can be used to detect linear 

structures in mammogram regions. 

8.4 Detecting linear structures in mammograms 

Much of the appearance of mammograms is formed by the superimposition of a large 

number of linear structures at different orientations and scales. In attempting to model 

mammogram appearance a natural requirement is to be able to detect such structures 
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and describe their properties. In this section we explore how this can be achieved using 

the DT-CWT. In particular, we look at how the phase of DT-CWT coefficients can be 

used to infer local structural information. Returning to the work summarised in Table 

8.1, we observe that using phase information formed an important part of the feature 

measures used in the three CLS detection algorithms [78, 103, 121]. 

8.4.1 Introduction 

Because the DT-CWT decomposes an image across scale and orientation, it is a natural 

tool for analysing linear structures and of course this was a key motivation in choosing 

to use it. 

At a simple level, information on linear structures can be obtained using only DT-CWT 

coefficient magnitudes. The presence of a structure at a particular location can be 

determined from the maximum magnitude across all subbands. Meanwhile information 

on the scale and orientation of the structure can be inferred from the specific subband 

that generated the maximum response. 

However the magnitudes alone do not give information about what kind of structure is 

present at the location - for example, the magnitudes alone cannot differentiate between 

a line and edge. Moreover, taking structure orientation as equal to the orientation of the 

subband with maximal response, limits angular resolution to six directions across 180 

degrees. 

In the next two sections we review work presented by Anderson et al. [7, 8] that show 

how the phase of DT-CWT coefficients can be used to infer both structure type and a 

more precise computation of orientation. 
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8.4.2 Computing orientation from phase: the inter-coefficient 
product 

The inter-coefficient product (ICP) was introduced by Anderson et al. [8]. It is based on 

the observation that if a strong linear structure (such as an edge or line) lies within the 

support of a DT-CWT coefficient, the phase of the coefficient varies linearly with 

respect to the distance of the structure to the location at which the coefficient is 

sampled. The rate of change of phase (that is, the magnitude of the phase gradient) is 

constant for all structures whilst the direction of the phase gradient is perpendicular to 

the structure. Therefore by computing the phase gradient with respect to a fixed 

direction in the image, the orientation of the structure can be inferred. This idea is 

shown in Figure 8.4. The figure shows the magnitude and phase coefficients from a 

single oriented subband in the DT-CWT decompositions of three lines. The lines have 

orientations of 0º, 12º and 24º to the vertical respectively. The 4th oriented subband is 

shown as this produces maximal responses for each line. In the images of Figure 8.4, 

intensity varies from black to full colour with coefficient magnitude, whilst the hue of 

the colour represents phase. For each of the lines in Figure 8.4, the phase sampled at the 

white arrow is shown in the coloured bar overlapping the subband image. The change in 

phase of this sample is shown in the axes under each image. For the vertical line, there 

is no change in the phase as the sample is taken in parallel to the line. In the 12º and 24º 

lines, note how the phase changes twice as quickly in the 24º line than the 12º – for 

example the coloured bar for the 12º line shows just over one complete cycle of hues 

(from light blue to light blue) whilst the colour bar for the 24º line includes two 

complete cycles (from red to red). Thus sampled at a fixed direction, phase change is 

proportional to structure orientation. 
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Figure 8.4: Magnitude/phase plots of DT-CWT coefficients for three lines oriented at 0º, 12º and 

24º degrees to the vertical. The colour bars depict the phase as sampled at each of the white 

arrows. The schematic axes show the relative change in phase for each line 

 
To obtain the phase gradient, each wavelet coefficient is multiplied by the complex 

conjugate of its neighbour producing a complex number that has magnitude equal to the 

product of the wavelet magnitudes, and phase equal to the difference of the wavelet 

phases – hence the name ‘inter-coefficient product’. The neighbouring coefficients are 

chosen in the direction closest to the orientation of the subband. Thus horizontal 

coefficients are used for subbands 1 and 6, vertical coefficients for band 3 and 4, and 

opposing diagonals for band 2 and 5. We further discuss the exact choice of coefficients 

used in section 8.4.4. 

To move from phase gradients to orientations it remains to compute the constant of 

proportionality between them. This was done empirically by Anderson, computing 

values of 4.49 for bands 1, 3, 4 and 6 and 8.98 for bands 2 and 5 (note this ratio is 

relative to the distance between coefficient locations and therefore remains constant 

across all scales). 

θθ θ
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From its construction, an ICP transform has the same number and size of subbands as 

the DT-CWT from which it was computed. 

8.4.3 Computing structure type from phase: the inter-level 
product 

We look now at a second transform of DT-CWT coefficients introduced by Anderson, 

named the inter-level product (ILP) [7].  

Like the inter-coefficient product described in the previous section, the transform is 

based on the observation that the phase of a DT-CWT coefficient changes linearly in the 

support of an image feature. However, as the name implies, rather than computing phase 

differences between neighbouring coefficients in the same subband, the inter-level 

product calculates the phase gradient between neighbouring levels of equivalently 

oriented subbands in the dual-tree. 

Figure 8.5 left: 3rd (red) and 4th (green) level DT-CWT coefficient phases for a set of 1-D steps at 

varying offsets from the coefficient sampling location; right) 3rd level phase (red) versus double 

the 4th level phase (green). In the vicinity of the step (-4 < x < 4) there is a constant difference 

between the two phases 
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In the vicinity of a feature, the phase of a dual-tree coefficient at level l varies twice as 

fast as the phase of the coefficient at the corresponding location in level l +1. Therefore 

the phase difference between level l and double the phase of l +1 is constant regardless 

of spatial location of the feature. This is depicted in Figure 8.5 where the red line 

depicts the phase of a coefficient in the third level of a 1-D DT-CWT for a set of steps 

at varying offsets from the coefficient. Note how this is linear in the region between 

step offsets of approximately ±3. In the left-hand plot, the green line shows the phase of 

the corresponding location in the fourth DT-CWT level. Because the support width of 

the fourth level is double that of the third, the range of offsets for which phase is linear 

is double that of the third level. As a consequence phase varies at half the rate. In the 

right hand plot, the green line now depicts double the fourth level phase. In the region in 

which the third level coefficient is linear, the gradients of the two lines are equal, thus 

the difference between the phases is constant regardless of the offset. Moreover, the 

value of the inter-level phase gives information about the type of structure present. 

For example, in the first oriented subband of a 2-D DT-CWT, an  ILP phase of 0 

corresponds to an ideal positive edge, π/2 a positive line, π a negative edge and –π/2 a 

negative line. This phase-to-feature relationship is shown on a set of real and imaginary 

axes in Figure 8.6. Thus the phase of an ILP coefficient is analogous to the local phase 

computed in the monogenic signal and used in phase-congruency measures (see 

monogenic signal, section 4.3.1). The magnitude of an ILP coefficient is a measure of 

the consistency of feature strength between adjacent levels.  

By using both the ICP and ILP we can infer structure type and gain more precise 

measure of orientation than using DT-CWT magnitudes alone. However, before 
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showing examples of applying the ILP and ICP to mammograms we suggest some 

modifications to the transforms. 
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Figure 8.6: Relationship of feature type to ILP phase. Positive edges correspond to a phase of 0; 

positive lines 2π ; negative edges π ; and negative lines 2π−  

Im+ 

Re+ 

+

8.4.4 Modifying the ILP and ICP transforms 

After initial experiments using ILP and ICP transforms as published in the papers by 

Anderson, we noticed there were some aspects of the coefficients produced by the 

transforms that did not behave as we would like with respect to rotations of image 

features. In this section we present the modifications we have made to the transforms in 

light of this.7 

The basic premise of our modifications is that if we denote the phases of an ICP 

coefficient and an ILP coefficient in the vicinity of a structure as θ  and λ  respectively, 

                                                 

7 From personal communication, we understand changes to how ICP and ILP orientation varied with rotation were 

presented in Anderson’s thesis [7]. However this was published after the time the work in this section was 

implemented 



Chapter 8 - Modelling the Appearance of Mass Backgrounds 

then the phases of corresponding ICP and ILP coefficients to a copy of the structure 

rotated through φ  radians should be θ φ+  and λ  respectively8.  

That is, as a measure of orientation, ICP phase should vary consistently with rotation, 

whilst as a description of structure type ILP phase should be rotation invariant. 

In light of this, the changes we have made to the transforms are: 

i) Computing the ICP symmetrically about a coefficient 

ii) Discarding the concept of edge polarity 

iii) Defining ICP phase consistently over a 2π  range 

ICP symmetry 

In Figure 8.7 we show how the coefficients used to compute phase differences in the 

original ICP transform are not consistent with rotation. On the left-hand-side of the 

figure is an edge oriented at approximately 15 degrees, thus producing maximum 

wavelet and ICP coefficients in the 1st subband. The central ICP coefficient (marked 

with a blue cross) is computed using the product of the blue and green DT-CWT 

coefficients. The edge-feature is then rotated through 90 degrees as shown in the right-

hand of Figure 8.7. It now produces maximal coefficients in the 4th subband. The 

coefficients in the central column have an identical relationship to the rotated edge as 

the central row of coefficients in the original feature. However, the central ICP 

                                                 

8 By corresponding ICP/ILP coefficient we mean the coefficient from the subband most closely aligned with the 

structure, in an equivalent location relative to the orientation of the feature 
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coefficient is now computed from the product of the blue and red coefficients. The ICP 

coefficient assigned to the central location in the original image will instead be 

equivalent to the green ICP coefficient in the rotated image. 
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Figure 8.7: Wavelet coefficients used to calculate the ICP for pixel adjacent to an edge-feature at 

different rotations 

Edge-feature approximately aligned 
with 1st subband 

Edge-feature rotated through 90º - now 
aligned with 4th subband 

90º

(X) calculated from 90
4ψ (X) calculated from 

0
1ψ

 
The difference occurs because the calculation of the ICP does not act symmetrically 

about the coefficient it’s assigned to. In the left column of Figure 8.8, we show the 

coefficients used to compute the ICP for each of the six oriented DT-CWT subbands, 

clearly highlighting the asymmetry about the pixel to which the product will be 

assigned. 

Instead, we propose using the neighbouring coefficients on both sides of the centre 

location when computing the ICP. The coefficients used in this case are shown in the 

right column of Figure 8.8, and are symmetrical about the centre location. 

There are several ways to combine both neighbouring coefficients to compute a single 

ICP coefficient. Options include computing the average of the two products between the 
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centre location and its two neighbours; taking the maximum of the two products or 

interpolating the neighbouring coefficients to find new coefficients a single sample 

width apart and symmetric about the centre, before computing the phase difference 

between these. In practice we have found taking the maximum of the two neighbouring 

products works well. Thus in the example in Figure 8.7, because the edge lies between 

the blue and green DT-CWT coefficients, the blue/green product will have a much 

larger magnitude than the red/blue product. Therefore, in both the original and rotated 

images, the blue/green product will be assigned to the blue ICP coefficient. 

Note by taking the maximum in this way the new ICP by itself is no longer invertible. 

However as we show below, this can be remedied by using the new ICP in conjunction 

with changes we propose to the ILP.  

Edge polarity 

For a 1-D signal, specifying four pure feature types (positive step, negative step, 

positive impulse, negative impulse) and matching each feature to an ILP phase makes 

sense. However, we believe the equivalent in two dimensions – positive and negative 

lines, positive and negative edges – makes a false distinction between positive and 

negative edges. The key difference is that where the time axis of a 1-D signal has an 

implicit direction, there is no such direction in the 2-D plane of images. Therefore 

positive and negative edges are not different types of structures, but the same structure 

at different orientations. 
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Figure 8.8: Left column: coefficients used to calculate the original ICP in each of the 6 dual-tree 

subbands; Right column: Coefficients used to calculate the new ICP that acts symmetrically 

about the centre location 

Coefficients used to compute central 
ICP coefficient symmetrically 

Coefficients used to compute central 
ICP coefficient 

Subband 

2 

Subbands 
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Subband 
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To see the impact of this on ILP coefficients, consider a pure positive edge initially 

oriented to be maximal in the 1st oriented subband. Using the phase-to-feature 

relationship depicted in Figure 8.6, an ILP coefficient in the vicinity of the edge will 

have a phase of 0. If we rotate the edge through 90 degrees, the corresponding ILP 

coefficients (now the 4th oriented subband) will still be 0 as desired. However if we now 

rotate the edge by another 90 degrees, the edge is now a negative edge aligned in the 1st 

subband, and the corresponding ILP coefficient will have a phase of π . 

Further, consider the ILP phases of features that are not ideal and so lie between the 

four feature types. These are depicted by the red (positive line to negative edge), yellow 

(positive line to positive edge), blue (negative line to negative edge) and green (negative 

line to positive edge) arrows in the left-hand axes in Figure 8.9. Again we consider the 

effect of rotating through 90 degrees. 

Feature phases in the first three bands of the original image map to equivalent phases in 

the latter three bands of the rotated image. However for features in the latter three bands 

of the original image, phases varying from a positive line to a negative edge (depicted 

by the red arrow) translate into phases varying from a positive line to a positive edge 

(depicted by the yellow arrow) in the rotated image. Likewise a phase varying from a 

negative line to a negative edge (depicted by the blue arrow) translates into phase 

varying from a negative line to a positive edge (depicted by the green arrow) in the 

rotated image 

More formally, we can define the set of phases depicted by the red arrow as: 

2 , 0red 2λ π α α π= + = →  
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And the phases depicted by the yellow arrow as: 

2 , 0yellow 2λ π α α π= − = →  

And therefore 

2 ( 2)yellow red

red

λ π λ π

π λ

= − −

= −
 

Similarly we can show that: 

green blueλ π λ= −  

Thus to establish ILP phases that are rotationally invariant, we map any coefficient with 

phase 2 3 2π θ π< <  to a new coefficient with phase 'θ π θ= − . This transform is 

trivial to implement, we simply force the real part of each ILP to be positive (that is, 

a bi a bi+ + ). This can be visualised as folding the left-half of the ILP phase-to-

feature axes onto the right, as depicted in right-hand axes of Figure 8.9. 

Figure 8.9: Transformation of ILP phase: mapping coefficients with phase 2 3 2π θ π< <  to 
'θ π θ= −  

+ +/- 

- 
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We have effectively discarded the idea of edge polarity, and in doing so have made the 

transformed ILP coefficients rotationally invariant. However as a result, we have lost 

information – one consequence of which is that the transform is no longer invertible. 

Below we show how this information is instead encoded with the ICP transform.  

ICP phase range 

The range of orientations that can be obtained from ICP phase spans approximately π  

radians (from -0.70 radians for the 6th subband, through bands 1 to 4, finishing at 2.71 

radians for the 5th subband). Because of this a structure oriented between the 5th and 6th 

subbands may produce some maximal ICP coefficients with a phase of say θ  and others 

of θ π+ . Moreover, if in any subband the phase of an ICP coefficient in the vicinity of 

a structure is θ , then the phase of the corresponding ICP coefficient to a copy of the 

structure rotated through φ  radians may either be θ φ+  or θ φ π+ +  depending on the 

angle of rotation φ . 

By expanding the range of obtainable ICP phase to span 2π  we can remove this 

inconsistency and in doing so, encode the information lost in modifying the ILP 

transform above. 

This is achieved by fixing all coefficients with an untransformed ILP phase of 

2 2π λ π− < <  to have an ICP phase in the range 0 π→ , and all coefficients with 

untransformed ILP phase  2 3 2π λ π< <  to have an ICP phase in the range 2π π→  

by adding or subtracting π  from the ICP phase as necessary. 

Thus rather than having a concept of edge polarity, the change in structure is encoded as 

a change in orientation though 180 degrees. Conceptually we believe this is a more 
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accurate way of describing the rotations of structures. 

The changes to the transforms are trivial to implement – for a given location, if we let 

the ILP coefficient be a  and the ICP coefficient be bi+ c di+ then we simply apply the 

following operations: 

0
:

if d
then c c

d d

<
= −
= −

 

0
:

if a
then a bi a bi

c di c di

<
+ − +
+ − −

 

The first operation fixes all initial ICP phase to lie in the range 0 π→ , whilst the 

second operation adds π  to the ICP phase of features that previously had ILP phase in 

the range 2 3 2π→ . π

When we come to invert the transformed ICP and ILP coefficients we simply apply: 

0
:

if d
then a bi a bi

<
+ − +

 

and can subsequently reconstruct the original DT-CWT coefficients exactly. 

Applying the transforms as described above, if we denote the phases of an ICP 

coefficient and an ILP coefficient in the vicinity of a structure as θ  and λ  respectively, 

the phases of corresponding ICP and ILP coefficients to a copy of the structure rotated 

through φ  radians will be θ φ+  and λ  respectively, as desired. 

In the following section we show the results of applying the new ICP and ILP 
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transforms to mammogram regions and present a method for detecting linear structures 

based on the transforms. 

8.4.5 Applying the ICP and ILP to mammograms 

In this section we show images of ICP and ILP coefficients computed for mammogram 

regions. In addition, we show a scheme for detecting linear structures in mammograms. 

Figure 8.10 depicts a mass background from our training data alongside images formed 

from the ILP coefficients of the region. The ILP images have been formed by taking the 

maximal coefficients across the six oriented subbands within the second, third and 

fourth frequency levels of the ILP transform. As with Figure 8.4, a phase-magnitude 

colour scheme in which intensity corresponds to magnitude and hue to phase is used to 

depict complex coefficients. For each frequency level the images have been enlarged to 

the size of the original region. In this colour scheme blue to purple hues correspond to 

phases close to 2
π . In terms of ILP coefficients, this corresponds to positive lines (that 

is, a light line against a dark background). As we would expect, these are the dominant 

structure types in the images. 

Figure 8.12 shows the equivalent ICP coefficients for the mass background depicted in 

Figure 8.10. Meanwhile Figure 8.11 and Figure 8.13 show the equivalent figures for a 

normal region of mammogram. The normal region has been specifically selected 

because of its striated texture. Note that when comparing the ILP coefficients in Figure 

8.10 and Figure 8.11, the distribution of phase colours appears similar suggesting the 

type of structures present in both regions are similar. 
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Figure 8.10: ILP coefficients in the 2nd, 3rd and 4th levels for a mass background from our 

training data 
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Figure 8.11: ILP coefficients in the 2nd, 3rd and 4th levels for a region of a normal mammogram 

with striated tissue appearance 
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Figure 8.12: ICP coefficients in the 2nd, 3rd and 4th levels for the same mass background 

depicted in Figure 8.10 
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Figure 8.13: ICP coefficients in the 2nd, 3rd and 4th levels for the normal region depicted in Figure 

8.11 
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 However, comparing the ICP coefficients in Figure 8.12 and Figure 8.13, we can 

clearly see how the spread of orientations differs between the two regions. In Figure 

8.12, the radial pattern of structures in the mass background produces ICP images with 

colours throughout the phase spectrum. In Figure 8.13, the structures in the normal 

region are generally aligned vertically, resulting in a dominance of red and yellow hues 

in the ICP images. 

For some tasks it may be desirable to make a hard classification of linear structures in a 

region, for example, as used in section 8.7.2. We present a scheme for doing so below, 

although other ways this may be achieved are discussed in section 8.4.6. 

The line detection method incorporates the outputs of ICP and ILP coefficients into a 

basic framework such as that used in common edge or line detection algorithms (for 

example, the Canny edge detector [22]) and proceeds as follows: 

i) For each frequency level, compute the maximal ICP and ILP coefficients across 

the six oriented subbands at each location 

ii) Using the magnitudes of the ILP coefficients as a measure of line strength, and 

the phase of ICP coefficients as an orientation map, perform non-maximal 

suppression 

iii) Given the remaining coefficients, compute a map of weak lines based on both a 

threshold of ILP magnitudes and a threshold of ILP phases. The ILP phase acts 

to select lines and not edges 

iv) Similarly create a map of strong lines using stricter ILP magnitude and phase 
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thresholds 

v) Perform hysteresis to compute the final line map 

The result of applying this map to the striated normal region shown earlier is depicted in 

Figure 8.14. To compute weak and strong magnitude thresholds, a histogram of DT-

CWT magnitudes at each level was computed for all regions in our training data. At 

each level the weak threshold was set empirically to include 75% of all locations and 

the strong threshold 95%. For the ILP phase, a weak threshold was set at 0 (thus 

favouring any structures between a positive line and an edge) whilst the strong threshold 

was set at 4
π .  

Note that in our implementation, we explicitly detect lines at each frequency scale, as 

this is the information we use in the synthesis algorithm described in section 8.7. If 

instead we wanted to compute a combined line map across all frequency scales, then we 

could simply take the maximal coefficients across all orientations and scales (up-

sampling lower frequency levels as necessary) in the initial step of the detection 

scheme. Alternatively, a phase-congruency measure could be computed using the 

magnitudes and phase of ILP coefficients. This is discussed further in the next section 

when we consider other possible ways of combining the information provided by DT-

CWT, ILP and ICP coefficients.  

8.4.6 Discussion 

In the sections above we have described two phase-based transforms of the DT-CWT 

that provide added information to using DT-CWT magnitudes alone. We described the 

ILP and ICP transforms as they were originally presented by Anderson et al, and 
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showed modifications to the transforms so that their coefficients varied more 

consistently with structure rotation. 

 

Figure 8.14: Lines detected at the 2nd, 3rd and 4th levels for a region of a normal mammogram 

with striated tissue appearance 

 

The CLS detection scheme we proposed in section 8.4.5 uses the information provided 

by the ILP and ICP transforms. Conceptually, our algorithm is similar to those 

presented by Wai et al. [121], Schenk and Brady [103] and McLoughlin et al. [78]. 

However, in each of these cases the algorithm was used to produce a map of CLS at the 
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pixel level of a mammogram. As such information was combined across all scales in a 

measure of phase-congruency (see section 4.3.1). However rather than combining the 

information from all levels into a single measure, it may also be possible to use the 

distribution of energy and phase across scales to determine the complete cross-sectional 

shape of a linear structure.   

We also observe that in McLouglin et al.’s algorithm, a measure of feature consistency 

is computed in all orientated subbands. This allows linear features (that produce a peak 

magnitude in one direction) to be distinguished from round features (that have 

approximately equal magnitudes in all orientations). We recall that one of reasons for 

using the DT-CWT instead of a transform such as the monogenic signal was to obtain 

feature measures at more than a single orientation. However in the line detection 

algorithm we presented in section 8.4.5, only the coefficients from the subband of 

maximal response were used. 

For these reasons, we do not think that we have fully exploited the information provided 

by DT-CWT (and ILP/ICP) coefficients. Given this, we are working on developing a 

more complete model of the local relationships between DT-CWT coefficients in 

mammograms. Our aim is to use such a model not only to detect linear structures 

mammograms, but to be able to differentiate between different classes of structure, such 

as spicules, ducts, blood vessels or ligaments. However, work in this area is beyond the 

scope of this thesis and is only discussed further as a topic of future work (see section 

12.3). 

Having selected the DT-CWT as a suitable decomposition with which to work, and 

developed further tools to analyse linear structures within our mammogram regions, we 
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proceed to synthesising the appearance of mass backgrounds in normal regions. 

8.5 Directly transferring mass background appearance 

Our approach to simulating the appearance of a mass background can be summarised as 

follows: 

1. Take a region from a normal mammogram, and compute its DT-CWT 

2. Modify some or all of the DT-CWT coefficients to match the properties of a 

mass background 

3. Invert the DT-CWT to reconstruct a region now with mass background 

appearance 

The remainder of this chapter describes how step 2 might be achieved.  

In this section we describe our first attempt, in which DT-CWT coefficients from a 

target normal region are replaced with coefficients taken from the DT-CWT of a real 

mass background. 

For this method, we assume that all the abnormal structures in a mass background are 

captured in subbands above some frequency in the dual-tree pyramid, and contained 

within some contiguous region common to each subband. Moreover, we assume that the 

coefficients transferred within this region do not encode significant other structures or 

texture that will produce an unrealistic appearance in the reconstructed target region. 

We will discuss the validity of these assumptions later; however we first give a more 

detailed description of the method. 

To begin we define more carefully what we mean by a normal region, a mass 
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background and the set of coefficients to be transferred.  

We have already defined mass backgrounds in chapter 6. Recall that each mass 

background is an m  area of mammogram from which a single malignant mass has 

been subtracted. The centre of the region corresponds to the centroid of the subtracted 

mass, and the region extends to include all abnormal structures associated with the 

mass. 

n×

For a given mass background, we define the set of coefficients to be transferred with 

respect to a subset of pixels within the main region. This subset of pixels must be 

contiguous and contain all abnormal structures associated with the mass. However it 

does not (and indeed will not) be rectangular. To form this inner region we take the set 

of pixels enclosed by the annotated mass border (labelled as M  in chapter 6)  and dilate 

it until it includes all spicules labelled by an expert radiologist. We label the dilated set 

of pixels dM . Note that due to the decimation in the dual-tree transform, the elements 

of dM  do not directly specify locations in any DT-CWT subbands. Instead for each 

subband in the L-th level of a transform, the set of coefficients to transfer can be 

computed from dM  as 

, , | ( , )
2 2d L dL L

x yM x
⎧ ⎫⎛ ⎞⎡ ⎤ ⎡ ⎤= ∈⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠⎩ ⎭

y M . 

A target normal region can be any rectangular region of breast tissue extracted from a 

mammogram (digitised at the same spatial resolution) containing no signs of disease. 

Obviously the dimensions of this region must be larger than the maximum width and 

height of dM . Within this region we specify a pixel  to be the centre of the NC
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transferred region. 

Having made these definitions, we can now proceed with the algorithm for transferring 

the dual-tree coefficients, as detailed in Algorithm 8.1. 

 

Randomly select a mass background from the training set 

 

Decompose the target normal region and mass background into a dual-tree complex wavelets 
consisting of subbands { },LN θ  and { },LB θ  respectively, where = 1,…,5 represents the 

subband level and 

L
θ  the subband orientation 

Compute the centroid of dM , (
( , )

1 ,
d

M
x y M

c
n ∈

= ∑ )x y  where n is the number of pixels in dM  

for level  = 1 to 5  L

Compute the co-ordinates of the dual-tree coefficients to be transferred based on the 
region dM  and the factor of two down-sampling between DT-CWT levels 

  
,   ,  ( , )

2 2d L dL L

x yM x
⎧ ⎫⎛ ⎞⎡ ⎤ ⎡ ⎤= ∈⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠⎩ ⎭

y M  

Compute the down-sampled offset between the target and mass centres 

  
2

N Mc cc −⎡ ⎤= ⎢ ⎥⎢ ⎥
 

for each orientation θ  

Transfer the dual-tree coefficients from the mass subband into the target subband 

  ( ) ( ), ,, , ( , )L LN x c y c B x y x y Mθ θ+ + = ∀ ∈ ,d L  

end 

end  

Invert the modified tree { },LN θ  to reconstruct the modified target region 

Algorithm 8.1: Transferring DT-CWT coefficients from a mass background into a normal region 
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Clearly this is a somewhat simplistic method for simulating the appearance of a mass 

background region. However as a first attempt it does produce regions with mass 

background properties, albeit with the addition of several artefacts, as seen in Figure 

8.15. In the next section we consider a modification to the algorithm to overcome the 

mismatch of tissue orientations. 
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Figure 8.15: Synthesised region obtained by directly transferring DT-CWT coefficients from a 

mass backgorund into a normal region. Orientations are not yet aligned betweened the regions 

Modified region Mass background Normal region 

 

8.5.1 Aligning structure orientations 

As previously discussed, mammograms gain their appearance from the complex 

superimposition of ducts, blood vessels, fat and other tissues that comprise the breast. 

This can give rise to the appearance of a dominant orientation in regions where several 

clearly defined structures are aligned in a similar direction. 

In the method for modifying normal appearance described in the previous section, if in 

addition to abnormal structures, the mass background region has an underlying 

dominant orientation, the structures that give rise to the orientation will be encoded in 

the transferred DT-CWT coefficients. As a result the appearance of a dominant 
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orientation will be transferred to the target region. If this orientation differs from the 

existing dominant orientation of the target region, there will be a mismatch at the 

borders of the transferred region causing unrealistic appearance. This is apparent in 

Figure 8.15. The normal region contains strong linear structures with a primarily 

vertical orientation. In contrast, the dominant linear structures in the mass background 

are approximately horizontal. When DT-CWT coefficients are transferred from the 

mass background into the normal region, the mismatch in orientation causes a notably 

unrealistic texture in the centre of the modified region.   

This is depicted schematically in the top row of Figure 8.16. To prevent this mismatch 

of orientations, we rotate the mass background prior to computing its DT-CWT so that 

its dominant orientation matches that of the target region, as depicted in the bottom row 

of Figure 8.16. 

As an initial test, the angle of rotation for a mass background to match a target region 

was selected manually. Results of this process suggested such a scheme was feasible, 

however, in keeping with our aims for the overall mass synthesis method we must be 

able to compute this angle automatically. 

This was achieved by using the ICP and ILP transformations of the DT-CWT described 

in section 8.4. Recall that the phase of ICP coefficients provide a measure of local 

orientation, whilst ILP coefficients provide a measure of structure type and strength. 

Given a region, we compute its DT-CWT and subsequently its ICP and ILP transforms. 

Then the dominant coefficient across all scales and orientations is computed at every 

location for both transforms (up-scaling coefficients from lower levels as necessary). 

Coefficients with ILP phase of less than zero are discarded to remove edges from 
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further consideration (if present, the pectoral muscle in particular would confound the 

next step). Finally a histogram of ICP orientations, weighted by ILP magnitudes, is 

computed for the retained coefficients. Where a region has a dominant orientation, the 

histogram will be peaked. 
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Figure 8.16 Top row: Misaligned orientation in the mass and target regions; bottom row: 

Rotating the mass background to match up orientations (schematic regions) 

Mass background 
rotated by  45° Normal region 

Modified region with 
matching alignment 

Modified region with 
misalignment Normal region Mass background 

 

To match the orientation between a mass background and a target region we compute 

orientation histograms for both regions, each containing 360 bins. Having computed 

both histograms, we circularly permuted the mass background histogram, one bin at a 
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time, at each step calculating the cross-correlation with the target region histogram. The 

shift that produced the highest correlation across all 360 bins was taken as the angle by 

which to rotate the mass background. 

  234

 

Figure 8.17: Orientation histograms for the normal region and mass region depicted in Figure 

8.15. The histograms are matched to compute the most suitable rotation for the mass 

background. The right-hand image shows the resulting modified region following this alignment 

regions 

Modified region – 
orientations aligned Mass region histogram Normal region histogram 

 

The orientation histograms of the normal region and mass background depicted in 

Figure 8.15 are shown in Figure 8.17. These are displayed as rose plots to make clear 

the circular nature of the bin centres. For these two regions, an angle of 102º was 

calculated as the best angle by which to rotate the mass background. The result of 

applying this rotation prior to the transfer process is shown to the right of the two 

histograms in Figure 8.17. The modified region in this case appears much more realistic 

than the case prior to the rotation, depicted in Figure 8.15. 

8.5.2 Results 

In this section we show several examples of applying the transfer process described 
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above. The normal regions have been randomly selected from disease-free 

mammograms (in the following chapter we look in more detail at how target regions 

should be selected). 

 

Figure 8.18: 4 normal regions with mass appearance synthesised by directly transferring DT-

CWT coefficients. Subjectively, the regions on the left contain the desired appearance of a mass 

background; the regions on the right have unrealistic artefacts 

 

Note we shall only qualitatively evaluate the modified regions at this stage. A 

quantitative evaluation of regions produced by the method (with the addition of a 
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synthesised mass) will be reported in chapter 11. For now we judge how well a region 

has been modified by assessing whether any artefacts have been introduced into the 

region. We know the method will transfer the appearance of abnormal structures from 

the mass background; however it is apparent that additional unwanted modifications can 

be made to the target region. For example, there may be an overall blurring to the 

region, or there may be areas of texture generated that clearly do not match the 

appearance of mammogram tissue in the remainder of the region. 

Figure 8.18 shows four previously normal regions that have been modified to appear 

like mass backgrounds using the direct transfer method. The regions have been 

modified with varying degrees of success, as assessed subjectively. In the left column, 

we show two regions exhibiting mass background appearance with no noticeable areas 

of unrealistic texture. In contrast, the two regions on the right contain obviously 

identifiable areas of unrealistic texture. We will discuss how and why these artefacts 

occur in the next section 

8.5.3 Discussion 

We have described a method for modifying normal mammograms so that they match 

the appearance of mass backgrounds. This comprises directly transferring DT-CWT 

coefficients encoding abnormal structures from a real mass background to the DT-CWT 

of the normal region. 

This process was a useful proof-of-concept: it showed that our basic three stage 

approach (1. Compute DT-CWT of target region 2. Modify DT-CWT coefficients 3. 

Reconstruct region) was capable of producing mass background-like appearance in 

previous normal regions. 
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However the direct transfer of DT-CWT coefficients from an existing mass background 

has several shortcomings we would like to improve upon. 

Firstly, the method is capable of generating regions containing artefacts that would 

instantly identify the final mass background as synthesised. There are two main reasons 

such artefacts occur. Most obviously, the second part of the assumption stated at the 

start of 8.5, (that coefficients in the transferred region do not encode significant other 

structures or texture that will produce unrealistic appearance in the reconstructed target 

region) does not hold. For example, if the chosen mass background is from a 

particularly striated mammogram, then the DT-CWT coefficients transferred encode all 

of the high-frequency texture, reproducing the texture in the normal region. Of course, if 

the rest of the normal region is fatty, then having a large patch of high-frequency, 

oriented texture (in addition to any abnormal structures we wanted to transfer) will not 

look real. Conversely, transferring from a fatty mass background into a fatty-glandular 

normal region will produce a conspicuously smooth area in the centre of the modified 

region. 

To understand a second, more subtle, cause of artefacts in the modified regions, we 

recall the theory on the inter-level and inter-coefficient products of the DT-CWT 

discussed in section 8.4. Remember that structure type and orientation could be inferred 

by analysing changes in local phase (either spatially or across frequency levels). In 

directly transferring DT-CWT coefficients from one region to another, we maintain the 

local phase relationships between all internal locations in the transferred region (both 

spatially and between levels). However there may be mismatches in phase between 

transferred and existing coefficients, either spatially at the borders of the transferred 



Chapter 8 - Modelling the Appearance of Mass Backgrounds 

  238

region within each subband, or between the transferred coefficients in the 5th level and 

the existing coefficients in the 6th level. These discontinuities in phase may generate 

spurious structures in the reconstructed region. 

Aside from artefacts introduced in modified regions, there is another major shortcoming 

in directly transferring appearance from existing mass backgrounds: we are limited by 

the set of mass backgrounds we have. Compare the situation to generating synthetic 

masses in the previous chapter. There we used the finite set of masses to learn a model 

of the appearance of the general population of masses. As a result we were able to 

generate a potentially infinite set of unique synthetic masses that match the appearance 

properties of the real set. Here we can only ever generate mass background appearance 

derived directly from a real example. Of course even using the same mass background 

the final appearance of two modified normal regions will differ because of the 

differences in the normal tissue, however we cannot claim to be able to generate the full 

spectrum of abnormal mass background appearance.  

This problem is arguably more serious than that of generating artefacts in the modified 

regions. It may be possible to design a scheme to remove artefacts – for example by 

analysing and matching the texture of normal/mass background pairs prior to 

transferring the DT-CWT coefficients and then applying a regularisation step to remove 

discontinuities in local phase after the transfer. However the direct transfer method will 

always be limited by the finite set of training masses from which appearance can be 

transferred. For this reason, we propose learning a model of mass background 

appearance, which can then be used to generate a unique modified appearance in target 

normal regions. Such a model is described in the following section. 
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8.6 Synthesising mass background appearance from texture 
models 

We saw in the previous section that by modifying the coefficients of the DT-CWT of a 

normal region we could replicate the appearance of a mass background. Coefficients 

were modified from the 5th level of the transform upwards, so that high-frequency 

structures associated with a mass were generated, whilst maintaining the underlying 

appearance of the normal region. However replacing the coefficients in the normal 

region with coefficients directly copied from an existing mass background did not 

always produce realistic results. Moreover, by directly transferring appearance from a 

real mass background the set of possible regions we can generate is limited by the finite 

set of mass backgrounds in the training data.  

Thus instead of directly transferring DT-CWT coefficients, we require a method for 

generating new DT-CWT coefficients that match the properties of those from real mass 

backgrounds, without being exact copies of them. In addition, the coefficients generated 

must match the coefficients that aren’t replaced in the normal region – both at the 

borders of the modified region and from 6th level of the transform downwards. Without 

this criterion, artefacts of unrealistic texture will appear in the reconstructed region, as 

we saw in Figure 8.18. 

Our solution is to learn a statistical model of the DT-CWT coefficients from real mass 

backgrounds. Like the model for masses described in the previous chapter, this will 

govern the way in which the coefficients can vary, so that samples randomly drawn 

from the model are unique whilst sharing the properties of the real data used to train the 

model.  
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However, applying the same form of model as used with masses will not work with 

mass backgrounds. In the model of mass appearance each mass was ultimately 

described by a single appearance vector and thus a new unique mass could be generated 

by randomly sampling a single vector from the model. We seek an analogous method 

for modelling mass backgrounds, but unlike a mass, a mass background cannot be 

thought of as a single entity with a shared set of appearance correspondences across the 

dataset. Therefore it is not possible to fit a global appearance model to the set of mass 

backgrounds. Instead, we turn to the texture synthesis literature, and look at models that 

can describe appearance locally on a patch-by-patch basis. 

8.6.1 Local texture modelling 

In section 4.4 we reviewed previous work in texture synthesis, notably the work by 

Efros and Leung [40] and Rose [98]. Given the importance of these algorithms in 

influencing the synthesis methods developed in the remainder of the chapter, we briefly 

review both algorithms again below. 

Efros and Leung’s algorithm can be seen as the basic template for local patch-based 

texture synthesis. Given a sample texture, all possible square symmetric patches are 

extracted and stored. Given an initial seed (either a patch sampled randomly from those 

stored or a partially filled image), new texture is generated by adding pixels 

successively to the image until all pixels are filled. For each unfilled pixel, the 

surrounding partially filled patch is extracted and the distance between this patch and all 

stored exemplar patches calculated. The central pixel of the best matching exemplar is 

then added to the new image. Despite its simplicity, the algorithm has been shown to be 

one of the most effective and flexible texture synthesis algorithms. 
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Rose [98] produced an algorithm that adapted the main structure of the Efros and Leung 

algorithm to a generative probabilistic framework. Instead of being stored as exemplars, 

the patches in the sample texture were treated as feature vectors in some multi-

dimensional space. A Gaussian Mixture Model was fitted to model the distribution of 

all such vectors. During synthesis, partially filled patches were extracted about a central 

unfilled pixel, but rather than searching for the closest matching patch from the training 

set as in Efros and Leung’s algorithm, the filled pixels were used to condition the learnt 

distribution, allowing values for the unfilled pixels to be randomly sampled from the 

model.  

One advantage of the probabilistic approach for synthesising mammograms is that 

adding more feature vectors does not increase the computational expense of synthesis. 

In the exemplar based algorithms such as Efros and Leung’s, if the set of patches 

increases (either by using a larger training image or selecting multiple training images), 

then the additional patches must be checked for a match at synthesis time. This makes 

generating texture from a large training set of images infeasible. In contrast, whilst 

adding more feature vectors increases the cost of learning the model distribution, the 

cost is not passed on to synthesis. Because the modelling stage need only be performed 

once, this makes using a large training set of examples possible. This is important for 

mammograms where a single region is unable to capture the full spectrum of 

mammographic texture. 

The algorithm developed by Rose suggests a local patch-based probabilistic model 

could produce realistic regions of mammogram texture. However, by operating directly 

in the image domain, the algorithm had limitations when filling in regions of an existing 
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mammogram. For the final region to appear realistic, the overall (low-frequency 

components) appearance should be maintained, with new detailed structure and texture 

(high frequency components) added. For a particularly clear example, consider 

generating texture in a region overlying the edge of the pectoral muscle, as shown in the 

left of Figure 8.19. If the synthesis is successful, in addition to generating realistic 

mammographic texture, the near straight line of the pectoral muscle edge should be 

maintained in the region. In right of Figure 8.19, we show the result of applying our 

implementation of Rose’s algorithm. Here we trained the model on a set of 10 regions 

each of which overlapped the pectoral muscle sampled from normal mammograms. 

Note how despite successfully generating realistic local texture, the underlying structure 

of the pectoral muscle is lost, even though pectoral regions were used as training data.   

 

Figure 8.19: Synthesising mammogram texture using Rose’s algorithm for local image patches. 

Realistic texture is created but the structure of the pectoral muscle is lost. 

 

This example provides the motivation for computing a multiscale decomposition of the 
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training images before applying a probabilistic texture synthesis algorithm. Firstly, if we 

are using the synthesis algorithm to modify regions as we describe in this chapter, then 

the low frequency coefficients of the region need not be discarded. By choosing to only 

generate new coefficients above some frequency level in the decomposition, we 

guarantee the overall appearance (such as the structure of the pectoral muscle) will be 

maintained in the reconstructed region.  

Moreover, rather than attempting to model all image frequencies at once (as we do 

when working directly in the image domain), we can apply separate models to each 

level of the decomposition. Effectively each model has a simpler task, because it needs 

only to learn the textural variations of a particular scale. Thus the set of individual 

models combined should provide a better description of the data than a single model 

encompassing all scales. Subsequently, the combined models should produce more 

realistic synthesis results. 

A similar argument applies for applying a texture model in conjunction with an image 

decomposition across multiple orientations. Of course there are no orientations for 

which we can simply use the existing coefficients, but explicitly separating responses to 

structures into oriented subbands gives the texture models a better chance of learning 

the important variations in the data. 

For these reasons we propose a texture synthesis algorithm that combines the generative 

probabilistic model used in Rose and Taylor’s algorithm with the DT-CWT. Instead of 

training models on a set of images, we first compute the DT-CWT of each image. 

Separate Gaussian Mixture Models are then fitted for each frequency level of the 

transforms. Subsequently, rather than building a single local texture model describing 
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the probability distribution of image patches, we build multiple local models of patches 

of DT-CWT coefficients9. The composition of the DT-CWT patches reconstructs image 

texture. Thus by modelling the DT-CWT coefficients, we are ultimately modelling the 

texture of the mass backgrounds in our training set. 

8.6.2 Choosing data to model 

Before we can build local texture models of DT-CWT coefficients, we must first decide 

what coefficients should be included in the patch for a given location and scale. Clearly 

this is more complicated when using a multiscale multi-orientation decomposition than 

it is when working in the image (where a patch is simply defined as square set of pixels 

about a central location). 

Firstly we look at the direct analogue to an image patch and consider a local patch of 

coefficients within a single subband. As with the algorithms in the image domain, we 

take this local patch to be a square set of coefficients about a central location. To align 

the central location with a coefficient location the square must have odd-dimensions. 

The size of the patch must be large enough to capture the structure of the texture being 

modelled. However, unlike working in the image domain, we do not have to capture the 

structure of all frequencies in a single patch. This allows us to select smaller local 

patches within each subband. For example, a 5×5 patch of coefficients in the 4th level of 

a DT-CWT has an area of 80×80 pixels relative to the image. Moving up through finer 

scales, by the time we reach the top-level of the transform, the lower levels should have 

                                                 

9 Note that a local patch of DT-CWT coefficients may in fact comprise multiple patches sampled at the same location 

across different subbands. For convenience we refer to this as a single patch. 
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captured long-range interactions in the image. Therefore an equivalent 5×5 patch of 

coefficients in the top-level should suffice to capture the local high-frequency structure. 

Note that capturing the long-range interactions between structures in the mass 

backgrounds is vital for the synthesis model to succeed. This is because we must learn 

not just how mammogram texture appears, but the unique appearance of texture and 

structure in mass backgrounds that distinguish them from normal mammogram regions.  

To test the theory that 5×5 patches are sufficiently large, we look at the (linear) 

correlation between DT-CWT coefficients at each location in a square patch and the 

central coefficient for a large set of patches drawn randomly from the training data. In 

Figure 8.20, we show plots of these correlations for a single orientation band within the 

top four transform levels. The colour of each square in a plot depicts the magnitude of 

the correlation coefficient (the covariance divided by the product of the standard 

deviations) between that location and the centre. The colour scheme ranges from blue 

(zero) to a maximum at red; the value of this maximum is depicted next to each plot 

(note we have set the central pixel to zero to improve contrast, although obviously the 

correlation coefficient here is one).  

As we see below, because the complete feature is a concatenation of the elements from 

local patches across multiple subbands, we want to choose as small a local patch as 

possible. We can see that sampling a 5×5 patch about the centre coefficients should be 

sufficient to capture local correlations. 

So far we have talked about the DT-CWT decomposing mammographic texture into 

subbands localised in scale and orientation. However this does not mean that 

coefficients within each subband can be treated independently. Thus having defined a 
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local patch within a single DT-CWT subband we now consider what combination of 

subbands should be included to form the complete feature vector at any location in a 

given scale. We also note that because the DT-CWT coefficients are complex, the real 

and imaginary parts effectively form two separate subbands at each scale and 

orientation. 
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Figure 8.20: Correlation plot showing the interaction between DT-CWT coefficients within local 

11x11 patches of a single oriented subband for a given scale 
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In Figure 8.21 we show similar plots to those in Figure 8.20. However this time the 

plots show the correlations between the real and imaginary DT-CWT coefficients at 

equivalent locations in each oriented subband for a given scale. So for example, the first 

row (or column, by construction the plots are symmetric) shows the extent to which a 
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coefficient in the first oriented subband is correlated to the real part of the other five 

oriented subbands, its own imaginary part and finally the imaginary part of the other 

five subbands (here the leading diagonal of correlation coefficients that should be one 

have been set to zero to improve contrast). 

As we would expect there are strong correlations between adjacent orientations. For 

example the real part of coefficients in band 1 has strong correlations to the real part of 

coefficients in band 2 and the imaginary part of coefficients in band 6. Clearly our 

model(s) must account for these correlations, and we can do this in one of two ways: 

i) Group local patches of DT-CWT coefficients for adjacent orientation bands, 

(for example { , ,{ ) and fit separate models to each. At 

synthesis time, we would then conditionally sample groups of patches 

sequentially to generate coefficients across all six subbands 

1, 2,3} {3, 4,5} 4,5,6}

ii) Group local patches of DT-CWT coefficients for all six oriented subbands 

and fit a single model at each frequency level 

The advantage of the first approach is the greatly reduced dimensionality of the feature 

space produced by the combination of patches. For example, if as suggested above, we 

choose  local patches, then the feature vector comprising patches from all six 

subbands has  elements. Adequately populating such a feature space 

requires a very large amount of data and in turn makes learning the distribution of the 

feature space difficult. Thus splitting the data into separate models may be beneficial. 

5 5×

25 6 2 300× × =

However building separate models has several disadvantages. The models have a 

greater redundancy. For example, using the suggested groupings above, we would need 
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to fit to three 150-dimensional spaces as opposed to a single 300-dimensional space. 

The cost of this redundancy is also passed on at synthesis time when we have to 

condition each group of patches in turn. 
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Figure 8.21: Correlation plots showing the interaction between the real and imaginary parts of 

DT-CWT  coefficients across the 6 oriented subbands for a given scale (scale levels 1 to 4 shown). 
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Given that we have no shortage of data and the fact that model fitting, unlike synthesis, 

needs only to be performed once, we choose to use the second approach. That is, we 

combine local patches of both the real and imaginary parts of DT-CWT coefficients 
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from all six oriented subbands for the model at each frequency level. Other possible 

ways of generating feature vectors from the DT-CWT coefficients of a particular level 

are discussed in section 8.6.6.    

The final step in choosing what data we model is to consider correlations across scale. 

Figure 8.22 shows the correlation between DT-CWT coefficients at different scales 

given a fixed location. The correlations have been computed for both real and imaginary 

parts of DT-CWT coefficients sampled from all six oriented subbands. We see there is 

evidence that coefficients between frequency levels are correlated, and as we would 

expect, the strongest correlations are between adjacent scales. However the magnitudes 

of the correlations are approximately a factor of 10 smaller than both the correlations 

between spatially adjacent DT-CWT coefficients and correlations across orientation. 
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Figure 8.22: Correlation plot showing the interaction between DT-CWT  coefficients across 

scales 1 to 5 
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We have already stated our intention to build separate texture models for each 

frequency level, but we do not want to ignore the interaction of coefficients between 

scales. In particular, we have already seen that linear structures persist across scale 
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in a DT-CWT, and therefore the coefficients that generate such features must be 

correlated across scale. 

Thus, to each local patch from an oriented subband we append the coefficient sampled 

at the centre location of the patch from the next coarsest DT-CWT level. Note that as 

we saw in the construction of the ILP in section 8.4.3, the coefficients in the coarser 

level must first be interpolated to lie on the same grid of locations as the level above. 

We summarise this section by giving a formal labelling to the composition of the 

feature vector as defined above. 

For a given location ( , )x y  in the L-th level of a DT-CWT comprising subbands ,LB θ , 

we extract the feature vector  as: x

{ }

( ){ }
( )

'

,

' '
1,

, | 15 , 45 , 45

, | , 0,1,

,
L

L

Q Q

Q B x u y v u v

Q B x y

θ θ

θ θ

θ θ

θ

+

= = ± ± ±

= ± ± =

=

x

2
 

Where Qθ  are the local patches of coefficients sampled from oriented subbands within 

level L and 'Qθ  are the oriented coefficients sampled from the next level ( '
1,LB θ+  being 

the interpolation of 1,LB θ+ ). As a result of this construction, each feature is a 312 

element vector. 

 In the next section we describe how we can model the distribution of all such vectors in 

each level. 

8.6.3 Fitting a Gaussian Mixture Model 
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P i

In the previous section we defined how we form feature vectors to describe scale-

specific patches of DT-CWT coefficients. Having extracted all such vectors from the 

training set transforms, we have populated a large multi-dimensional feature space for 

each of the five highest-frequency scales of the transforms. We now attempt to model 

the distribution of these feature spaces. 

To each feature space we fit a Gaussian Mixture Model using the k-means clustering 

algorithm [76]. This was chosen because of it had been successfully used in similar 

texture modelling applications [92, 98]. As a result of applying the algorithm to a 

feature space, the probability distribution at each point in the space is defined as the 

weighted sum of k multidimensional Gaussian kernels. Thus for any feature vector  in 

this space, the probability of  can be written as  

x

x

( ) ( | ) ( )
k

i
P P i=∑x x  

where i indexes the i-th Gaussian component and ( )( | ) ,i iP i Nx μ Σ∼ . The mean iμ and 

covariance of each Gaussian component are computed as the sample mean and 

covariance of each cluster returned from the k-means algorithm, whilst the prior 

probabilities for each component  are computed as the proportion of the total points 

assigned to each cluster. 

iΣ

( )P i

In selecting k, we must make sure we choose a value high enough to allow the model of 

combined components to be rich enough to describe the complexities of the distribution. 

In addition, the k-means algorithm can be run so that unnecessary clusters (that is, one 

to which no – or very few – points are assigned) are dropped, so a conservatively large 

value of k can be chosen. To assess this, models were built for each level using 
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increasing values of k (starting at k = 10 and increasing in increments of 10) until at 

least one cluster was dropped during the algorithm. Because the k-means algorithm is 

susceptible to getting stuck in local minima, having selected a value of k, we repeated 

the modelling 100 times at each level, choosing a different randomly selected 

initialisation of clusters for each repeat. Within each level, the model that returned the 

most compact clusters was selected. 

We label the model fitted to data extracted from the L-th level of the transforms  (L = 

1,…,5). In the next section we describe how the models can be used to synthesise 

appearance in target regions of normal mammograms. 

LG

8.6.4 Sampling new texture from the model 

In this section we show how the Gaussian Mixture Models of DT-CWT feature vectors 

can be used to synthesise new coefficients and subsequently modify the appearance of 

normal regions. 

The first step is to define a region in a dual-tree transform within which to generate new 

coefficients. In the direct transfer method described in section 8.5 the region was based 

on the extent of abnormal structures in the real mass background transferred. Of course 

we no longer have a template real mass to base this choice on. Instead we simply define 

the region with respect to a circle in the image domain. This circle must be large enough 

to encompass all abnormal structures we wish to generate. Because this region is 

analogous to the dilated region of mass pixels used in Algorithm 8.1, we label it 

{ }= ( ,  )dM x y ∈ ×Z Z . 

The algorithm for modifying the appearance of a normal region  is given below. It is N
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initialised by decomposing  into a DT-CWT comprising subbands N { },LN θ . 

for levels L = 5, 4, 3, 2, 1:  

Adjust the co-ordinates of the region to be synthesised to account for the factor of two 

down-sampling between DT-CWT levels 
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,d L   ,  | ( , )
2 2 dL L

x yM x y M
⎧ ⎫⎛ ⎞⎡ ⎤ ⎡ ⎤= ∈⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠⎩ ⎭

 

for each orientation θ :  

Interpolate the coefficients in  1,LN θ+  to lie on the same locations as ,LN θ  

Discard the existing DT-CWT coefficients in , ,L dM( , ), ( , )N x y x yθ L∈  

end 

for each ,( , ) d Lx y M∈ , moving from the edge of the unfilled region inwards:  

Construct a feature vector  (see x Algorithm 8.3 below) 

Sample the unknown values of x  by conditionally sampling from the corresponding 

level model given the known values of  LG x

Reform the now complete windows { }| 15, 45, 7Pθ θ = ± ± ± 5  and reinsert into each 

subband ,LN θ  

Remove any coefficient locations from  that have just been filled ,d LM

end 

end 

Algorithm 8.2: Synthesising mammographic texture using local models of DT-CWT coefficients 
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When all subbands { },LN θ  are filled, we can reconstruct the synthesised mass 

background by inverting the DT-CWT. Note to sample each new coefficient in 

Algorithm 8.2 we need to extract a feature vector from the partially filled DT-CWT 

subbands. Algorithm 8.3 describes how this is achieved for a location ( , )x y  in the L-th 

level of a transform. 

for each orientation θ  

Extract dual-tree coefficients from the 5x5 patch surrounding ( , )x y : 

( ){ }, , | , 0,..., 2LQ N x u y v u vθ θ= ± ± =  

Having discarded the existing coefficients above, Qθ  will only be partially filled, 

with  in particular unknown. , ( , )LN x yθ

Extract the interpolated dual-tree coefficient from the next coarsest level:  

( )'
1, ,LQ N x yθ θ+=  

Since 6,N θ  remains unchanged, and synthesise proceeds from 5th to 1st level, 

 will always exist ( ,xθ )y1,LN +

end 

Concatenate all the sampled windows { }, | 15, 45, 75P Qθ θ θ = ± ± ± into a single sample 

vector x  

Algorithm 8.3: Constructing a partially filled sample vector about each coefficient during the 

synthesis method described in Algorithm 8.2 
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8.6.5 Synthesis results 

In Figure 8.23 we show four examples of regions modified using the Algorithm 8.2. The 

normal regions that have been modified are the same regions that were modified in 

Figure 8.18. A central circular area has been synthesised in each region – this area is 

marked by the dashed yellow circle in the top left image. 

As with the results presented in section 8.5.2, the regions are assessed visually in the 

following section but not evaluated quantitatively. 

8.6.6 Discussion 

It is interesting to note that the modified regions generated from the model-based 

synthesis method described in 8.6.4 suffer from the different problems of those 

generated from the direct transfer method described in section 8.5. That is, the regions 

produced by directly transferring DT-CWT coefficients displayed the kind of abnormal 

structures (such as spicules) we would expect to find in a mass background but in 

addition contained unrealistic texture and image artefacts. In contrast, the regions 

produced by synthesising new DT-CWT coefficients appear to be free of image 

artefacts but do not convey the appearance of mass backgrounds we were hoping to 

achieve. The images exhibit the appearance of mammographic regions in which no clear 

linear structures are visible. Thus we have not managed to generate high-frequency 

mammogram structures such as spicules or indeed some of the finer structures in the 

parenchyma. 
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Figure 8.23: 4 examples of regions modified by synthesising new DT-CWT coefficients from 

probabilistic models of texture. The dashed yellow circle marks the area the that has been 

modified in each region 

 

Below we discuss what has caused the failure of the synthesis model to produce 

structures in the modified region. We consider two contributing factors to the failure: 

1) The local models are not generating patches of DT-CWT coefficients that 

correspond to mammographic structures (referred to below as the 
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correspondence problem) 

2) The local models are generating DT-CWT patches that correspond to structures, 

but not with the correct spatial arrangement to generate structure when the 

transform is inverted (referred to below as the spatial alignment problem) 

As an analogy, if the set of DT-CWT subbands was thought of as a jigsaw puzzle, then 

problem one states that we’re not producing the right jigsaw pieces. In contrast, problem 

two states that we’re able to produce the right pieces, but we’re not putting them 

together in the correct order. We consider each problem in turn below. 

The correspondence problem 

We must first consider whether we have adequately modelled the probability 

distribution of the feature vectors within each frequency level. Each feature vector 

consists of 312 elements producing a complex multi-dimensional feature space. We 

expect feature vectors corresponding to different local patterns of mammogram regions 

(for examples segments of linear structures) to lie in clusters within this space. In fitting 

a Gaussian Mixture Model we hope to have found the centre of these clusters and in 

doing so describe the complete probability density of the feature space. However there 

are several ways the model fitting may fail. These include: 

− The k-means algorithm getting stuck in local minima. This can be mitigated by 

repeating the clustering with different random seeds and selecting the result that 

produces the most compact cluster (as described in section 8.6.3) 

− There not being enough feature points to adequately populate the feature space. 

Certainly with models fitted to coefficients from the higher frequency levels this 
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shouldn’t be an issue, however because of the down-sampling in the DT-CWT 

we have much less data to work with in the lower frequency levels. If the data 

doesn’t adequately populate the feature space we cannot learn the probability 

density throughout the space 

− The feature vectors within the space may lie on a complex non-linear manifold, 

the density of which cannot be adequately modelled by mixtures of Gaussian 

components 

For all of the points above (and especially the first two), model fitting would be easier if 

the number of dimensions in the feature space was dramatically reduced. Note that the 

synthesis method based on the models requires an explicit calculation of the joint 

probability between dimensions in the space, and therefore simply applying 

dimensionality reduction techniques (such as PCA) to the data prior to model fitting will 

not work. Instead, a better solution would be to build a more compact representation of 

the local patches of DT-CWT coefficients. 

For example, we currently do not make the best use of the orientated subbands of the 

DT-CWT. The appearance of high-frequency structures in mammograms is not 

dependent on orientation, so the cross-sectional shape and intensity of a spicule is not 

affected by its orientation. As a result, at any location in the vicinity of a structure, the 

pattern of DT-CWT coefficients across the six subbands with respect to the maximal 

subband should be the same whatever the structure’s orientation. Note this isn’t true for 

lower frequency levels where the appearance of structures may depend on the global 

alignment in the mammogram. This means we should be able to construct rotation 

invariant features vectors. Although not used for synthesis, the work of Kingsbury [66] 
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has shown one way of constructing such features from DT-CWT coefficients. 

Using rotation invariant features may not reduce the size of the feature vectors (and in 

fact we would have the additional task of recording the orientation elsewhere) but it 

should compact the space they lie in. In the current models, if we took six copies of a 

particular structure and aligned each to one of the six subband orientations then the 

feature patches we extract corresponding to the structure would lie in six different parts 

of the feature space. However, using rotation invariant features would result in just one 

part of the feature space being populated. Thus different parts of the feature space 

should correspond to different structure types, as opposed to the same structure at 

different orientations. This should make modelling the feature space easier. 

In addition, we may be able to use the sparseness of the DT-CWT to a greater degree. 

Given a rotation invariant feature, it could be that all the important information 

regarding structure is encoded in a small number of coefficients of a local patch. As an 

example, Figure 8.24 shows the normal region and mass background previously 

depicted in Figure 8.10 and Figure 8.11. For each region we computed its DT-CWT, set 

all coefficients except the maximum across the six orientation bands to zero, and then 

inverted the transform. The resulting reconstructions of the regions are also shown in 

Figure 8.24. 
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Figure 8.24: Left column: the mass background and striated normal region depicted in figures 

8.10 – 8.13. Right column: DT-CWT reconstructions of the regions using only the maximum of 

the 6 orientations for each coefficient 

 

The reconstructions bear a close resemblance to the original regions, yet only a sixth of 

the DT-CWT coefficients we have previously attempted to model were used. Thus it 

may be that a model of local patches containing only the important coefficients would 

be enough to distinguish between the appearance of mass backgrounds and normal 

regions. This model would encode all the necessary information on the spatial 
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distribution of structure.  

Of course to reconstruct a photo-realistic region we need to generate all the coefficients, 

but this may be achieved by having a separate model of the relationship between the 

important coefficients and the remaining coefficients. Because this model does not need 

to learn the spatial distribution of structure, feature vectors could be formed for 

locations as opposed to patches. Thus the combined size of the feature vectors for the 

two models would be much smaller than the complete 312-dimension vectors we have 

previously modelled. 

A last point to consider on selecting feature vectors is whether transformations of the 

DT-CWT coefficients would be useful. For example, we saw in section 8.4.3 that in the 

vicinity of a structure there is a constant relationship between the phase of a DT-CWT 

coefficient and double the phase of the corresponding coefficient in the next coarser 

level. Thus modelling may be easier if DT-CWT phase was replaced by an inter-level 

phase difference in the feature vectors we extract from the data. Such a transformation 

would not give any further information to the model but it may cause the feature vectors 

to lie in a space that is more conducive to model fitting. An ideal model fitting method 

should be able to learn the phase relationships directly from DT-CWT phase, but as we 

discuss below, we do not yet have an ideal model fitting method! 

Even if we do manage to construct far more compact feature vectors to encode mass 

background appearance, the feature vectors may still form a non-linear probability 

density that is not well approximated by mixtures of Gaussian components (at least 

without having to try and fit a prohibitively large number of components). As a topic of 

future work, we intend to assess whether a different method for learning non-linear 



Chapter 8 - Modelling the Appearance of Mass Backgrounds 

probability density functions in high dimensional spaces would be more suitable for our 

data. Given that a magnitude and phase based representation of our data may be most 

appropriate we are particularly interested in those methods that explicitly deal with 

circular data. This includes, for example, the work by Mardia [77] and Pennec [90]. We 

note however that finding a generic method for fitting density distributions to high-

dimensional non-linear data remains an ongoing mission in the pattern recognition field.  

The spatial alignment problem 

In addition to generating DT-CWT patches that individually encode all the information 

required to reconstruct image structure, the models must also generate these patches in 

the correct spatial arrangement. If the correct spatial arrangement is not achieved, 

structure will not be realised when the region is reconstructed from the modified DT-

CWT. 

For example consider a DT-CWT patch that corresponds to a small segment of a line in 

a mammogram. For a line to be generated in the reconstructed region the models must 

produce multiple adjacent line patches aligned at the correct orientation. Our intention is 

that such patterns would be controlled by conditioning coefficients at each frequency 

level on the lower frequency levels. Thus if in a coarse level there is a 5×5 patch of 

coefficients corresponding to a line of some orientation, then in the next finer level there 

is a 10×10 patch of coefficients each of which is conditioned by a coefficient in the 

coarser patch. As a result the models should favour the generation of coefficients in the 

finer level that also correspond to a line at the same orientation. Simultaneous 

conditioning on neighbouring coefficients within the finer level acts to ensure these 

‘line’ coefficients align correctly. This conditioning continues upwards through to the 
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finest DT-CWT levels. 

Of course, this assumes we generate a suitable low frequency representation of mass 

background structure in the lowest level synthesised, otherwise there is no evidence of 

structure to pass upwards through the DT-CWT levels. 

In addition, conditioning between levels enforces only a weak dependence on 

generating coefficients that correspond to structure. In the next section we look at 

whether the models can be forced to produce coefficients corresponding to structure at 

designated locations in the image. 

8.7 Adding a model of global structure 

In the previous section we described how the local texture models we have built do not 

adequately encode the long range interactions within an image that give rise to 

particular patterns of structure. 

In this section we introduce a method designed to overcome this limitation. 

8.7.1 Synthesising structure separately 

The basis of the new method is to build local texture models for DT-CWT patches that 

correspond to structure, in addition to models that correspond to generic mammographic 

texture.  

We assume that for every DT-CWT in the training data, we have a binary map for each 

frequency scale that specifies which locations within that scale have coefficients 

corresponding to structure. To build the models that correspond to structure we then 

simply repeat the processes described in section 8.6.3, but rather than populating the 

feature space with all possible feature vectors from the training data, we sample 
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from only those locations that correspond to structure. Similarly the models for generic 

mammographic texture are fitted to data sampled only from locations that do not 

correspond to structure. 

To synthesise new coefficients we assume that we have a binary map for the target 

region analogous to the maps for each transform in the training data. Synthesis can then 

proceed as described by Algorithm 8.2. However now in each level we first sample 

coefficients for all locations that corresponding to structure from the appropriate 

structure model. We then fill in the gaps by sampling from the appropriate generic 

texture model, before proceeding to the next finer level. Finally, the modified transform 

is inverted as previously to reconstruct a synthesised mass background. 

We refer to this method of synthesis as using a hybrid model. This is because the model 

combines a global map of structure with a local model of texture. In the next section we 

discuss how maps of structure could be generated. 

8.7.2 Generating binary maps of structure 

From the method described above, two questions are apparent. Firstly, how do we 

obtain the binary map of structure for the training data? Secondly, how do we obtain 

such a map for the target region? 

To answer the first question, we note that we have already developed a line detection 

algorithm using DT-CWT coefficients, as described in section 8.4.5. This algorithm can 

be used to generate binary maps for each mass background in the training data 

However the question of how we might obtain a binary structure map for a target region 

poses a much harder problem. First we consider what properties the map should have, 
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before discussing some theoretical ways of achieving these properties. 

The binary map for the target region should contain, at each frequency level: 

- all existing structure in the normal region, albeit with some of this structure 

distorted spatially 

- additional structures corresponding to abnormal features such as spicules 

As with our models of mass appearance and local mammogram texture, our aim is to be 

able to learn the valid set of constraints in which such maps vary, using the maps from 

real mass backgrounds as training data. New maps could then be sampled 

probabilistically from this model. To build such a model, we require a fixed length 

parameterisation that provides a compact representation of any given map. For the 

model to be generative, we must be able to reconstruct a complete mass from the 

compact representation. 

However, because the set of structures within any one mammogram region may differ 

greatly, it is hard to define a set of consistent correspondences across a dataset of 

structure maps. As reviewed in section 3.3.1, the problem of learning patterns of 

mammographic structure has been studied [63, 88, 96]. We note however that previous 

work has concentrated on learning models to discriminate between normal and 

abnormal regions of mammogram, and do not provide a clear mechanism for 

synthesis10. 

 

10 We will discuss the possibility of using the work developed in this thesis towards similar discriminative tasks in 

section 12.3 
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From a texture synthesis point of view, work such as that by Wu and Yu [127] has 

addressed the issue of combining explicit representations of structure with local texture 

models (see section 4.4). However in Wu and Yu’s algorithm structure is imposed 

locally on a patch-by-patch basis in parallel to sampling from the texture model. Thus 

the algorithm does not provide the global representation of structure we desire. 

In light of not being able to generate binary maps for target regions in a probabilistic 

framework, we use a simple alternative to show a proof of concept for the synthesis 

method described in 8.7.1. First we randomly select a mass background from the 

dataset. We then extract an equivalent sized region from a normal mammogram. We use 

the map of structure for the mass background to synthesise DT-CWT coefficients for 

the top five levels of the normal region, following the method described in section 8.7.1. 

Figure 8.25 shows synthesise results for the four normal regions that were depicted in 

Figure 8.23. In each case, we used the mass background depicted in Figure 8.24 as a 

template.  

The most interesting aspect of these results is that the synthesised mass backgrounds 

contain no more structure than those produced using Algorithm 8.2 in section 8.6.4 (see 

Figure 8.23). Thus despite explicitly imposing a map of structure on the region, we are 

not generating the necessary patches of DT-CWT coefficients for the structure to be 

realised in the reconstructed region. This gives further evidence to support our belief 

that we have not yet solved the correspondence problem discussed in section 8.6.6. 

Both the correspondence problem and the problem of generating a global map of 

structure for a region are the source of ongoing work, as discussed in chapter 12.  
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Figure 8.25: 4 examples of regions modified by synthesising new DT-CWT coefficients from 

probabilistic texture models. An explicit model of structure has been imposed on the regions, 

however this has not succeeded in generating more structure than the regions depicted in Figure 

8.23  

 

8.8 Discussion 

We have discussed three different methods for generating synthetic mass background 

appearance in normal mammograms. In each case synthesis was achieved by modifying 

the coefficients of the DT-CWT of a normal region to match the properties of DT-CWT 

coefficients in mass backgrounds. 
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In section 8.5 the normal DT-CWT coefficients were modified by taking direct copies 

of coefficients from a real mass background. This generated the abnormal structures 

associated with a mass background as desired but also produced image artefacts that 

might betray the modified region as synthetic. 

In section 8.6 we generated new DT-CWT coefficients by randomly sampling from 

local texture models. The models were built to encapsulate how DT-CWT coefficients 

in mass backgrounds were distributed on a patch-by-patch basis. By conditioning 

models for each frequency level on the adjacent coarser scale, the models were designed 

to capture the long-range interactions between structure that characterise the appearance 

of mass backgrounds and differentiate them from normal regions. However, as 

discussed in section 8.6.6, the synthesised mass backgrounds produced from the model 

did not contain the abnormal structures as intended. This suggested the models were 

inadequately learning the distribution of DT-CWT coefficients for mass backgrounds. 

The synthesis method presented in section 8.7 was designed to overcome the failure to 

produce structure when synthesising from the texture models described in section 8.6. 

The method used a hybrid model that combined a global map of structure with local 

models of texture. The training data of mass background DT-CWT coefficients were 

split into two classes, those corresponding to linear structures and those not, based on 

the linear detection algorithm described in section 8.4.5. Separate models were fitted to 

each class of coefficients. To synthesis a new region, a template binary map of structure 

was required. Using a map taken from a real mass background to generate synthetic 

mass appearance in an equivalently sized normal region showed that further work was 

required in constructing the local texture models. In addition, we do not yet have a 
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method for generating new binary maps of structure that are not direct copies of real 

examples. 

Given the potential of the methods shown in 8.6 and 8.7, our intention is to continue 

work in this area, implementing some of the changes suggested in 8.6.6 and 8.7.2. This 

is discussed further in the section on future work in chapter 12. However, to complete a 

quantitative evaluation of the mass synthesis method developed throughout this thesis, 

we require a method for synthesising mass backgrounds that generates abnormal texture 

associated with masses. Therefore despite its limitations, the method of directly 

transferring DT-CWT coefficients from an existing mass background to a normal region 

is the one we use to generate synthetic mass backgrounds in the remaining chapters of 

the thesis.  

8.9 Summary 

This chapter has presented a comprehensive body of work exploring the appearance 

properties of mass backgrounds. We have looked at how we can model mammographic 

texture, and in particular, how we can modify a normal mammogram region so that it 

matches the appearance of a mass background. 

In section 8.2 we gave a brief review of previous attempts at synthesising the 

appearance of mass backgrounds. We noted that all previous work focused on 

simulating the appearance of individual spicules associated with a mass and did not 

propose a more detailed method for combining such structures – either with other 

spicules, the synthesised mass or the surrounding breast tissue. We stated our belief that 

limiting the focus to individual structures was not sufficient to realistically synthesise 

the complete appearance of malignant masses, and used this to motivate the work in the 
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remainder of the chapter. 

Given our stated goal of modelling the complete appearance of mass backgrounds, in 

8.3 we noted that the grey level pixel intensities of the mass backgrounds alone did not 

provide a rich enough description of the data. Instead we proposed decomposing the 

regions in the training set across scale and orientation. After reviewing previous work, 

we experimented with two wavelet based decompositions: the steerable pyramid and the 

dual-tree complex wavelet transform (DT-CWT). The key properties of both were that 

they separated images into subbands localised in scale and orientation whilst being 

invertible. The invertibility provided a natural path to synthesising new regions. 

However we observed that a real-valued steerable pyramid is not shoft invariant, whilst 

a complex valued steerable pyramid has a greater redundancy than the DT-CWT. Thus 

ultimately we chose to use the DT-CWT in the work presented in this chapter. 

In section 8.4 we showed how further transformations of the DT-CWT could be used to 

gain greater information about structures, and particularly linear structures. We looked 

at the inter-level (ILP) and inter-coefficient (ICP) products, and presented our own 

modifications to the previously published transformations. The modified ILP and ICP 

transforms provided a further useful tool for modelling and analysis in the remainder of 

the chapter. 

Having selected the DT-CWT as a suitable decomposition for mammographic regions, 

and developed tools for detecting linear structures, we proposed the following three 

stage framework for synthetically generating the appearance of mass backgrounds in 

normal regions: 
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1) Decompose a normal region into its DT-CWT 

2) Modify some or all of the DT-CWT coefficients based on the distribution 

of coefficients in the transforms of real mass backgrounds from our 

training data 

3) Invert the modified DT-CWT to reconstruct the now modified normal 

region 

Given this framework, sections 8.5, 8.6 and 8.7 describe three different methods for 

completing step 2. As with the method for synthesising masses described in the 

previous chapter, all three methods for generating mass background appearance in 

normal regions can be run automatically, without the need for further user input for any 

individual region. As discussed both within the respective sections and in section 8.8, 

each of the three methods had its disadvantages. As a result, the direct transfer method 

presented in section 8.5 was chosen as the best method to use in the evaluation of the 

full synthesis method described in chapter 11. The more promising but complex 

methods based on synthesising from generative probabilistic texture models (described 

in sections 8.6 and 8.7) are the subject of ongoing research and will be discussed again 

in chapter 12.  

In summary, in this chapter we have shown how we can convert regions of normal 

mammograms to have the appearance of mass backgrounds. These synthetically 

generated backgrounds complement the method for synthetically generating masses 

described in the previous chapter. Thus to complete our method for synthesising 

malignant masses in normal mammograms it remains to: 
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i) Match the properties of a synthetically generated mass to a synthetically 

modified target region 

ii) Automatically select the location of a target region within a normal 

mammogram 

In the following two chapters, we show how the two goals can be achieved. 
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Chapter 9 : Adding masses to mass backgrounds 

9.1 Introduction 

In the preceding three chapters we have presented a set of methods for modelling 

mammographic masses. In chapter 6, we described how each mass in a training set of 

data could be separated from its background, effectively producing two new sets of 

data: masses and mass backgrounds. In chapter 7 we showed how to build a combined 

model of mass appearance to describe the variation in shape, size and texture of the set 

of masses. In chapter 8, we investigated ways of modelling the set of mass backgrounds 

so that mass background appearance could be synthesised in normal mammogram 

regions. As a result of this work, we are able to synthetically generate: 

1) A mass – by randomly sampling from the combined model of mass appearance 

built in section 7.8 

2) A mass background – by modifying the appearance of a normal region as 

described in Algorithm 8.1 

In this chapter we show we can combine the two, thus reversing the separation process 

described in chapter 6, and generating a complete mass. The appearance properties of 

the complete mass should match the properties of the real masses in our training data as 

they originally appeared in mammograms. 

To begin the process of combining masses and mass backgrounds, we look again at the 

separation process described in chapter 6. Using the same labelling as previously, we 

can define a rectangular X Y×  pixel region about any of the masses in our training data 

as 
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( , ), 1,..., , 1,...,R x y for x X y Y= =  

Within this rectangular region, there will be a set of pixels { }( , )M x y=  that, due to x-

rays passing through the mass, have a higher grey level than pixels at which x-rays 

passed only through normal breast tissue. Thus we can describe the region R  as the 

sum of two sources of intensity, such that 

( , ) ( , ) ( , ) , ( , ) 0 ( , )M B MR x y R x y R x y R x y x y M= + = ∀ ∉  

Applying the separation process described in chapter 6 to each mass in the training data 

produced the set of separated masses { }MR  modelled in chapter 7 and the set of mass 

backgrounds { }BR  modelled in chapter 8. 

If we now consider the synthesis methods described in the preceding two chapters, we 

recall we can sample from the mass appearance model to generate a synthetic mass MS

BS

, 

and can modify any normal mammogram region into a synthetic mass background . 

Here MS  is rectangular region generated so that its centre is also the centroid of the 

mass (i.e. the centre of mass of non-zero pixels in MS  where each non-zero pixel is 

given an equal weighting). Meanwhile  is a rectangular region in which mass 

background appearance has been synthesised about some central pixel 

BS

( , )c cx y .  
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Providing  is sufficiently largeBS 11, MS  can be padded with zeros to be the same size as 

 and such that the mass centroid in BS MS  has co-ordinates ( , )c cx y . As a result, if  is 

an 

BS

X Y×  pixel region, we can generate a complete mass  such that S

( , ) ( , ) ( , ) 1,..., , 1,...,B MS x y S x y S x y for x X y Y= + = =  

That is, we simply compute the pixel-by-pixel sum of intensities in the synthesised mass 

and mass background.  

In the formulation above, we have treated MS  and  as independent of one another. 

However, for the complete region  to look realistic, the appearance properties of 

BS

S MS  

must match those of . In the following section we show how this can be achieved. BS

9.2 Sampling synthetic masses to match mass backgrounds 

To develop a method for matching masses to mass backgrounds we first consider how 

synthetic mass backgrounds are formed. Recall, from the discussion in section 8.8, we 

have chosen to synthesise mass background appearance using Algorithm 8.1. In this 

algorithm a normal region is modified by directly transferring DT-CWT coefficients 

from a real mass background randomly selected from the training data. 

Therefore if  is a synthetic mass background generated using BS Algorithm 8.1, there 

will be some real mass background BR  that has a strong correlation to . 

Consequently, if 

BS

MR  is the real mass that was separated from BR  in chapter 6, there will 

                                                 

11 In section 10.3.3 we will show how we can ensure a large enough region for  is always selected BS
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be a correlation between the appearance of  and BS MR . This means that the synthesised 

mass we combine with  should have a similar appearance to the real mass BS MR . 

If we now consider the mass appearance model built in section 7.7, we recall that the 

appearance of each mass in the training data was parameterised by a combined 

appearance vector. This vector specified co-ordinates along axes in the model feature 

space defined by the set of principal modes . If we label the combined appearance 

vector for a real mass 

comP

MR  and a synthetic mass MS  as  and  respectively, then 

stating that 

comb comb

MS  should have a similar appearance to MR  is equivalent to saying that 

 should lie close to  in the model feature space. comb cob m

In section 7.8, new appearance vectors were sampled from the model feature space by 

assuming a Gaussian distribution over the space. This distribution was assumed to have 

no covariance between modes and so each element of a new vector could be sampled 

independently from a univariate Gaussian distribution. Thus if there were D modes in 

the combined appearance model, a new vector of mass appearance  could be 

sampled such that 

comb

( ) (0,com i N Db ∼ ),iλ 1,...,i =  

 where each iλ  was computed as the standard deviation of model parameters in the 

training data along the i-th principal mode. 

In this chapter, to ensure that a sampled vector   lies close to a real appearance 

vector , we fix the first d elements of  to be equal to the first d elements of 

comb

comb comb
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comb . That is, we generate  such that comb

i

= =

cob

comb

  
( ) ( ), 1,...,

( ) (0, ), 1,...,

com com

com i

i i i d

i N d Dλ = +

b b

b ∼

Note that this doesn’t force  to lie close to  along all dimensions of the space. 

Indeed for modes greater than d,  can lie infinitely far from . However, the 

modes of the appearance model are ordered in decreasing variance. So moving from 1 

to D, the elements of  have a decreasing effect on the appearance of the 

reconstructed mass 

m comb

comb comb

MS . Thus by fixing only the first d modes of  we ensure the 

general shape, size and intensity of 

comb

MS  will be similar to MR , whilst allowing the 

details of the synthetic mass to vary.  

The number of modes we fix controls the extent to which MS  is constrained to the 

appearance of MR . For example, setting 0d =  enforces no constraint, whilst setting 

 results in d = D MS  being equivalent to the full model reconstruction of MR  (see 

section 7.3). This effect is shown in Figure 9.1, in which the top row contains a real 

mass from the training data. In each of the five rows under the real mass, there are four 

synthetic masses sampled from the mass appearance model, with the number of fixed 

modes, d, increasing in each row. The values of d shown are 0, 1, 3, 5 and 10 

respectively (in each case D = 32). We can see that in the top row, where no constraints 

are used ( ), the synthetic masses bear very little resemblance to the real mass. In 

particular we can see the size and overall intensity of the masses vary greatly. Moving 

through the subsequent rows we can see the masses become more similar in appearance 

0d =
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to the real mass. 

To select a value for d for a particular mass appearance model, we can visually assess 

the change in appearance of the mean mass as a result of varying each mode through ±2 

standard deviations (whilst keeping all other modes fixed). This allows us to see how 

each principal mode changes the appearance of a mass.  

For example, in an appearance model built from the masses in our training data using 

the method described in sections 7.3, 7.4 and 7.5, the first and second modes are 

associated with a large change in mass size, along with a change in the overall intensity 

of the mass. The third, fourth and fifth modes are primarily associated with a change in 

mass shape – specifically an elongation, a triangulation and a squaring of mass shape 

respectively.  From the sixth mode onwards, the effects on mass appearance are more 

subtle. The size, overall intensity and low-frequency shape of the mass tend to be 

similar. Instead the modes are associated with changes in the distribution of intensity 

across the mass and higher frequency variations in mass shape. 

In constraining the appearance of a synthetic mass to match a mass background, we 

want the general properties of the mass to be fixed, whilst allowing the details of the 

mass to vary. We therefore choose to set d = 5. We note however, that having a 

quantitative method for selecting d would be preferable. This issue is discussed further 

in section 9.4.  
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Figure 9.1: Top row: a real mass from the training data; Subsequent rows: four synthetic masses 
sampled from the mass appearance model after fixing the first 0, 1, 3, 5 and 10 modes of the 
sampled appearance vector to the real mass 

Synthesised masses 

d = 10 

d = 5 

d = 3 

d = 1 

d = 0 

Number of 
fixed modes

Real mass 
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9.3 Aligning masses in mass backgrounds 

In the previous section we showed how given a synthesised mass background, we can 

generate a synthetic mass to match the appearance properties of the region. However we 

have not yet considered how the synthetic mass should be rotated. 

In the first stage of building an appearance model of masses, the shape of each mass 

was aligned using Procrustes analysis, as described in Algorithm 7.2. As a result of 

applying the Procrustes algorithm, the rotation, translation and scaling needed to align 

each mass to the mean mass shape was computed. The three parameters together 

describe the pose of mass shape in a region. 

The scale parameter of each mass shape was included in the combined appearance 

model so that correlation between mass shape and texture and mass size was included in 

the final model (as described in section 7.6).  

Meanwhile the translation of each mass shape encodes the location of its centre relative 

to the mammogram from which it was extracted. However, as discussed in section 9.1, 

the synthetic masses and mass backgrounds considered in this chapter are generated to 

have matching centres, and so we do not need to consider translation when matching the 

appearance of the two. Modelling the location of a mass with respect to the 

mammogram from which it is extracted, and thus properly accounting for translation, is 

the subject of the next chapter.  

Therefore in matching the pose of a mass shape to a mass background it remains to 

consider rotation. 

In Figure 9.1, each of the synthesised masses have been rotated to match the orientation 
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of the real mass to which they are matched. Because the real mass used in this example 

has a generally round shape, rotating each synthetic mass has made little difference in 

their similarity to the real mass. However a real mass that is particularly elongated only 

matches the properties of its mass background at the correct orientation. This is 

highlighted in Figure 9.2. 

In Figure 9.2 (a) we show a real mass, R , that has an unusually elongated shape 

compared to the majority of masses in our data. If MR  and BR  are the mass and mass 

background generated by separating R  in chapter 6, then we can generate a new region 

'R  by rotating MR  through 90 degrees about its centre, before adding MR  back to BR .   

Figure 9.2 (b) shows the modified region 'R . In both R  and 'R , the mass outline and 

the dominant spicules in the region have been annotated. In Figure 9.2 (b), we see that 

after rotating through 90 degrees, the mass no longer matches the spicules in the mass 

background. 

We now consider how a synthetic mass MS  should be rotated within a synthesised mass 

background . We assume  has been generating using BS BS Algorithm 8.1, in which a 

real mass background BR  was used to modify the appearance of a normal region N. As 

discussed in section 8.5.1, prior to applying the algorithm, BR  is rotated so that the 

dominant orientation of its breast tissue aligns with the dominant orientation of breast 

tissue in N. We label the angle of this rotation φ . 
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Figure 9.2: a) A real mass from the training data with mass outline and spicules annotated b) the 
result of separating the mass, rotating through 90 degrees, and adding back to the region 

 

(a) (b)

If MR  is the real mass associated with BR , and MR  has a rotation parameter of θ , this 

means the mass shape in MR  was rotated by θ  prior to constructing the shape model in 

section 7.4. So if MR  is reconstructed from its model parameterisation, its shape must 

be rotated by θ−  to correctly match BR . Therefore to match MS  to  , the mass shape 

in 

BS

MS  must be rotated by φ θ− . 

We can now write a complete algorithm for generating a synthetic mass in any region of 

normal mammogram N, as shown in Algorithm 9.1. 
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Randomly select a real mass background BR  from the training data 

Rotate BR  to match the dominant tissue orientation of N  and store the angle of rotation φ  

Generate the synthesised mass background  from  and BS N BR  using Algorithm 8.1 

Let MR  be the mass separated from BR ,  be the parameterisation of comb MR  in the mass 

appearance model and θ  be the rotation used to align MR  during Procrustes analysis 

Generate a new mass appearance vector  such that: comb

  
( ) ( ), 1,...,5

( ) (0, ), 6,...,

com com

com i

i i i

i N i Dλ

= =

=

b b

b ∼

Compute com comcom com= +x x P b  

Separate comx  and invert the weighting to form shapeb , texb and scaleb  

Compute: 

 

shape shapeshape shape

tex textex tex

scale scalescale scale

= +

= +

= +

x x P b

x x P b

x x P b

 

Rotate the new shape shapex  by φ θ− , and scale scalex  

Map the new texture texx to the new shape shapex , to produce the synthetic mass MS  

Pad MS  with zeros so that it matches the dimensions of BS  

Compute the complete mass region M BS S S= +  

Algorithm 9.1: Complete set of steps for generating a synthesised mass S in a normal region N 

The algorithm described above was used to generate the three complete abnormal 

regions shown in the right-hand column of Figure 9.3, from the three normal regions 

shown in the left-hand column of Figure 9.3. In chapter 11, the realism of 30 masses 

generated using Algorithm 9.1 is evaluated in an observer study. The results of this 

evaluation, including observations on the appearance the masses from expert 
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mammography readers, are discussed in detail in section 11.6. Therefore the appearance 

of the masses shown in Figure 9.3 is not discussed here. 

9.4 Discussion 

In section 9.2 we described how we can generate a synthetic mass MS  so that it has 

similar general properties of appearance to a real mass MR . If  is the D-element 

vector that parameterised

comb

MR  in the model of mass appearance, and  is the 

appearance vector from which 

comb

MS  is reconstructed, a likeness between MS  and MR   

was achieved by fixing the first d elements in  to be equal to the first d elements of 

.  

comb

comb

In terms of sampling from the model feature space, fixing the first d modes of  

effectively collapses the first d dimensions of the space. The remaining elements of 

comb  can then be randomly sampled from (D - d)-dimensional subspace by assuming a 

Gaussian distribution over this subspace. Generating comb  in this manner means that the 

final D - d elements of comb  have no effect on comb  (other than the contribution  

made when learning the global model). This allows the details of 

comb

comb

MS  to vary freely 

from MR , whilst constraining the size, low-frequency shape and overall intensity of 

MS . 
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Figure 9.3: Synthesising masses in normal regions. The left-hand column contains three normal 
regions; the right hand column shows each normal region complete with a synthesised mass and 
modified backgorund, generating using Algorithm 9.1 
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In section 9.2, we described how we selected d given an appearance model built from 

our training set of masses. This involved visually assessing how the appearance of the 

mean mass was affected, by varying each combined appearance mode through ±2 

standard deviations. As a result we selected a value of d = 5 to produce a sufficient level 

of constraint between a synthetic mass and a real mass. Analysing the variance stored 

along each mode in the model, we see that the first 5 modes are responsible for 75% of 

the total variance. We suggest this threshold could be used to a value for d in models 

built from other datasets. 

An alternative method for ensuring a likeness between a synthetic mass and a real mass 

would be to allow  to be randomly sampled across all D modes, but force the space 

from which each  is sampled to lie in the vicinity of . For example, rather 

than assuming a Gaussian distribution across the entire model space, we sample from a 

local Gaussian distribution centred on . In this case, the extent to which 

comb

(com ib ) ( )com ib

comb MS  

resembles MR  is controlled by the standard deviation along each mode of the local 

distribution. Increasing the standard deviation along each mode would tend to generate 

sampled vectors  lying further from , thus increasing the difference in 

appearance between 

comb comb

MS  and MR . However, as with selecting a value for d (described in 

section 9.2), we do not have a quantitative method for determining the standard 

deviation along each mode.  

In the absence of a quantitative method for selecting the standard deviations, we prefer 

the method of fixing a set number of modes in a sampled appearance vector to ensure a 
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likeness between synthetic and real masses. Whilst this method still requires a 

subjective decision to select d, the effect of fixing specific modes in the model is easier 

to visualise than the effect of allowing a limited variation across all modes. In addition, 

having selected the number of modes to fix for a given model, we can compute the 

proportion of variance this constrains in the model. As discussed above, setting a 

variance threshold of 75% could provide a measure to quantitatively select the number 

of fixed modes in mass models built from different datasets.  

In both the methods for constraining a synthetic mass discussed above, we have 

assumed we have a real mass to which it should be similar. This is because the method 

chosen to synthesise mass backgrounds (Algorithm 8.1) uses a real mass as a template 

when modifying a normal region. However, as discussed in sections 8.6 and 8.7, we are 

working on a method for synthesising mass backgrounds that does not rely on using 

individual real masses as templates. Thus we conclude this section by considering how 

synthetic masses and mass backgrounds could be matched using the region synthesis 

method proposed in section 8.7. 

In the method proposed in section 8.7, mass background appearance was synthesised 

with respect to a map of structure. The map specified the location of structures (both 

normal and those associated with a mass such as spicules and microcalcifications) in the 

region, and was parameterised by a fixed length vector in a global model of mass 

background structure. 

If both mass background maps and masses can be parameterised as fixed length vectors, 

then the joint probability of maps and masses can be learnt from our training data. 

When a new mass background map is sampled to synthesise a mass background, we can 
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use the joint distribution to sample a mass appearance vector. As a result the synthetic 

mass reconstructed from the appearance vector should match the synthesised region 

generated from the mass background map. Thus in addition to providing a probabilistic 

framework in which to synthesise mass backgrounds, the method proposed in section 

8.7 leads naturally to a quantitative, probabilistic method for matching masses and mass 

backgrounds.  

9.5 Summary 

In this chapter we have described how a synthetic mass can be generated to match a 

synthesised mass background.  

In section 9.2, we noted that using Algorithm 8.1 to generate a synthetic mass 

background caused a strong dependence between the background and a single real mass 

from the training data. Using the parameterisation of masses in the combined 

appearance model (generated in section 7.7), we constructed a synthetic mass so that its 

general shape, size and texture matched those of the real mass. 

In section 9.3, we showed that to complete the match between a synthesised mass and a 

mass background we must ensure the mass shape is correctly rotated. Once this was 

achieved we were able to formalise the set of steps required to synthesise a complete 

mammographic mass within any normal region. These steps were described in 

Algorithm 9.1. Again we note that no parameters need to be manually adjusted during 

Algorithm 9.1, and thus the algorithm can repeated without the need for user input. The 

method can therefore be used to generate large sets of synthetic mammographic masses 

automatically. 
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However, in both this and the previous chapter, we have so far talked about synthesising 

a mass background from an existing normal mammogram region. We have not yet 

discussed how we obtain a normal region from a mammogram. As stated in section 

3.2.2, the aim of the work in this thesis is to demonstrate a method for automatically 

generating a set of mammographic masses in a set of real normal mammograms. Thus 

to complete this method we must show how a region can be automatically selected from 

a normal mammogram. Achieving this is the subject of the next chapter. 
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Chapter 10 : Locating Synthetic Masses in Normal 
Mammograms 

In the previous chapter we presented a complete method for synthesising 

mammographic masses. As described in Algorithm 9.1, given any normal mammogram 

region as input, we can generate the appearance of a malignant mass within the region. 

However this does not yet meet the goal of our thesis. As stated in section 3.2.2, we aim 

to develop a method for synthetically generating mammographic masses in normal 

mammograms. Thus in addition to showing how we can synthesise a mass within a 

normal region, we must show how the region can be selected from a normal 

mammogram.  

In this chapter we present a method for selecting a suitable region within any normal 

mammogram in which to generate a synthetic mass. The remaining sections of this 

chapter show how this can be achieved.   

10.1 Introduction 

In chapters 8 and 9, we referenced a normal region with respect to some centre pixel, 

about which mass appearance was generated. Therefore selecting a region in which to 

synthesise a mass from a normal mammogram is equivalent to finding a suitable 

location for the centre of a mass. 

In this section we give a brief review of a previous method designed to select mass 

centres in normal mammograms and use this as a basis for developing our own method. 
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In section 3.2, we reviewed several methods for synthesising mammographic masses. 

Of the methods that synthesised a mass directly in a 2-D mammogram12, only the work 

of Caulkin [23] described a detailed method for selecting a location within the 

mammogram at which to generate the mass. 

Caulkin’s method proposed the use of a set of mammograms containing malignant 

masses as training data. The breast shape of each mammogram was extracted and used 

to learn a mean breast shape. The mean breast shape was then taken as a common co-

ordinate frame, and the location of each mass centre relative to this shape calculated. A 

probability density function was fitted to describe the distribution of locations within 

the mean breast and was used to sample new locations in normal mammograms. 

The advantage of this approach is that if it is used to select locations for synthetic 

masses in a set of normal mammograms, the distribution of these locations should 

match the distribution of mass locations in a real set of data. 

We note though, that given a normal a mammogram, a location sampled using 

Caulkin’s method is based only on the shape of the breast. The method does not 

consider the appearance of breast tissue at the location selected. Because of this, 

Caulkin noted that the local texture properties of a region selected using the method did 

not always match the appearance properties of a mass synthesised in the region. For 

this reason, Caulkin manually selected the locations of synthetic masses used in the 

evaluation of the work in his thesis. 

 

12 As opposed to synthesis methods in which a 3-D breast model is projected into 2-D such as in Bliznakova’s 

method [17] 
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Using our mass synthesis method, we have shown in chapters 8 and 9 how the local 

appearance properties of a normal region can be modified and a synthetic mass 

generated to match these properties. This allows a mass to be generated in any normal 

region and therefore a method for selecting mass centres using only breast shape is 

sufficient for our work. 

However, Caulkin’s method for selecting mass centres is not adequate for our needs. In 

particular, there are three areas in which the method must be improved: 

1) The model of mass location described by Caulkin is computed using manual 

segmentations of the breast in each mammogram. Using this model to select a 

region from a new normal mammogram requires a manual segmentation of the 

breast in the new mammogram. This contradicts our goal of creating a fully 

automatic synthesis method, and therefore we develop a new model based on 

automatic segmentations of the breast 

2) The model described by Caulkin applies only to MLO mammograms. However our 

synthesis method applies to both CC and MLO mammogram, and therefore we 

extend the model of mass location to cover masses in CC mammograms 

3) The model described by Caulkin allows masses to be sampled in the immediate 

vicinity of the skin-air boundary of a breast. Such locations are not realistic (or 

indeed physically viable if the mass crosses the skin-air boundary) and thus we 

describe how the model can be adapted to prevent this from happening 

In sections 10.2 and 10.3 we describe how we have implemented the improvements to 

Caulkin’s method outlined above. We start by showing an automatic algorithm to 
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segment the breast in each mammogram of our training set.  

10.2 Segmenting the breast in a mammogram 

In this section we formalise what we mean by segmenting the breast. Figure 10.1 

depicts an MLO mammogram of a left breast and a CC mammogram of a right breast, 

with various features of the mammograms labelled. The aim of a breast segmentation 

algorithm is obtain an accurate outline for the breast in any given mammogram. We are 

particularly interesting in finding the skin-air boundary which marks the boundary 

beyond which x-rays pass only through air. In the two mammograms depicted in Figure 

10.1, the skin-air boundary is marked by the green dashed line. 

In general the skin-air boundary of a CC mammogram begins and ends at the chest wall 

edge of the mammogram, forming an approximate semi-circle. In MLO mammograms, 

the skin-air boundary should begin at the top edge of the image and ends either at the 

bottom of the image or at the chest wall edge (depending on whether or not the infra-

mammary fold was captured in the mammogram). 

Because of the physical properties of the compressed breast, the skin-air boundary 

should be approximately smooth. So for the purpose of building a model of breast 

shape, we require a segmentation algorithm that produces a smooth contour. However, 

obtaining a smooth boundary may not be necessary for other applications such as 

computing breast density where the segmentation is used as a mask to determine the set 

of pixels to be included in the calculations. 
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Figure 10.1: An MLO and a CC mammogram. The skin-air boundary and pectoral muscle edge 

are marked by the dashed green lines. The red labels depict other features of mammograms that 

may affect an automatic segmentation algorithm 

View 
label 

Pectoral 
muscle 

Anonymised  
patient label 

Off-film regions 

 

In addition to the breast, there are several other features of a mammogram that must be 

taken into account when finding an outline for the breast. These features are labelled in 

Figure 10.1, and discussed briefly below. 

- Off-film region: the off-film region in a mammogram is generated when the 

mammogram is digitised. It usually forms a near white border at the edge of the 

digitised image. Because of its extreme gey-level and characteristic straight edges it 

is usually easy to determine and is excluded from the image prior to locating the 



Chapter 10 - Locating Synthetic Masses in Normal Mammograms 

  295

breast boundary 

- Patient label: The patient label always appears in the top left corner of right 

mammograms and the bottom right corner of left mammograms. In the original 

films it is an area of high intensity, however all the mammograms in our data have 

been anonymised prior to digitisation and thus a near black rectangle covers all but 

the edges of the patient label. Because of its fixed position, the patient label can be 

excluded at the start of any segmentation algorithm and plays no part in 

determining the breast border 

- View labels (and other image markers): the view label in each mammogram 

specifies whether the mammogram is a CC or MLO view of the left or right breast. 

It does not have a fixed position, and in some mammograms may be located close 

to the skin-air boundary. In such cases the view label may cause problems because 

it generates features (for example a strong edge) that may be confused with the 

breast border in automated algorithms. In addition to the view label, there may be 

other labels and stickers in the mammogram. As with the view label, if any of these 

are located too close to the breast they may cause problems in an automated 

segmentation algorithm 

- Pectoral muscle: In MLO mammograms the pectoral muscle appears as an 

approximately triangular region of high intensity (relative to breast tissue) in the 

upper corner of mammograms. We find the boundary between the pectoral muscle 

and the breast (as marked in Figure 10.1) as part of our segmentation algorithm, so 

that the boundary can be used to define an axis of alignment for the breast in MLO 
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mammograms. 

In the following sections, we describe a method for segmenting the breast and pectoral 

muscle in each of the mammograms in our training data. The breast segmentation 

algorithm we present is based upon one developed by Ferrari et al. [44]. We then 

discuss why Ferrari et al.’s method was chosen as a base and discuss the changes we 

have made. We also discuss how our algorithm relates to other methods previously 

reviewed in section 3.3.2. 

As with many of the segmentation algorithms reviewed in section 3.3.2, our algorithm 

is divided into two main stages: 

1) Obtaining an approximate estimate of the main breast region that lies inside the 

skin-air boundary 

2) Finding the skin-air breast boundary in the region surrounding the approximate 

breast region 

We describe in detail our method for achieving each of these two steps in the following 

sections.  

Before proceeding we note that all mammograms were initialised to be upright with the 

chest wall on the left side of the image. Thus prior to segmentation, mammograms of 

the right breast were reflected about the vertical axis. All mammograms were resized to 

have a spatial resolution of 250μm per pixel. This represents a loss of resolution relative 

to the images used to model mass appearance; however the additional spatial resolution 

is not required to segment the breast. As reported in section 5.1.1, all mammograms 
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were 8-bit images with grey level pixel intensities ranging from 0 to 255. 

10.2.1 Obtaining an approximate breast region 

Ultimately the aim of a breast segmentation algorithm is to determine the skin-air 

boundary of the breast. However, the breast pixels in the immediate vicinity of the skin-

air boundary attain their intensity due to x-rays passing through only a thin layer of skin 

and fat. Because of this, the grey levels of these pixels are usually much closer to the 

grey levels of background pixels than to the pixels in the remainder of the breast and the 

contrast between breast pixels at the skin-air boundary and the background is very low. 

This makes finding the skin-air boundary directly (that is, without prior knowledge of 

its approximate position) difficult.  

Our solution is to compute an approximate region for the breast, comprising the set of 

pixels that can be differentiated from the background by setting a threshold on pixel 

grey level. The edge of this region can be used to initialise a search for the skin-air 

boundary. By construction this edge should lie inside the skin-air boundary, and thus we 

label it as the inner breast edge in the remainder of this chapter. 

To compute a threshold for each mammogram, we generated a grey level histogram 

(with one bin per grey level from 0 to 255) for each mammogram. Whilst there may be 

local fluctuations in the bin counts, the histograms of all mammograms in our training 

data share a similar shape. There is a large peak at low grey levels associated with 

background pixels, a second peak associated with breast pixels (this second peak may 

have several local maxima depending on the composition of the breast) and a final spike 

at very high grey levels associated with the near-white pixels in the off film region. In 

Figure 10.2 we show the combined histogram of all the mammograms in our training 
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data, along with the two histograms of individual mammograms. In each case, the 

histograms share the characteristics described above. 

Figure 10.2: Pixel intensity histograms for the combination of all mammograms in the training 

data (red) and for two individual mammograms (blue) 

 

For each histogram we attempt to find the midpoint between the peak associated with 

background pixels and the peak associated with breast pixels. This is achieved by 

applying the Lloyd-Max algorithm [75] to compute the centroid of the two peaks. So 

that the spike associated with off-film pixels does not confound the algorithm, the 

algorithm was applied to the first 240 histogram bins. Computing the midpoint of the 

background and breast pixel peaks provides a grey level  with which we can threshold 

the mammogram. 

g

In applying the threshold we generate a binary map such that all pixels with grey level 

greater than g  are defined as breast pixels and assigned a value of one. All pixels less 

than or equal to g  were assumed to be background and assigned a value of zero. 

Depending on the composition and position of identification labels in the mammogram, 
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some labels may not have been set to zero along with some bright “speckle” pixels in 

the background. To remove these, all pixels except those belonging to the largest object 

in the binary map are set to zero. Additionally, all zero pixels in the interior of the 

largest object are set to one. 
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Figure 10.3: Binary masks of an MLO mammogram: a) After the initial threshold is applied b) 

After applying morphological opening and discarding all but the largest region  

(b) (a) 

 

The remaining breast object may be attached to the off-film region, as depicted in 

Figure 10.3 (a). Although the main characteristic of the off-film region is its high (near 

white) grey level, it cannot usually be removed simply by thresholding the original 

mammogram. This is because there is often a diffuse region adjacent to the off-film area 

where the intensity fades from near white to the near black background. Instead, we 

apply morphological opening to the binary map, thus removing (that is, setting to zero) 
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the off-film region as depicted in Figure 10.3 (b). Given the typical width of the off-film 

regions in our data, we found opening with a 75 pixel disc was appropriate. However 

the size of the structuring element may need to be varied for films obtained from a 

different digitiser (which may introduce off-film regions of a different size). 

The resulting map is used as an approximate region for the breast. The inner-breast edge 

can then be computed as the perimeter of this region (ignoring where the perimeter lies 

on the top, bottom and chest wall edges of the image). 

10.2.2 Finding the skin-air boundary  

Determining the inner breast edge in a mammogram, as in the previous section, 

provides an approximate location for the true skin-air boundary of the breast. In general, 

the skin-air boundary should run approximately parallel to the inner breast edge, with 

the two edges separated by a small distance. However, the exact distance is determined 

by the size and composition of the breast, whilst local irregularities in the inner breast 

edge mean that the skin-air boundary won’t always be parallel to the inner edge. Due to 

physical properties of the compressed breast though, we expect the skin-air boundary to 

be a smooth curve, with a possible irregularity at the nipple. 

To find the skin-air boundary we first smooth the inner breast edge by computing a 

moving average along the edge. This ensures the local orientation of the inner edge is 

smooth. We then extract grey level profiles from the mammogram along lines normal to 

the direction of the smoothed inner breast edge. To avoid profiles that overlap, the 

profiles were sampled at every 25 pixels (~6mm) along the smoothed edge.  
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Figure 10.4: Image formed by stacking the set of normal profiles sampled at intervals from the 

inner-breast edge of the mammogram shown in Figure 10.1: a) displayed using a grey-scale map b) 

displayed using a contrast enhanced RGB colour map 

Skin-air boundary 

(b) (a) 

Position of inner breast edge (50th column of image) 

 

The coordinates along each profile define the set of positions from which the final skin-

air boundary is computed. Although the skin-air boundary should lie outside the inner 

edge, there may be local deviations in the inner breast edge that cause this not to be the 

case. For example, this could occur if a patient label was located too close the breast. 

Thus we extend the normal profiles 50 pixels (~12mm) inside and 150 pixels (~37mm) 

outside the inner edge (the values were empirically chosen – however experiments show 
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that providing they are large enough, the algorithm is robust to changes in the profile 

length – thus the profiles can be chosen to be conservatively large). 

In Figure 10.4 (a) we show an image generated by stacking the set of normal profiles 

extracted from the mammogram depicted in Figure 10.1. By construction, pixels lying 

on the smoothed inner edge now form the 50th column of the normal profile image. The 

strong inner breast edge originally detected by thresholding the mammogram is clearly 

visible in the immediate vicinity of this column. Meanwhile the much lower contrast 

skin-air boundary lies to right. The weakness of the skin-air boundary makes it virtually 

impossible to see in the grey-scale image depicted in Figure 10.4 (a), however it can be 

seen in Figure 10.4 (b) by using a contrast enhanced RBG colour map. 

To detect the skin air boundary we make use of three of its key properties: 

i) In the image of normal profiles it forms a near vertical edge that 

changes from higher intensity to lower intensity moving from left to 

right 

ii) Of the edges in the normal profile image matching the properties 

defined in point (i), it has the lowest grey level values 

iii) In the original mammogram it forms a smooth curve 
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Figure 10.5: Edge energies of a set of normal profiles: a) After applying the filter [1 2 4 0 -4 -2 -1]; 

b) After applying the filter [1 2 4 -2 -4 -2 -1] 

Control points 

Control points 

Edge energy 

Edge energy 

Edge profiles 

Edge profiles 

(b) 

(a) 

 

We combine the first two points to form an energy image for the skin-air boundary, 

such that pixels lying on the boundary should have the highest value in the energy 
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image. This is achieved by filtering the rows of the normal profile image. Applying a 

vertical edge detector, such as the filter [1 2 4 0 -4 -2 -1] accentuates left-right edges as 

defined in property (i). Subtracting a multiple of intensity on which the filter is centred 

accentuates low contrast edge as described in property (ii). The two steps can be 

combined by applying a single filter [1 2 4 -φ -4 -2 -1] for some positive integer φ. A 

value of φ = 2 was empirically determined. The result of applying the edge filter φ = 0 

is shown in Figure 10.5 (a). We see that whilst the skin-air edge is clearly identifiable, it 

is not the strongest feature in the region. The result of applying the filter with φ = 2 is 

shown in Figure 10.5 (b). Note how the skin-air boundary is now a stronger feature than 

inner breast edge, and indeed is the strongest feature in the region. 

However due to noise in the image, the energy image alone is not sufficient to detect the 

skin air boundary. Whilst the maximal pixel in the majority of the rows lies on the skin-

air boundary, in some rows a completely unrelated feature may have generated a 

maximal response. To overcome this we make use of property (iii) and apply an 

adaption of the active contour algorithm [64]. Active contours provide a way of 

detecting a smooth edge such that local image energy is maximised. As described in 

section 3.3.2, several previous breast segmentation algorithms have used variants of the 

active contour to find the skin-air boundary. 

The key feature in our adaption of the active contour algorithm is that local energy is 

maximised in the edge energy image whilst the smoothness constraints are applied to 

coordinates with respect to the original mammogram – thus satisfying the third property 

of the skin-air boundary outlined above. 

Algorithmically, this is efficiently implemented by storing arrays of the x and y co-



Chapter 10 - Locating Synthetic Masses in Normal Mammograms 

ordinates of the points at which normal profiles are sampled in the mammogram. For an 

example, we label a mammogram M and consider a case in which n normal profiles are 

sampled along the smoothed inner breast edge. The i-th normal profile  consists of 

200 points sampled from M, at points 

iN

( ), ,,i j i jx y , j = 1,…,200. Thus we can form the 

normal profile image N, and the associated arrays of sampling points X and Y as: 

1,1 1,1 1,200 1,2001

,1 1,1 ,200 ,200

( , ) ( , )

( , ) ( , )n n n n
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N I x y I x y
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We can then generate the edge energy image E by filtering the rows of N as discussed 

above. The final step prior to running the active contour algorithm is to initialise a set of 

control points. We set one control point per row, thus there are n control points. We 

position the i-th control point ip  on the column that returns the maximum edge energy 

in that row, thus ( , )ip c i=  where ( )arg max ( , ) | 1,..., 200
j

c E j i j= = . Having initialised 

the contour control points we can run our active contour algorithm.  

In the standard active contour algorithm the total energy of the contour is minimised by 

iteratively adjusting the position of the control points. At each control point ip , three 

energies are computed: 
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And thus the total energy a point contributes to the contour can be computed as: 

, ,i i i image ie e e eα βα β= + −  

The total energy of the contour is computed as the sum of the individual control point 

energies.  

From the equations above we see that the alpha energies ,ieα  are minimised by 

minimising the distance between control points (and consequently the length of the 

contour). Meanwhile ,ieβ  is minimised when a control point lies on the midpoint 

between the preceding and succeeding control points. Thus minimising the beta 

energies favours continuity in the contour. The constants α  and β  weight the 

importance of minimising contour length and discontinuity against maximising the edge 

energy, encoded by  , at each control point. ,image ie

Our adaption of the algorithm is implemented by changing the computation of the alpha 

and beta energies to: 

( ) ( )
( ) ( ) ( )

, 1 1

, 1 1

( ), ( ) ( ), ( )

2 ( ), ( ) ( ), ( ) ( ), ( )
i i i i i

i i i i i i i
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Thus the length and continuity of the contour are computed with respect to its position 

in the original mammogram. 
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At each iteration in the active contour algorithm, the control points are constrained to 

move only within each row. Thus in the mammogram, the control points move in or out 

along each normal profile until the final skin-air breast boundary is selected. 

Figure 10.6 (a) and (b) show the final skin-air boundary detected in a CC and MLO 

mammogram respectively. 

  

(b) (a) 

Figure 10.6: The final skin-air boundary obtained for a CC mammogram (a) and an MLO 

mammogram (b) 

10.2.3 Detecting the pectoral muscle in MLO mammograms 

To fit the model of mass distribution in MLO mammograms described in section 10.3.1, 

we require a demarcation of the pectoral muscle. The pectoral muscle occupies an 

approximately triangular region in the top left corner of each MLO mammogram 

(remembering that right mammograms have been reflected prior to segmentation). The 

location of the edge of the pectoral muscle will be used to fix a set of common axes for 
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MLO mammograms, and thus only a straight line approximately marking the edge of 

the pectoral muscle is required. 
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Figure 10.7: Pectoral muscle segmentation: the dashed blue line shows the region searched to 

find the edge of the pectoral muscle; the red line depicts the straight line fitted to the pectoral 

muscle 

Straight line 
fitted to 
edge of 
pectoral 
muscle 

Centroid of breast 
region 

Pectoral 
region 

extracted 
for edge 
finding 

 

We fit a straight line to the edge of the pectoral muscle in each MLO mammogram 

using an adaption of the method described by Karssemeijer [62]. First a rectangular 

region containing the majority of the pectoral muscle is extracted from the upper-left 

corner each mammogram. The rectangle extends width-ways to the first point on the 

skin-air boundary, and downwards to the centroid of the breast region, as depicted in 

Figure 10.7. Note this region does not need to contain the pectoral muscle in its entirety, 
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providing it contains enough of the pectoral edge to determine a suitable straight line. 

The region extracted from the mammogram depicted in Figure 10.7 is shown in Figure 

10.8 (a). 

  

(a) (a) 

Figure 10.8: a) Pectoral muscle region extracted from the mammogram shown in Figure 10.7; b) 

Result of applying an orientation specific Canny edge detector to the region in (a) 

 

We then apply a Canny edge detector [22] to the region, with the additional constraint 

that only edges orientated between 30º and 90º are considered. The result of this edge 

detection is shown in Figure 10.8 (b). Finally a Hough transform [37] is used to select 

the dominant straight line in the region. Figure 10.7 shows the result of the straight-line 

fitting in the regions depicted in Figure 10.8. 
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10.2.4 Discussion 

In sections 10.2.1 and 10.2.2 we described our algorithm for segmenting the breast in 

each mammogram of our data. The key requirement of the algorithm was that a smooth 

contour was obtained at the skin-air boundary. Provided this requirement is met, any 

segmentation algorithm could be used.  

In section 3.3.2 we reviewed several methods for segmenting the breast in 

mammograms. Of these we attempted to implement an algorithm described by Ferrari et 

al. [44]. We chose this method at the commencement of this project as it appeared to 

represent the state-of-the-art. Moreover, by using an active contour model, it explicitly 

defined a method for obtaining a locally smooth breast border.  

However, whilst implementing Ferrari et al.’s algorithm, we observed that certain 

aspects of it were not suited to our data. For example, the size and grey level of off-film 

regions (which are dependent on the scanner used to acquire digitised mammograms) in 

our data are markedly different from those in the MIAS database (used in Ferrari et als 

method). Thus having computed an initial threshold for each mammogram, the 

morphological operations we applied to obtain an approximate breast region, and 

subsequently the inner breast edge, differed. 

In addition, Ferrari et al.’s active contour algorithm was designed to find a continuous 

contour for the entire breast. This may have been because the images used in their work 

had an additional area of background at the chest wall side and therefore both the skin-

air boundary and a boundary on the chest wall had to be detected. With the 

mammograms in our data, only the skin-air boundary needed to be detected, and thus a 

non-continuous contour was used.  
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Ferrari et al. used their own variant of the traditional active contour model. During each 

iteration, control points were allowed to move in any direction in a local 7x7 pixel 

neighbourhood. In our active contour model, control points were allowed to move only 

along a fixed line normal in direction to the inner-breast edge. Constraining the 

movement of control points in this way means that to move the contour through a 

similar distance in the mammogram requires far fewer computations than if control 

points can move locally in any direction. 

Whilst the adapted active contour model developed by Ferrari et al. operated entirely 

within the mammogram domain, our algorithm computed image energy in a separate 

image. This image was forming by applying an edge filter to the set of normal profiles 

extracted from the inner edge. The filter used was designed so that not only would it 

respond to edges, but that it would respond maximally to the edge of lowest overall 

intensity in the image. This solved the problem of the active contour locking onto edges 

formed by areas of high density inside the breast, as was noted in Ferrari et al.’s results. 

Of the other breast segmentation algorithms reviewed in section 3.3.2, the work by Pan 

et al. [86] is particularly interesting. In this the monogenic signal was used to 

decompose mammograms. Like the DT-CWT, applying the monogenic signal to images 

generates measures of amplitude, complex phase and orientation across multiple scales. 

Various thresholds based on phase and orientation were used to determine the inner 

breast edge, before the final skin-air boundary was obtained using a phase and 

amplitude based threshold. 

The grey level based thresholding used to determine the inner breast edge in our 

algorithm requires less computation than calculating the monogenic signal for a 
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mammogram. Because simpler grey level thresholds worked for our set of 

mammograms we did not attempt to apply measures based on phase and orientation. 

However, thresholds based on phase and orientation may be more consistent for 

different sets of mammograms. Given that we already compute the DT-CWT of 

mammograms in our data when modelling mass backgrounds, it would be interesting 

though to see whether the steps in Pan et al.’s algorithm could be applied using 

measures of phase and orientation obtained using the DT-CWT. This may provide an 

efficient solution of obtaining the benefits inherent in Pan et al.’s algorithm (that is, 

robustness against changes in intensity and contrast), without having to also compute 

the monogenic signal of each mammogram. 

We also note that the algorithm presented by Pan et al. uses a local threshold to 

determine the final skin-air boundary. As a result this boundary may not be smooth as 

noise in the image may cause local fluctuations in the boundary. As discussed in the 

introduction of section 10.2, obtaining a smooth boundary may not be necessary for all 

applications of breast segmentation, but is required for our models of breast shape. Thus 

if we were to use the algorithm presented by Pan et al. to obtain the skin-air boundary in 

our mammograms we may need to apply a method for smoothing the final boundary. 

Because phase and orientation may be more robust to changes in image set, combining 

the features used to identify the skin-air boundary in the segmentation algorithm 

described by Pan et al. with our adapted version of the active contour model described 

in section 10.2.2 could prove the most flexible segmentation algorithm to obtain a 

smooth skin-air boundary for any generic set of mammograms. 

To locate the pectoral muscle in MLO mammograms, a simple procedure was 
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implemented to fit a straight-line to the dominant edge of the muscle, as described in 

section 10.2.3. Such a procedure is adequate for the model of mass distribution 

described in section 10.3.1. However, the edge of the pectoral muscle may not always 

form a straight line and if a more precise segmentation is needed then further processing 

steps may be applied. For example, normal profiles could be sampled along the straight 

edge and searched to find the exact border of the muscle. Such methods were discussed 

in section 3.3.2. 

Finally we note that our segmentation algorithm does not return the position of the 

nipple. We attempted the methods for locating the nipple described by Mendez et al. 

[81]. These included searching the skin-air boundary for a region of raised grey level 

and/or changes in curvature. However, we found that in many mammograms 

(particularly CC mammograms) the nipple was not clearly visible as an image feature. 

In these cases automated detection gave unreliable results that could not be used to 

define correspondence between a set of breast shapes. In cases where the nipple is not a 

visible image feature, a radiologist can make a subjective decision on the nipple’s 

position based on the position and orientation of ducts in the mammogram. Attempting 

to mimic this decision in automated process was beyond the scope of this thesis, and in 

section 10.3.1 we discuss an alternative choice of marker. 

In the next section we describe how we use the breast segmentation algorithm to build a 

model of mass location. 

10.3 Modelling mass location 

As stated in section 10.1, the aim of this chapter is to develop a method for selecting a 

suitable location within a normal mammogram at which to generate a synthetic mass. 
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Given a set of normal mammograms, we want the set of possible locations for synthetic 

masses generated by the method to be consistent with the locations of real masses in the 

training data. 

To achieve this we build a model of the location of masses within the training data. As a 

result, sampling from the model generates new locations for masses consistent with the 

training data. The model describes the probability of finding a mass in a particular 

location in a mammogram based only on the co-ordinates of the location and the breast 

shape.  

As noted in section 10.1, a method has been developed by Caulkin [23] for building a 

model of mass location within MLO mammograms that have been manually segmented. 

In section 10.3.1 we show how we have adapted this method to work with the automatic 

segmentation algorithm described in the previous section, and show the location model 

obtained by applying the method to our training data. We then show how we have 

adapted the method to work with CC mammograms and again show the results of 

applying the method to our data. Finally, we describe how new locations can be 

sampled from the models and make an important amendment to ensure that synthetic 

masses are not located too close to the skin-air boundary. 

10.3.1 Modelling mass location in MLO mammograms 

The method described in this section is based on a method for modelling the distribution 

of masses in MLO mammograms described by Caulkin [23]. Caulkin’s method used a 

manual delineation of the skin-air breast boundary and the edge of the pectoral muscle. 

In addition, the position of the nipple in each mammogram was marked by a radiologist 

(in cases were the nipple was not clearly visible, the position was estimated by the 
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radiologist). In this section we review the key points of Caulkin’s method, describe the 

changes we have made to make the method compatible with automatically obtained 

delineations of the breast and pectoral muscle, and show the model of mass location 

obtained by applying the new method to our data. 

Computing a mean breast shape 

Before the locations of masses within different mammograms can be compared, a 

coordinate frame within a common breast shape must be defined. A location for each 

mass relative to the common breast shape can then be computed, and thus the 

distribution of the mass locations modelled. 

Learning a common breast shape requires fixing a set of landmark points consistently 

on the breast of each mammogram in the training data. In Caulkin’s method, the skin-air 

boundary in each mammogram was rotated and translated so that the straight line 

marking the pectoral muscle formed a vertical axis and the perpendicular line between 

the pectoral muscle and the nipple formed the horizontal axis. As discussed in section 

10.2.4, the nipple is not a feature found reliably by our segmentation algorithm and thus 

cannot be used to define landmark points on each breast border. Instead we use the 

centre of mass of the breast region (in which each pixel is assigned an equal weight 

regardless of grey level) and fix the horizontal axis to be the horizontal line connecting 

this point and the pectoral muscle, as depicted in Figure 10.9 (a). 

Given the new axes, landmark points were spaced evenly along the skin-air boundary. 

Start and end points for the landmarks were defined by computing the points of 

maximum negative curvature in the sections of the skin-air boundary above and below 

the nipple respectively. At any point on the skin-air boundary, curvature was calculated 
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using the chord-length method described in appendix A.3. Using this method positive 

curvature was associated with a convex shape relative to the pectoral muscle and 

negative curvature associated with concave shape. The two points of maximum negative 

curvature computed for a skin-air boundary from the training data are shown in Figure 

10.9 (b). In addition to start and end points on the skin-air boundary, start and end 

points were defined on the pectoral edge at the same height (on the rotated axes), also 

shown in Figure 10.9 (b). 

Once a standard set of correspondence points have been assigned to each breast shape, 

the set of shapes are aligned using Procrustes alignment (see sections 4.2.1 and 7.4.1). 

Note that unlike aligning mass shapes in section 7.4, the points on the breast shape have 

a fixed physical correspondence, and thus the origin of the points on each breast shape 

is not allowed to vary in the Procrustes Algorithm. 

Following alignment, the mean shape of all the breasts can be computed. However, 

before proceeding to building the location model we must make sure no unrealistic 

segmentations have been used in generating the mean breast shape. When using manual 

segmentation, this can be taken as given, however using an automatic segmentation 

there may be some breast borders that have been incorrectly delineated, producing 

shapes that are not true instances of breast shape. One solution could be to manually 

inspect the breast border generated for each mammogram in the training set. However 

given both the size of the training set and the fact we need to perform similar error 

checking during mass synthesis we prefer an automated solution. 
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Figure 10.9: a) Axes fitted to the skin-air boundary and pectoral muscle for an MLO mammogram 

b) Correspondence points fitted to the breast shape shown in (a) 
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This is achieved by computing a point distribution model (see section 4.2.1) from the 

set of aligned breast shapes. The model reconstruction error can be computed for each 

shape, as previously described in section 7.3.3. The mean and standard deviation of the 

set of model reconstruction errors is computed. Breast shapes with an error greater than 

three standard deviations of the mean are regarded as outliers and discarded from the 

training data. We then realign the remaining shapes and recalculate the mean breast 

shape. The mean shape error threshold at which shapes are discarded is stored and will 
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be used again when target locations are sampled from the location model, as described 

in section 10.3.3. 

  318

Figure 10.10: Mass centres transformed into the mean breast shape: a) MLO mammograms; b) 

CC mammograms 

(a) (b) 

 

Note that because breast shape is a property of all mammograms regardless of whether 

they contain malignant masses, all 270 MLO mammograms from our training data were 

used in computing the mean breast shape. We note that a large malignancy near the skin 

may change the shape of a breast, however given that our mammograms were acquired 

from a screening population we would not expect such masses to present in our data. 
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Thus we decided it would be acceptable to use both normal and abnormal mammograms 

when computing mean breast shape. Including the normal mammograms gave a large 

set of data, improving the generality of the breast shape model. 

Estimating mass location probability density using fixed Gaussian 

kernels 

Having established a mean breast shape to act as a common co-ordinate frame for all 

MLO mammograms, we can build a model of mass location following the method 

described by Caulkin [23]. 

The first step in the method is to compute the position of the centre of each mass in the 

training data with respect to the co-ordinates of the mean breast shape. This is achieved 

by warping the breast shape containing each mass to the mean breast shape, using the 

thin-plate spline warping algorithm described in appendix A.2.1. This is applied to all 

masses present in MLO mammograms. As a result there are 103 locations identified as 

mass centres within the mean breast shape, as depicted in Figure 10.10 (a). 

To compute a probability density map of mass location we fit a Gaussian kernel to each 

mass centre. The probability density at any location in the mean breast shape can then 

be computed as the normalised sum of the kernels. In the final probability distribution, 

the standard deviations of the Gaussian kernels are adaptively scaled at each mass 

centre, however to compute the scaling factors we must first compute a fixed kernel 

distribution. 

Assume we have N mass centres and label the co-ordinates of the i-th centre ( , )i ix y . 

Then if we fit fixed Gaussian kernels with standard deviation xσ  and yσ  (with no cross 
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covariance between x and y) at each mass centre, the probability density at any position 

 in the mean breast shape can be computed as: ( , )u v

( ) ( ) ( )2 2

2 2
1

, exp exp
2 2

N
i i

i x y

u x v y
D u v A

σ σ=

⎡ ⎤ ⎡− −
= − −

⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

∑
⎦

 (10.1) 

where A is a normalisation constant so that  sums to unity. D

Values for xσ  and yσ  are chosen by considering the x and y dimensions to be two 

separate 1-D kernel density estimation problems in which the smoothing parameter σ  

must be optimised. Following the method described by Hall [51], we compute xσ  as: 

( )
1 2

21 5 1

1

1.06 ( 1)
N

x i
i

N N x xσ − −

=

⎡ ⎤= − −⎢ ⎥⎣ ⎦
∑  

Substituting y for x produces an equivalent formula for yσ . 

Using equation (10.1), the probability density for the location of masses within the 

mean MLO breast shape was computed. This is depicted in Figure 10.11 (a). 

Estimating mass location probability density using adaptively scaled 

Gaussian kernels 

Calculating a probability density map for mass location using fixed Gaussian kernels, as 

described above, suffers from a drawback. In regions of the mean breast shape where 

there are few mass centres, the kernel placed on each mass centre causes a local spike in 

the probability density. To overcome this problem, we fit scaled Gaussian kernels to 

each mass centre, where the scaling is adapted depending on the local density at each 

mass centre. Thus mass centres in low density regions will have a larger (and 
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consequently smoother) Gaussian kernel fitted than mass centres in regions of high 

density. 

To compute the scaling factors used at each mass centre, we again follow the method 

described by Hall [51]. This uses the initial fixed kernel density estimation calculated 

above to compute a scaling factor iλ  for the i-th mass centre: 

( ) 1 2
,i i

i

D x y
g

λ
−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

Where g is computed as the geometric mean of the initial density estimate such that: 

( )1

1

exp log ,
N

i i
i

g N D x y−

=

⎡ ⎤= ⎢ ⎥⎣ ⎦
∑  

Having computed scaling factors for each mass centre, the final probability density for 

any point ( ,  within the mean breast shape can be computed as: )u v

( ) ( )
( )

( )
( )

2 2

2 2
1

, exp exp
2 2

N
i i

a
i i x i y

u x v y
D u v A
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⎡ ⎤⎡ ⎤− −⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

∑  

where again, A is a normalisation constant so that  sums to unity. aD

The result of applying this method to compute a probability density map for the 

location of MLO masses using the 103 masses in our training data is depicted in Figure 

10.11 (b). The distribution of this density is discussed in section 10.3.4. 
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Figure 10.11: Probability maps for the location of masses in MLO mammograms a) Using 

Gaussian kernels of fixed standard deviation b) Using adaptively scaled Gaussian kernels 

 

Figure 10.12 Probability maps for the location of masses in CC mammograms a) Using Gaussian 

kernels of fixed standard deviation b) Using adaptively scaled Gaussian kernels 
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10.3.2 Modelling mass location in CC mammograms 

We also want to build a model of mass location for CC mammogram, so that synthetic 

masses may be automatically generated in a mammogram of either view. In our training 

data we have 93 masses from CC mammograms and a total of 270 CC mammograms 

(regardless of whether a mass is present or not). Using these data we can build a model 

of mass location in CC mammograms based on the method described in the previous 

section. 

Breasts in CC mammograms do not have the same features as breasts in MLO 

mammograms: the pectoral muscle is not present, and the curvature of the skin-air 

boundary at the top and bottom of each mammogram differs. Thus we must define a 

new set of correspondences to define the shape of each breast in a CC mammogram. 

 

In most CC mammograms, the breast forms an approximate semi-circle so that the skin-

air boundary starts and end at the chest wall (as seen, for example, in Figure 10.6 (a)). 

However, in some mammograms of larger breasts, the skin-air boundary may reach 

either the top or bottom (or both) of the mammogram before reaching the chest wall. In 

these cases we extrapolated the ends of the skin-air boundary until they met the chest 

wall. Thus for every CC mammogram we have start and end points for the skin-air 

breast border located at the chest wall. We then calculate the centroid of the breast 

region, and fit a set of axes so that the vertical axis runs along the chest wall and the 

horizontal axis passes through the breast centroid. Again, if it could be determined 

automatically, we would rather use the nipple as a marker for the horizontal axis (see 

section 10.2.4). The intersection of the horizontal axis with the skin-air boundary is 



Chapter 10 - Locating Synthetic Masses in Normal Mammograms 

  324

taken as a third feature point on for each breast, thus dividing the skin-air boundary into 

two segments. Correspondence points may then be spaced equally along each segment 

of the skin-air boundary and along the chest wall to define each breast shape. 

Having fitted a common set of correspondence points to each CC breast shape we can 

implement the remainder of the model building method as described in section 10.3.1. 

To summarise, the steps in this process are: 

i) Align the shapes using Procrustes analysis 

ii) Compute the principal components of a shape model and compute the 

reconstruction error for each breast shape 

iii) Discard any outlier shapes, realign, and calculate the mean CC breast 

shape 

iv) Compute the position of the centre of each CC mass in the training data 

relative to the mean breast shape by thin-plate spline warping each 

breast to the mean shape 

v) Fit a fixed Gaussian kernel to each mass centre in the mean breast shape 

to compute an initial probability density of mass location 

vi) Fit adaptively scaled Gaussian kernels to each mass centre based on the 

initial density estimate. The resulting density is normalised and taken as 

the probability density for the location of a mass at any position within 

the mean breast shape 

The probability density for the location of CC masses computed by applying the method 
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described above to our training data of 93 masses is shown in Figure 10.12 (b). As with 

the probability density map computed for MLO mammograms, the distribution of this 

density will be discussed further in section 10.3.4. 

10.3.3 Sampling locations from the models 

Using the models of probability density for mass location built in sections 10.3.1 and 

10.3.2, we can sample a location at which to generate a synthetic mass in any normal 

mammogram. The steps required to do this are described below: 

i) Apply the segmentation algorithm described in section 10.2 to obtain the 

breast border and, if the normal mammogram is an MLO, the pectoral 

muscle edge 

ii) Fit the applicable CC/MLO correspondence points to define the breast shape 

of the mammogram. Reconstruct the breast shape from the appropriate 

CC/MLO breast shape model to check a valid segmentation of the breast has 

been obtained 

iii) Transform the breast shape to the CC/MLO mean breast shape 

iv) Sample a new location from the CC/MLO probability density map 

v) Calculate the co-ordinates of the sampled location with respect to the breast 

shape of the normal mammogram, based on the transform computed in step 

(iii) 

However, before this method can be used to generate normal regions in which to 

generate synthetic masses, we must make a further adjustment to ensure that unrealistic 
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training data. 

                                                

mass locations are not sampled from the models. 

We know that masses must be contained within the breast, and therefore must not cross 

the skin-air boundary (masses may however be located across the chest wall in CC and 

MLO mammograms or overlapping the pectoral muscle in MLO mammograms). 

The maps of probability density developed in sections 10.3.1 and 10.3.2 extend to the 

skin-air boundary. Because no masses in the training data were located at the skin-air 

boundary, the probability density in both MLO and CC maps in the immediate vicinity 

of the skin-air boundary is very small. However, because it is non-zero, there is still a 

chance that a location could be sampled in this region. 

For example, the average radius of a circle bounding the mass regions in our training 

data is approximately 20mm13. The sum of probability densities in a region of this 

radius inside the skin-air boundary of the CC distribution is 0.074. Thus approximately 

1 in 14 locations sampled from the model would be an unrealistic location for an 

average sized mass in our 

Our solution is to set the density to zero in a region of some radius inside the skin-air 

boundary, with the radius depending on the size of the mass for which we are sampling 

a location. The dependence on the size of the mass is a critical point. Locations near the 

skin-air boundary may be suitable for small masses, whilst for a synthetic mass of size 

similar to the largest masses in our training data, there is only a small region of suitable 

locations near the centre of the breast shape. 
 

13 By bounding radius, we mean the greatest distance from the centre of the mass to the end of any structure 

associated with the mass 
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Thus given a normal mammogram and a radius that bounds the mass to be generated, 

we amend the sampling procedure presented at the start of this section as described 

below: 

i) Apply the segmentation algorithm described in section 10.2, to obtain the 

breast border (and pectoral muscle edge if necessary) 

ii) Fit the applicable CC/MLO correspondence points to define the breast shape 

of the mammogram and check the validity of this shape 

iii) Transform the breast shape to the CC/MLO mean breast shape 

iv) Rescale the radius with respect to the mean breast shape based on the 

transform learnt in step (iii) 

v) Set the probability densities of the CC/MLO location model to zero in the 

region inside the skin-air boundary, based on the radius computed in step 

(iv) 

vi) Re-normalise the probability densities and sample a location from the model 

vii) Calculate the co-ordinates of the sampled location with respect to the breast 

shape of the normal mammogram, based on the transform computed in step 

(iii) 

If we want to obtain a normal region in which to place a synthetic mass based on the 

sampled location, we simply extract a square region with the sampled location at its 

centre. The dimensions of the square are selected to be just bigger than the bounding 
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radius of the mass to be generated. 

The method described above can now be used to automatically select new regions in 

which to generate synthetic masses from a set of normal mammograms. 

10.3.4 Discussion 

In sections 10.3.1 and 10.3.2 we have shown how we can build models of mass location 

for MLO and CC mammograms respectively. 

The method for building the model for the location of MLO masses was based on an 

earlier method presented by Caulkin [23]. Our method adapted the earlier model so that 

it could be used with automatic (as opposed to manual) segmentations of the breast. 

Applying the new method to the MLO mammograms in our training data produced the 

probability density map shown in Figure 10.11 (b). We note that the distribution of 

densities in this map shows the most likely area for masses to be located is in the upper 

half of the mean MLO breast shape. This is consistent with the probability density 

generated by Caulkin. 

Looking at the probability density for CC mammograms, depicted in Figure 10.12 (b), 

we see that again the greatest regions of density are found in the upper section of the 

mean CC shape. 

Using the inner/outer upper/lower quadrant terminology for describing regions of the 

breast used by radiologists (as discussed in section 2.1.1), we see that the most likely 

location for masses given both the MLO and CC density maps is the upper-outer 
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quadrant of the breast14. This is consistent with the literature on where malignant masses 

are most frequently located – as for example, described in the review by Sickles [108] 

and confirmed by latest statistics on breast cancers in the UK [4].  

In section 10.3.3, we described how the models of mass location could be used to 

sample new locations for generating synthetic masses in normal mammograms. To 

ensure that unrealistic location near or on the skin-air boundary were not sampled from 

the models, we adapted the probability density map depending on the size of synthetic 

mass to be generated. The size of a mass was specified in terms of the radius of a circle 

required to bound the mass. 

Note that if we are using the method of directly transferring DT-CWT coefficients to 

synthesise the appearance of a mass region in a normal region (as described in section 

8.5), then the bounding radius for the mass to be generated can be obtained from the real 

mass used as a template in the algorithm. Thus we would execute the first step of 

Algorithm 8.1, prior to selecting a normal region using the method described in the 

previous section. If we are using a model-based algorithm to modify a normal region 

(see sections 8.6 and 8.7), then we must sample a bounding radius for the synthetic 

mass prior to modifying the region and before selecting the normal region. 

Note also that because the model of mass appearance (described in chapter 7) learned 

the shape and texture of masses in conjunction with mass size, the adapted models of 

mass location implicitly link mass appearance with mass location. 

 

14 Although we note that without using the nipple as a marker, it is perhaps not valid to make a direct comparison 

with breast quadrants 
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The method described in this chapter for sampling synthetic mass locations in normal 

mammograms can be used with any mass synthesis method. The only requirement of 

the synthesis method is that it supplies a suitable measure of mass size so that the 

location probability density map can be adapted accordingly. Thus the work in this 

chapter may be a useful addition to other synthesis methods. Similarly it could easily be 

adapted to describe the location of other disease signs in mammograms (for example 

microcalcifications).  

It is important to note, however, that the models in this chapter only take into account 

the global shape of the breast in which an abnormality is sampled. How real the 

synthesised abnormality appears will depend on the degree to which a synthesis method 

takes into account the local appearance of a location sampled from the model. Our 

method for synthesising malignant masses has been designed explicitly to adapt to local 

appearance properties of the region in which masses are generated.  

Even with a method for adapting local appearance, it could be argued that the global 

model of location should consider more information than mass location relative to the 

breast shape. For example, an attempt could be made to include information on the 

shape of the fibroglandular disc, as this may influence where masses are most likely to 

be located in the breast. However, the fibroglandular disc is not a consistent feature 

across all mammograms. For example, particularly fatty breasts may have no obvious 

internal structures but can still develop masses. For this reason, using information other 

than breast shape to construct a global model of mass location has not been explored 

further in this thesis. 
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10.4 Summary 

In this chapter we have shown how we can build a statistical model to describe the 

probability of finding a mass at a particular location within a breast. This probability is 

based only on the relative location of masses relative to the shape of the breast. 

The breast shape within any mammogram was defined with respect to the skin-air 

boundary of the breast, and, for MLO mammograms, the edge of the pectoral muscle. 

These features were found automatically for the mammograms in our training set using 

the segmentation algorithm described in section 10.2. 

Given the skin-air boundary and pectoral muscle edges for a set of MLO 

mammograms, section 10.3.1 showed how a model of mass location could be 

constructed. The model was based on one previously described by Caulkin [23]. 

Section 10.3.2 then adapted the model for MLO mammograms to be compatible with 

CC mammograms. 

In section 10.3.3 we described how the models could be used to sample new locations 

at which to generate synthetic masses in normal mammograms. The set of locations at 

which a mass could be sampled depended on the size of the mass. This ensures that 

when synthetic masses are generated they will not encroach on the skin-air region of 

mammograms.  

As with the methods presented in previous chapters, an important feature of the method 

for sampling new mass locations is that it can run without user input. Given only a 

normal mammogram, and information on whether the mammogram is an MLO or CC 
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view of the left or right breast, the complete process described in section 10.3.3 can be 

run automatically to select a normal region in which to generate a synthetic mass.  

Combining the mass location method described in this chapter with our method for 

synthesising mass appearance described in Algorithm 9.1 produces a complete method 

for automatically generating malignant mammographic masses in normal 

mammograms.  

In following chapter we show how we have evaluated the realism of synthetic masses 

generated by the complete method.  
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Chapter 11 : Evaluating the Appearance of Synthetic 

Masses 

11.1 Introduction 

In chapter 10 we described a method for sampling suitable locations within a normal 

mammogram at which to synthesise a malignant mass. In chapter 9, we described a 

method for synthesising a mass in a normal mammogram region. Combining the two 

approaches means we have a complete method for generating synthetic malignant 

masses in normal mammograms that can be run without requiring user input. Thus 

given a set of normal mammograms, we can automatically generate a set of synthesised 

malignant mammographic masses. 

As discussed in section 2.2.7, the principal application in which we envisage synthetic 

masses could be used is as part of training software for reading mammograms. The 

synthetic masses would be used in place of real examples so that despite having only a 

fixed set of real masses, the software could generate a potentially infinite range of 

masses to display to trainees.  

Therefore the ultimate test of whether our method has been successful is to evaluate if 

masses generated using the method appear realistic to experts at reading mammograms. 

In this chapter we describe details of an observer study in which mammography readers 

at the Nightingale Breast Centre, Manchester attempted to distinguish between real 

masses and synthetic masses generated using our method. 

In the next section we present a general overview of the observer study. Sections 11.3 to 
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11.5 provide full details of the study. 

11.2 An observer study of synthetic mass realism 

To assess the realism of synthetic masses generated from our method, we designed an 

observer study in which mammography readers at the Nightingale Breast Centre, 

Manchester attempted to distinguish between real masses and masses we had 

synthesised.  

Ten expert mammography readers were asked to rate a randomised set of 30 real and 30 

synthetic masses on 5-point scale ranging from ‘definitely synthetic’ to ‘definitely real’. 

Having rated all 60 masses, the readers were invited to give feedback on masses they 

had rated as either definitely or probably real. The readers completed the task 

individually and independently, using software we had developed for the study. 

Statistical analysis of the pooled ratings was performed to assess whether synthetic 

masses were identified at a rate significantly better than chance. Our hypothesis was that 

readers would not be able to identify synthetic masses, and thus there would be no 

statistically significant difference between the ratings assigned to synthetic masses and 

the ratings assigned to real masses. 

In addition to the pooled analysis, the ability of individual readers to identify synthetic 

masses was measured and used to assess if a reader’s experience or job type affected 

their performance in the task. 

The feedback provided by the readers was used to make a qualitative assessment of our 

method for generating masses. 
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The study was carried out in collaboration with a 4th year medical student, David 

Barbosa Da Silva, who undertook data collection by training readers to use the software 

and supervising reading sessions. We were responsible for the design of the experiment, 

production of the software and the data analysis presented here. 

In the following sections we provide full details of the design, implementation and 

results of the study. 

11.3 Data 

In this section we describe the data used in the observer study. In particular, the 

construction of a test set of 30 synthetic and 30 real mammographic masses is 

described, and details of the mammogram readers that participated in the study are 

presented. 

11.3.1 Dataset of real and synthetic masses 

To generate a test set of synthetic masses, 30 normal mammograms were selected at 

random from the 277 normal mammograms in our training data. As described in section 

5.1.2, these mammograms showed no signs of disease, and this was confirmed by a 

breast radiologist. 

In each normal mammogram a single location was chosen at which to generate a 

synthetic mass by sampling from the model of mass location, as described in section 

10.3.3. A 1024 by 1024 pixel region was then extracted symmetrically about the 

sampled location. In each of the normal regions a single synthetic mass was generated 

using Algorithm 9.1, thus producing a final set of 30 synthetic masses. 

In addition to the set of 30 synthetic masses, 30 real masses were selected from our 
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training data. For each real mass, a 1024 by 1024 pixel region was extracted from the 

original mammogram containing the mass; this was symmetrical about the centre of the 

mass.  

11.3.2 Mammogram readers 

All qualified mammogram readers at the Nightingale Breast Centre, Manchester were 

invited to participate in the study. 10 readers accepted the invitation, of which 4 were 

breast radiologists and 6 were either breast physicians or radiographers that had 

undergone further training to enable them to read and report on mammograms. The 

experience of the readers varied broadly, from a consultant radiologist of 20 years 

experience to a radiographer with just 1 year experience reading films. All participants 

were reading at least 5,000 mammograms per year, up to a maximum of 10,000 films. 

11.4 Method 

In this section we describe the design and implementation of the study, and methods for 

the analysis of the results. 

11.4.1 Study design 

The 60 mass regions were shown to each reader participating in the study in a random 

order. The readers were asked to rate each mass as either “definitely synthetic”, 

“probably synthetic”, “possibly real”, “probably real” or “definitely real”. The ratings 

provided by each reader were recorded and used to quantitatively evaluate the realism 

of the set of synthetic masses.  

The ratings assigned by each participant in the study were recorded anonymously, but 

the experience of each participant and their job type were recorded along with the 

ratings they gave. This allowed us to check for any correlation between ability to 
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identify synthetic masses and reader experience. In addition, the time taken by a reader 

to analyse each mass was recorded, to assess whether this affected reader performance. 

Having confirmed a rating for each mass, the reader was not able to review or amend 

their answer. However, at the end of the task, readers were subsequently presented with 

masses they had described as definitely or probably synthetic (regardless of the true 

status of the mass) and asked to identify why they made that rating. Whilst not used in 

the quantitative evaluation, this feedback was used to provide detailed information on 

what, if any, aspects of our method for generating masses needed improving.  

For each mass included in the feedback section, a reader was able to select as many of 

the following options as they felt were appropriate: 

- Mass located incorrectly with respect to breast tissue 

- Not enough spicules 

- Too many spicules 

- Mass should be more radio-opaque given its size 

- Unrealistic texture at mass boundary 

- Mass border too regular 

- Mass border too sharply defined 

We also invited each reader to make any additional comments on the appearance of a 

mass. The options were designed to gain as informative feedback as possible.  
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As an alternative to providing feedback, the readers could state that they no longer 

thought a mass was synthetic. However this was not used to amend their earlier rating. 

11.4.2 Study implementation 

The readers participated in the study individually and independently. Thus data 

collection consisted of ten separate reading sessions, each involving a single reader. 

During each session, the 60 test masses were displayed using software we had 

developed for the study.  

The interface of the software was designed so that each mass region was displayed at 

maximum resolution on the screen, alongside a simple set of radio buttons with which 

to rate the mass. This allowed the reader to concentrate their efforts on identifying the 

synthetic masses, and complete the task unaided. A screen shot of the software is shown 

in Figure 11.1. 

Given the spatial resolution of mammograms in our data, regions of 1024 by 1024 

pixels correspond to approximately 5cm by 5cm regions of film. The area of screen 

occupied by each mass region was approximately 15cm by 15cm, and thus each mass 

was effectively enlarged by a factor of 3. Because the masses were already enlarged, the 

readers were not provided with further zoom functionality. 

All mass ratings, feedback and timings were recorded automatically by the software. In 

addition, for each reader, we recorded the approximate number of films they read per 

year and the number of years they had been qualified as a mammography reader. These 

data were collected and recorded by the collaborating student (see section 11.2).  
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Figure 11.1: Screen shot of the software used by readers during an observer study. For each mass 

display to a reader they selected one of the options on the right, before clicking ‘Next’. When all 60 

masses had been rated the could submit their ratings 

 

11.4.3 Statistical analysis 

To enable statistical analysis of the ratings given by readers in the study, values were 

assigned to each rating so that “definitely synthetic” scored 1 through to “definitely 

real” scoring 5.  

In the primary statistical analysis, the ratings from all readers were pooled. Labelling 

the rating assigned to the i-th real mass by the j-th reader as , ( )R j iΦ , we computed the 

pooled mean score for each real mass 
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Similarly, we computed the pooled mean score for each synthetic mass 

10
,1

( ) ( ) 10S S jj
i i

=
Φ = Φ∑  

If readers were able to distinguish between real and synthetic masses we would expect 

the scores in RΦ  to be higher than the scores in SΦ . This was tested statistically by 

applying the Mann-Whitney U-test against the null hypothesis that RΦ  and SΦ  are 

samples from equivalent distributions. 

In the secondary analysis, we returned to the individual ratings assigned by each reader. 

We fixed operating points 0 5τ≤ ≤   to make a binary split on the ratings assigned by a 

reader, such that a rating greater than τ  was taken to mean real and ratings less than or 

equal to τ  were taken to mean synthetic. We defined a true positive (TP) as a real mass 

that has been rated as real, and a false positive as a synthetic mass that has been rated as 

real and computed the true positive rate (TPR) and false positive rate (FPR) of the j-th 

reader’s scores as 

,

,

30

30

R j

S j

TPR

FPR

τ

τ

Φ >
=

Φ >
=

 

where the operator τΦ >  means “count the number of elements in Φ  that are greater 

than τ ”. 

  340



Chapter 11 - Evaluating the Appearance of Synthetic Masses 

By plotting TPR against FPR for values of τ  varying from 0 to 6, we generated a 

receiver-operating-characteristic (ROC) curve for each reader. The area under each 

ROC curve (AUC) was computed as a measure of the overall ability of each reader to 

distinguish between real and synthetic masses. The closer a reader’s AUC value was to 

1, the better they were able to differentiate between real and synthetic masses. In 

contrast, an AUC of 0.5 would suggest a reader identified synthetic masses at a rate no 

better than chance. 

Using the AUC value for each reader, we tested whether reader experience or job type 

had a significant impact on their ability to identify synthetic masses. As stated above, 

for each study participant, we recorded the approximate number of films they read per 

year and the number of years they had been qualified as a mammography reader. To get 

an overall measure of experience for each reader we multiplied the two numbers to 

obtain an approximate total number of films read. Where a range was given for the 

number of films read per year, the central value in the range was used in the 

multiplication. Due to the approximate nature of this measure, we chose to use it only as 

a method for ranking the readers in terms of experience, with rank 1 being the most 

experienced. We then computed Spearman’s rank correlation coefficient to assess with 

there was any significant correlation between reader experience and reader AUC. 

Similarly, the AUC value for each reader was used assess whether there was any 

significant correlation between a reader’s ability to identify synthetic masses and the 

time they spent analysing each mass in the study. Labelling the time (in seconds) it took 

for the the j-th reader to rate the i-th mass (whether real or synthetic) as , we 

computed the mean rating time for each reader as  

( )jT i

  341



Chapter 11 - Evaluating the Appearance of Synthetic Masses 

60

1
( ) 60j ji

T T i
=

= ∑  

We then computed Spearman’s rank correlation coefficient between each reader’s AUC 

value and their mean rating time. 

The summary statistics of the set of reader AUC values were also used to compare the 

results of our study to other previous studies in the literature, as discussed in section 

11.6.3. 

11.5 Results 

In this section we present the results of the observer study, including: a quantitative 

analysis of the ratings assigned to each mass (section 11.5.1) and an analysis of the 

qualitative feedback provided by readers during the study (section 11.5.2). 

11.5.1 Statistical analysis of mass ratings 

As described in section 11.4.3, the primary statistical analysis performed in the study 

was a test on the pooled ratings assigned to each mass by the participating readers. The 

null hypothesis in our test was that the pooled ratings assigned to real masses were not 

significantly higher than ratings assigned to synthetic masses. The test strongly rejects 

the null hypothesis (Mann-Whitney U-test, p < 0.0001) giving evidence that readers 

were able to identify synthetic masses at a rate statistically better than chance. 

Following the primary analysis we computed ROC curves each individual reader. The 

set of ten ROC curves along with their AUC values are depicted in Figure 11.2. The 

mean AUC of all readers was 0.70 with a standard deviation of 0.09. 

The AUC values, along with the data on reader job type, experience and films read per 
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year are summarised in Table 11.1. 

Table 11.1: Summary of reader experience and AUC value for participants in the observer study 

 Radiologists Radiographers/Breast Physicians 

Years 
experience 20 17 7 1 8 6 5 7 1 1 

Films read per 
year 

7,000 5,000-
6,000 

7,000 7,000 8,000-
10,000 

6,000-
7,000 

7,000-
8,500 

>5,000 5,500 5,000 

Experience 
ranking 1 2 4 8 3 5 6 7 9 10 

0.55 0.88 0.58 0.77 0.67 0.70 0.70 0.73 0.70 0.67 

0.70 ± 0.16 0.71 ± 0.03 AUC 

0.70 ± 0.09 

 

Figure 11.3 shows the AUC values for readers ranked in terms of experience. There was 

no trend in AUC values with increasing or decreasing experience (Spearman’s rank 

correlation coefficient σ  = 0.47, p = 0.18). This implies a reader’s experience did not 

have an impact on their ability to identify synthetic masses. 

In Figure 11.3, the AUC bars are coloured red for radiologists and blue for 

radiographers or breast physicians. Comparing the AUC values for the two groups 

showed no significant difference, implying job type was not a factor in the observer 

study. 

  343



Chapter 11 - Evaluating the Appearance of Synthetic Masses 

  344

Figure 11.2: ROC curves for each reader in the observer study. On each set of axes, true positive 

rate is plotted on the vertical axis versus false positive rate on the horizontal axis. The area under 

each ROC curve (AUC) is also given 
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Finally, there was no significant correlation between AUC and the mean time in 

seconds a reader took to analyse each mass (Spearman’s rank correlation coefficient σ  

= 0.58, p = 0.90). 

Figure 11.3: AUC values for readers ranked in order of experience (1 = most experienced, 10 = 

least). Red bars show AUC values for radiologists; blue bars for radiographers or breast physicians

 

11.5.2 Analysis of reader feedback 

As described in section 11.2, when each reader had provided a complete set of ratings 

for the 60 masses, they were asked to provide feedback for masses they had rated as 

either definitely or probably synthetic. Although this part of the task was voluntary, it 

was completed by all ten readers in the study.   

For each mass, the reader could either select that they now believed the mass was real or 

they could give reasons why they believed the mass was synthetic. For the latter, the 

software listed seven reasons for identifying a mass as synthetic, of which the reader 

could select as many as they felt appropriate (the list of reasons was given earlier in 
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section 11.4.1). In addition a reader could enter any additional comments in an open text 

box. 

Because the set of masses rated as definitely or probably synthetic differed for each 

reader, and because a reader could select as many reasons as they wished for each mass, 

the feedback does not provide a consistent set of data from which we can make 

statistical inferences. However analysing the frequency with which particular reasons 

were selected in the feedback data is useful in understanding what aspects of synthetic 

masses were unrealistic. 

If we sum the number of synthetic masses identified as either probably or definitely 

synthetic across all readers we compute 

10
,1

2 156S jj=
Φ ≤ =∑  

This is the number of times readers were asked to provide feedback on a synthetic mass 

during the study. On 20 occasions, a reader then stated they no longer believed the mass 

was synthetic. As a result, each reason for correctly identifying a mass as synthetic 

could be selected a maximum of 136 times. 

By far the most commonly selected reason was “Unrealistic texture at mass boundary” 

chosen on 77 occasions (52%). The next most commonly selected reason was “Mass 

should be more radio-opaque given its size”. This reason was selected 17 times (13%), 

however we also note it was selected 14 times when readers were giving feedback on 

masses they had rated as synthetic but were actually were real. Further analysis shows 

that one of the ten readers selected this reason 14 times (7 for synthetic masses, 7 for 

real masses), suggesting that this reader had some perception of how they expected 
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masses to appear that wasn’t evidenced in the real data. No other reason for correctly 

identifying a mass as synthetic was selected more than 10 times. 

Of the additional comments added by readers to synthetic masses, the majority 

expanded on the notion of unrealistic texture in the locality of the mass. For example, 

one comment stated, “fat appearance at periphery of mass has poor match with 

background parenchyma”. In addition, one user noted that in three masses a blood 

vessel appeared to be interrupted at the mass boundary. 

Coupled with the statistical analysis performed in the previous section, this feedback is 

useful in determining what areas of our method for generating synthetic masses need to 

be improved on. This is discussed further in the following section. 

11.6 Discussion 

In this section we discuss the choices we made in designing the observer study 

presented in this chapter. We discuss the results of the study and compare our study to 

previous evaluations of synthetic mammographic masses reported in the literature. 

11.6.1 Study design 

To increase the power of our study we wanted to recruit as many mammogram readers 

as possible. Thus all qualified readers at the Nightingale Breast Centre were invited to 

participate in the study. The number of readers who actually took part in the study (10) 

was determined by the availability of readers during the study period.  

The total number of masses used in the experiment was chosen to be as large as 

possible, whilst still allowing each reader to complete the study in a reasonable length 

of time. Ensuring the study did not take up too much of each participant’s time was 
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essential given the readers’ already busy schedules. However we did not want to force 

the readers to analyse each mass within a fixed period of time. This might cause a 

reader to rush a decision they were not sure on, and thus bias the results. After initial 

testing, a total of 60 masses were chosen so that each participant could easily complete 

the experiment within one hour. 

A standard size region for all masses (synthetic and real) was chosen so that there was 

consistent reference on which to judge the size of synthetic masses generated by our 

method. The mass regions were displayed at maximum resolution to the readers, and 

thus were approximately enlarged by a factor of 3. We chose to display enlarged copies 

of each region so that every reader in the study made a detailed assessment mass 

appearance. An alternative would have been to display masses synthesised directly in 

whole mammograms. However, the readers would then have had to zoom in to properly 

assess each mass. This would have taken up more of the readers’ time and could have 

led to some readers assessing a mass without zooming in – in which case pooling reader 

ratings to assess mass realism may not have been valid. 

The software used in the experiment was designed to allow readers to complete the task 

unaided. No problems using the software were reported.   

11.6.2 Study results 

In section 11.5.1 we showed there was statistically significant evidence that readers 

could identify synthetic masses at a rate better than chance. This implies our method has 

not achieved our goal of generating synthetic mammographic masses that are 

indistinguishable from real masses. 
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Figure 11.4: The three least realistic (left column) and most realistic (right column) synthetic 

masses by average reader rating. In each case the pooled average score of the 10 readers is shown 

(1 = definitely synthetic, 5 = definitely real)  

Average score = 4.0 

Average score = 4.2 

Average score = 4.4 

Average score = 1.8 

Average score = 1.4 

Average score = 1.2 
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In particular, it appears our method for synthesising mass background appearance 

requires significant improvement. In section 8.5.3, we noted that Algorithm 8.1 may 

generate patches of unrealistic texture when synthesising mass background appearance 

in normal regions. Given the feedback described in section 11.5.2, it would appear this 

was the major reason that led to masses being correctly identified as synthetic. This can 

be observed in the left column of Figure 11.4 in which the three least realistic masses by 

average reader rating are shown. Note how in each case there is a clearly identifiable 

region of unrealistic texture at the mass border. In contrast, in examples where our 

texture synthesis algorithm has succeeded, the masses blend seamlessly with the 

background, as evidenced in the three most realistic masses depicted in the right column 

of Figure 11.4. As noted in section 8.7, work to improve a method for synthesising mass 

background appearance is ongoing, and this is discussed further in the following 

chapter. 

It was interesting that the AUC values computed for each reader did not imply that 

radiologists were any better at detecting the synthetic masses than radiographers or 

breast physicians, and that there was no correlation between experience and AUC. That 

the least experienced readers performed at a similar level to radiologists with several 

decades of experience suggests all the participants in the study could justifiably be 

termed experts. Additionally, the lack of correlation between the time taken to analyse 

each mass and AUC implies that where a reader had a lower rate of identifying 

synthetic masses, this was not simply a result of rushing their judgement for each mass. 

From this we conclude the readers participating in our study provided a fair assessment 

of the realism of masses generated by our method. 
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11.6.3 Comparison to other studies 

In the remainder of this section we compare the results of our observer study to results 

reported for earlier studies evaluating the realism of synthetic masses. In section 3.2, we 

reviewed several methods for synthesising mammographic masses [17, 23, 54, 99, 101, 

102, 112]. We recall that the work presented by Skiadopoulos et al. [112], Saunders et 

al. [101, 102], and Caulkin [23] included results of an observer study to assess the 

realism of masses generated by their respective methods. We look at each study in turn 

below. 

Skiadopoulos et al. described a method for synthesising circumscribed breast lesions 

[112]. The realism of masses generated by their method was tested in an observer study 

in which six radiologists attempted to distinguish between 60 real and 60 simulated 

lesions. The area-under the ROC curve of pooled responses was reported as 0.55±0.03. 

This implied there was no statistically significant difference between real and simulated 

lesions. However circumscribed masses do not have spicules, and therefore do not 

significantly change the appearance of breast tissue in the region surrounding the mass. 

Thus the part of our method that most commonly identified masses as synthetic is not 

required when generating circumscribed masses. This makes a direct comparison 

between the results of our observer study and those reported by Skiadopoulos et al. 

inappropriate. 
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Saunders et al. did synthesise mammographic masses, complete with spicules [101]. In 

an observer study, 25 real and 50 synthetic malignant masses15 were assessed by three 

radiologists, and assigned a rating between 0 and 100 (0 corresponding to definitely 

synthetic, 100 corresponding to definitely real). After fitting ROC curves, an average 

AUC of 0.65±0.07 was reported. Although it is impossible to make strong statistical 

inferences given only the summary statistics presented by Saunders et al., we note that 

the mean AUC computed in our observer study (0.70) lies within the error bounds on 

the reported mean AUC of Saunders et al.’s study. We can also, for example, apply the 

Wilcoxon signed-rank test to show there is no statistical evidence to suggest our set of 

AUC values were from a distribution with median greater than 0.65 (p = 0.13). This 

suggests there was no statistical difference in how realistic masses generated from our 

method appeared compared to masses generated using the method of Saunders et al.  

Caulkin evaluated the realism of masses generated by his method using an observer 

study in which 15 radiologists attempted to distinguish between 25 real and 25 synthetic 

masses [23]. A mean AUC of 0.69±0.13 was reported. Again we note that the mean 

AUC computed in our observer study lies within the error bounds of the mean AUC 

reported by Caulkin, and that a Wilcoxon signed-rank test implies our set of AUC 

values are drawn from a distribution that has a median not statistically different to 0.69. 

This suggests there was no statistically significant difference in how realistic masses 

generated by the two methods appeared. 

 

15 The 50 synthetic malignant masses included 25 masses with synthesised spicules and 25 without. Also included in 

the study were 25 real and 25 synthesised benign lesions 
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Because we used Caulkin’s method for generating synthetic masses as our starting point 

for our own method, it is disappointing not to have generated masses that appeared 

more realistic than masses generated by Caulkin’s method. Given the feedback received 

from radiologists, we believe this is because in attempting a more complete synthesis of 

the interaction between a mass and its surroundings, the method we developed in 

chapter 8 generated regions of unrealistic texture in a significant number of mass 

backgrounds. This offset the improvements in modelling a training a set of masses 

described in chapters 6 and 7, so that the overall realism of masses generated by our 

method was approximately equal to those generated from Caulkin’s method. However, 

as described in section 8.2, we believe that whilst it is more difficult than modelling 

individual spicules, modelling the texture and structure of whole mass regions is the 

only way in which malignant mass appearance can properly be synthesised. Thus we 

propose continuing with the improvements to the mass background model described in 

sections 8.6.6 and 8.7.2. 

In addition, as discussed in chapter 10, whilst Caulkin proposed a model of mass 

location, the model was not used in sampling new locations for synthetic masses. 

Instead, the masses tested in the observer study implemented by Caulkin were manually 

located in mammograms. We also that the synthetic masses evaluated by Saunders et al. 

were manually located in normal mammogram regions. As such, of the sets of synthetic 

malignant masses that have been tested in observer studies, only those generated by our 

method have been synthesised fully automatically within normal mammograms. 

Finally, with regards to the work of Saunders et al. and Caulkin, we note that care must 

be taken in making direct comparisons between the results of observer studies. This is 
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because the conditions of each study may differ. Factors such as the spatial resolution at 

which masses are synthesised and the quality and resolution of the screen on which 

masses are displayed, may affect how easy it is to identify synthetic masses in the study. 

For example, the resolution of mammograms in which we generated synthetic masses 

was 40μm per pixel, as compared to 50μm used in Saunders et al.’s work and 100μm in 

the work presented by Caulkin. Other factors, such as the rating system used between 

the studies, and whether additional synthetic lesions were tested simultaneously, may 

also cause differences in the results obtained for malignant masses.  

For these reasons, and given the similarity of summary statistics reported, we do not 

believe it is appropriate to draw definite conclusions on which of the three methods 

generated more realistic masses. Analysing the results of each study individually 

however, implies that neither the methods presented by Caulkin and Saunders et al., nor 

our method generated synthetic masses that were indistinguishable from real masses to 

mammography experts.  

11.7 Summary 

In this chapter we have evaluated our method for generating synthetic malignant 

mammographic masses by assessing how realistic such masses appear to expert 

mammography readers. 

We described an observer study in which 10 mammography readers at the Nightingale 

Breast Centre, Manchester attempted to distinguish between 30 real masses randomly 

selected from our training data, and 30 synthetic masses generated using our method for 

synthesising the appearance of malignant masses in normal mammograms. 
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The readers assigned each mass in the study a rating on a 5-point scale, varying between 

definitely real and definitely synthetic. This allowed a quantitative analysis of the extent 

to which readers were able to identify synthetic masses. This analysis gave strong 

evidence that the readers could identify synthetic masses at a rate significantly better 

than chance. Consequently we conclude our method does not consistently generate 

masses that are indistinguishable from real masses. 

In addition to the 5-point rating, radiologists provided feedback on masses they 

identified as definitely or probably synthetic. An analysis of this feedback suggested 

that failures in the method for synthesising mass background appearance were by far the 

largest factor in betraying masses as synthetic. Improving the method by which mass 

background appearance is modelled and synthesised is the principal area in which we 

intend to continue work. 

We compared the results of our study to the results of earlier studies assessing the 

realism of synthetic malignant masses. The summary statistics computed in our study 

were similar to those reported by Caulkin [23], and Saunders et al. [101].  Whilst we do 

not think it is appropriate to make strong statistical inferences between the different 

studies, this suggests masses generated using our method have a similar level of realism 

to masses generated using previously published synthesis methods.  
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Chapter 12 : Future Work and Conclusions  
In this chapter we summarise the work presented in this thesis, discuss possible areas 

for future work and outline the key contributions our work has made to the field of 

mammographic research.  

We first review our project to synthesise malignant mammographic masses. This 

includes a brief discussion of:  

- the clinical motivation for the project and the requirements this imposed on our 

method for generating synthetic mammographic masses 

- the methods we have developed to meet the project goal 

- the observer study used to evaluate the extent to which our method met the 

project goal 

We then examine the limitations of our work and describe how the methods we have 

developed could be extended to overcome these limitations. In addition we look at other 

areas to which work in this thesis could be applied, outline the contributions made by 

our work, and lastly, present our final conclusions on the project. 

12.1 Summary 

The goal of the work described in this thesis was to develop a method for synthesising 

the mammographic appearance of malignant breast masses. Large sets of mammograms, 

displaying a wide range of abnormalities associated with breast disease, are essential for 

a variety of tasks inlcuding training and assessing mammogram readers, testing imaging 

equipment and validating image processing techniques. In such tasks, the ground truth 
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of any abnormality present in a mammogram must be known. Synthesising 

abnormalities overcomes the problem of obtaining a sufficient volume of real data with 

known ground truth. 

However, to be clinically useful the synthetic abnormalities must be indistinguishable 

from real examples to experts in the field. A review of previous synthesis literature 

indicated that whilst methods for synthesising microcalcifications and benign breast 

masses had proved successful, as yet a method for generating the realistic appearance of 

malignant (and particularly spiculated) masses had not been developed. 

 The review also indicated that modifying the appearance of real normal mammograms 

produced more realistic results than attempting to simulate the appearance of whole 

mammograms. It was observed that due to their relative rates of occurrence, normal 

mammograms were far more readily available than mammograms containing signs of 

disease, and so obtaining large sets of normal mammograms in which to synthesise 

mass appearance would not be a problem. 

At this stage, we formalised two requirements of a method for synthesising malignant 

mammographic masses: 

i) Given a set of normal mammograms, the method should run without user input 

to generate a set of synthetic masses, thus enabling large sets of data to be 

generated automatically 

ii) The set of masses generated by the method should be indistinguishable from real 

mammographic masses, allowing us to substitute synthetic data for real data 

when training mammography readers 

To meet the two requirements, we constructed statistical models to encode the variation 
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in appearance and location of a set of real malignant mammographic masses 

Throughout the project we used a dataset comprising 540 digitised mammograms 

supplied by the Nightingale Breast Centre, Manchester. The mammograms were 

grouped in cases each containing the MLO and CC views of the left and right breast of 

one woman. The cases included 101 malignant masses, the majority of which were 

visible in both CC and MLO views. To enable further work, the border of each mass 

was demarcated by a breast radiologist. A rectangular region was extracted about each 

mass in one mammogram projection. The 101 mass regions were then used as training 

data from which to build models of mass appearance. 

To model mass appearance, in each region we needed to isolate the contribution a mass 

had made to grey levels in the image. We used a thin-plate spline interpolant to estimate 

what the grey level of background tissue underlying the mass would have been, had the 

mass not been present. The background estimates were modified to include high-

frequency structures in the region, as it was assumed these were not part of the central 

mass. As a result of applying the separation method, we effectively generated two new 

sets of image data: a set of masses, and a set of mass backgrounds. 

We then worked with the set of masses to construct a statistical appearance model. The 

model encapsulated how masses in the training set varied in size, shape and texture. By 

fitting a distribution to the model parameterisation of masses, we were able to describe 

probabilistically how a global set of masses could vary in appearance. Thus sampling 

from this model generated synthetic instances of masses that matched the 

characteristics of real masses. 
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Having built a model of mass appearance, we focused on the set of mass backgrounds. 

By their construction, each background contained any spicules belonging to the mass 

that had been separated, in addition to any existing structures in the breast tissue. In 

many of the backgrounds the presence of a mass had distorted the surrounding breast 

tissue. Our aim was to model this distortion so that given a normal region we could 

modify the region in a way that not only generated mass spicules, but also accounted 

for how structures in the region would be altered by the presence of a mass. To work 

with the complex textures and structures present in mammographic tissue, we used the 

dual-tree complex wavelet transform (DT-CWT) [65] to decompose the regions in our 

training data. We proposed the following three stage process to synthesise mass 

background appearance: 

1) Compute the DT-CWT of a normal region 

2) Modify coefficients in the decomposition to match the properties of DT-CWT 

coefficients in real mass backgrounds 

3) Invert the modified DT-CWT to reconstruct a region in which mass 

background appearance has been synthesised 

We experimented with three methods based on this framework described. Ultimately, 

we chose to use a method in which DT-CWT coefficients from a real mass background 

(randomly selected from the data) were directly transferred into the transform of a 

normal region. 

Having developed a method for modelling both masses and mass backgrounds, we 

showed how the two could be combined. Thus having synthesised mass background 
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appearance in a normal region, we could sample a mass with matching characteristics. 

This process was summarised in Algorithm 9.1, and gave us a complete method for 

generating the appearance of a malignant mass in a mammogram normal region. 

The final stage in our method was to automate the process of selecting a location within 

a target mammogram at which to synthesise a mass. To achieve this we constructed a 

model that described how masses were spatially located within the breast. To build the 

model we needed to obtain the breast shape in all the mammograms in our training data. 

Thus we developed a method for automatically segmenting the breast border and, in 

MLO mammograms, the pectoral muscle. Given a normal mammogram, we used the 

segmentation algorithm in conjunction with the mass location model to sample co-

ordinates at which to generate a synthetic mass. The sampling procedure took account 

of the size of mass to be generated, so that unrealistic locations near the skin-air 

boundary of breasts would not be selected. 

Coupling the method for sampling a mass location with the method described for 

synthesising the appearance of a mass within a normal region gave us a complete 

method for synthesising a malignant breast mass in any normal mammogram. The set of 

modelling and synthesis steps that comprise the complete method are summarised in the 

flow charts depicted in Figure 12.1. 

By using statistical models to encode mass appearance and location, we were able to 

generate sets of synthetic masses automatically in normal mammograms by sampling 

from the probability distributions encoded in the models. Further, by learning the model 

distributions from real training data, we aimed to ensure that any set of synthetic masses 
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generated using the method have the same appearance characteristics as real masses. 

To assess whether our method had consistently generated synthetic masses of realistic 

appearance, we implemented an observer study involving ten expert mammogram 

readers from the Nightingale Breast Centre, Manchester. During the study a reader was 

shown a mixed set of 30 real and 30 synthetic masses, and asked to rate each mass on a 

scale varying from definitely real to definitely synthetic. Analysis of the results showed 

that the synthetic masses were identified at a rate significantly better than chance and 

implied that a proportion of synthetic masses generated from our method are not 

indistinguishable from real masses. In addition to the ratings assigned to each mass, the 

readers in the study were asked to provide feedback on masses they had identified as 

synthetic. This feedback suggested that in the majority of masses correctly identified as 

synthetic, failures within the mass background synthesis algorithm were responsible. 

This feedback gave further weight to our intentions to improve how mass regions were 

modelled, as discussed in the next section. 
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Figure 12.1: Flow chart summarising the process for modelling a set of malignant masses and 
subsequently using the models to generate synthetic masses in normal mammograms 

Build model of mass 
background appearance 

Separate each mass region into masses and 
mass backgrounds 

Build model of mass 
appearance 

Extract region containing each 
mammographic mass 

Build model of mass 
location 

Segment the breast and sample a location within the breast at which to 
generate a mass. Extract a region with the sample location at its centre 

Start with a normal mammogram, labelled as either 
MLO or CC, left or right breast 

Modify the appearance of the normal region using the model of mass 
background appearance 

Conditionally sample the mass model to generate a new synthetic mass and 
add to the modified region 

Obtain set of mammograms containing malignant mammographic masses 
annotated by a breast radiologist  
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12.2 Further development of our work 

In discussing the limitations of work presented in this thesis there are two areas to 

consider: firstly we look at specific limitations of the method by which we have 

synthesised the appearance of malignant breast masses in mammograms; secondly we 

consider the more general limitations imposed by the scope of the project we have 

presented. In each case, we discuss how the methods we have developed could be 

extended to overcome the stated limitations. 

12.2.1 Improving our synthesis method 

Given the results of the observer study outlined above, it is clear we have not yet 

developed a method for consistently generating synthetic masses that appear sufficiently 

real to be mistaken for real masses by mammography experts. This limits the extent to 

which masses generated by our method could be used in software designed to aid reader 

training in mammography. Thus it is necessary to review which aspects of our method 

contributed to the unrealistic appearance of some masses.  

Synthesising mass background appearance 

Given the feedback provided by readers in the observer study, we first consider the way 

in which mass background appearance was synthesised in normal regions. 

As discussed in section 8.2, we developed a method for synthesising the way in which 

the presence of a mass affected the local appearance of breast tissue in a mammogram 

that was more ambitious than previous attempts at synthesising spiculated malignant 

mammographic masses. Whilst previous authors had attempted to synthesise spiculated 

masses, their focus was confined to modelling individual spicule structures and adding 

these to a central mass. How such spicules interacted with surrounding structures in the 
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breast had not been addressed, nor had the way in which any malignant mass (with or 

without spicules) distorts local breast tissue been considered. Therefore we proposed a 

synthesis method that, given a normal mammogram and a synthetic mass, would 

generate spicules in addition to modifying the appearance of existing structures in the 

breast tissue. 

However, we were unable to construct a probabilistic model from which such synthetic 

appearance could be sampled. Seeking to describe mass backgrounds using only the 

local correlations of coefficients at varying scales of a wavelet transform was not 

sufficient to encode the long-range interactions that govern the appearance of 

mammographic structures. Meanwhile we have not yet identified a suitable global 

model to parameterise the structures present in a mass region as a fixed length vector. 

Thus in contrast to masses, we have not been able to develop a statistical model to 

describe the variation in appearance of mass backgrounds across the set of training data. 

As a compromise we used the real mass regions in our training data as templates to 

synthesise appearance in normal regions, as described in Algorithm 8.1. This has two 

major limitations: firstly, the DT-CWT coefficients in a mass region were not always 

compatible with coefficients in the normal region to which they were transferred and 

thus unrealistic appearance was generated; secondly, it reduces the generality with 

which mass region appearance can be synthesised. 

 

From the feedback provided by mammogram readers it would appear the first limitation 

was the single biggest cause of masses being identified as synthetic in the observer 
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study. In particular, our method struggled to produce realistic spicules, both in terms of 

matching spicule appearance to surrounding breast tissue and matching the spatial 

distribution of spicules to the appearance properties of the synthetic mass (despite the 

conditional sampling algorithm proposed in chapter 9). As a result, where spicules were 

generated, they did not always appear to be growing from the mass as intended. 

Moreover the second limitation (coupled with the restrictions this placed on sampling a 

mass to match a synthesised background discussed in chapter 9), reduces the likelihood 

of our method being able to generate the full range of appearance we might expect to 

see in a global set of real masses. 

To overcome these limitations we proposed a hybrid model of mass background 

appearance combining a global map of structure with a set of local texture models (see 

section 8.7.1). The global model controlled the content and spatial arrangement of 

structures in a mass region. Thus sampling from the global model given a normal region 

would control the generation of spicules and the spatial interaction between a mass, its 

spicules and existing structures in the region. The local model would then fill in the 

textural details given the map of structure to generate realistic mammographic 

appearance. 

The proposed hybrid model was not used during the generation of the synthetic masses 

evaluated in this thesis, because both the global model of structure and local models of 

texture require further development. These issues were discussed in detail in sections 

8.6.6 and 8.7.2. Our intention is to continue working on this model as we believe it is 

crucial in obtaining a proper understanding of malignant mass appearance. 
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Synthesising mass appearance 

Given the data available, we are satisfied that the appearance model we constructed in 

chapter 7 provided a good description of the set of separated masses. However, as with 

any model based on learning variation in real data, the more training examples we have 

the more confidence we have in the ability of our model to provide a general description 

of data in a global population. Because expert annotation of masses in the original 

mammogram data was one of the most time consuming aspects of the modelling 

process, obtaining larger datasets for further work may benefit from an automatic 

segmentation of masses. Automatically segmenting masses would also have the 

advantage removing the only element of the modelling and synthesis methods we have 

developed that requires manual intervention. 

We also observe that with more training examples we would expect to populate the 

feature space over mass appearance more densely. This would provide us with better 

information with which to assess the validity of our assumption of a Gaussian 

distribution of the feature space. Given the data we had available it was difficult to 

judge if there were non-linear correlations in the mass appearance parameters. However, 

if such non-linearities were present (and therefore not captured by the Gaussian 

distribution we assumed over the space) we do not believe these significantly 

contributed to unrealistic appearance in masses synthesised from the model. 

Modelling mass location 

As with the model of mass appearance, having more data would benefit the probability 

distribution learned in the model of mass location. 
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We also note the limitation imposed by not having a method for automatically detecting 

the nipple in mammograms. Without the nipple as a landmark, we may have reduced 

the physical correspondence between each breast shape when computing the mean 

breast shape in both CC and MLO mammograms. 

As discussed in section 10.2.4, previously used methods for locating the nipple [81], 

proved unsuccessful in mammogram where the nipple was not obviously in profile. In 

these mammograms, a radiologist would make a subjective decision on the location of 

the nipple given the arrangement of parenchymal tissue in the breast. We have not 

attempted to mimic such a decision in an automated algorithm. However in developing 

a sufficient description of tissue structure with which to model mass region appearance, 

we may be able to use spatial arrangement of tissue to compute an approximate location 

for the nipple in any mammogram. The nipple could then be used as a marker in future 

mass location models. 

As a final point with regards to locating masses, we note that our method considers only 

the location of masses in the training data relative to breast shape. We do not attempt to 

model the location of masses relative to internal structures in the breast (for example, 

the fibroglandular disc). This was because such structures are not a consistent feature of 

all mammograms. There may be an argument however, that where a breast contains a 

well defined glandular region, the location of masses within the breast should be 

considered relative to the glandular structures. 

However, despite the limitations outlined above, the feedback from readers during the 

observer study (see section 11.5.2) indicated that the locations selected for synthetic 
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masses were not a factor in identifying them as unrealistic. 

12.2.2 Extending the scope of our synthesis method 

 In this section we consider ways in which our method for generating synthetic 

mammographic masses could be extended beyond the scope of the project set out in 

section 3.2.2. In particular, we consider synthesising mammographic abnormalities 

other than malignant masses; synthesising masses in four-view mammogram cases (as 

opposed to single mammograms); and synthesising breast masses in 3-D image 

modalities. Each topic is discussed in turn below. 

Synthesising other abnormalities 

So far we have only considered a method for synthesising the appearance of malignant 

breast masses in mammograms. We have not considered synthesising other 

mammographic signs of breast cancer or any benign abnormalities present in the breast. 

As discussed in section 2.2.4, there are numerous other abnormalities that may be 

present in mammograms – including both signs of cancer and benign findings. We 

focused our attention on malignant masses because these are one of the hardest 

abnormalities to convincingly simulate and one the most frequent mammographic signs 

of breast cancer. 

However, in learning to read mammograms, trainees must be familiar with the 

appearance of all abnormalities. In addition, obtaining real sets of mammograms 

containing other abnormalities may be as hard as obtaining sets of malignant masses16, 

 

16 Indeed for less common signs of disease such as diffuse asymmetry it may be even harder to obtain sufficient 

training sets 
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and therefore there is an analogous motivation for synthesising the appearance of other 

mammographic abnormalities. 

As observed in section 3.2, methods for generating realistic circumscribed masses and 

microcalcifications have already been presented in the literature [70, 112]. Thus we 

believe it would be most interesting to extend our work by attempting to synthesise 

breast asymmetry and architectural distortion. To the best of our knowledge, no 

methods for synthesising these abnormalities have been reported in the literature. 

Conceptually, the problem of synthesising architectural distortion is similar to the one 

that we addressed in chapter 9, where we tried to model how a mass distorted structures 

in breast tissue in regions from which we had removed the central mass.  

Moreover, unlike mass lesions or microcalcifications, there are no existing methods for 

consistently detecting asymmetries or architectural distortions in mammograms. Thus in 

addition to synthesis, a model that could be used to detect architectural distortion or 

breast asymmetry would be of great clinical value. This is discussed further in section 

12.3. 

Synthesising masses in four-view mammogram sets 

In synthesising the appearance of malignant masses, we have considered the appearance 

of a single mass within a single mammogram. However during screening, 

mammograms are usually read in sets comprising the CC and MLO views of both 

breasts. Therefore we may want to: 

i) Consider generating a mass in both CC and MLO views of a breast such that the 

appearance and location of the mass between the two views is consistent with 
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real data 

ii) Consider generating multiple masses within the same breast 

iii) Consider generating masses in both left and right breasts in a single set 

To generate the appearance of a mass in both CC and MLO views we need to how the 

appearance of a mass in one view constrains the appearance of the mass in the other. In 

terms of constructing statistical models of appearance, this requires learning the joint 

probability of the vectors that parameterise a mass in the two views. Similarly we would 

need to learn a joint probability distribution for the location of masses in both CC and 

MLO views. By learning the joint distributions of both appearance and location, we are 

doubling the dimensions considered in the respective models. As a result we would 

require a larger training set of masses. 

To synthesise multiple masses in a single breast we need learn whether there are any 

correlations in appearance and location between masses in the same breast in real data. 

Because we have only 10 cases in our data where there is more than one mass in a 

single breast, we do not yet have enough data to judge whether such correlations exist. 

Likewise, to synthesise one or more masses in both breasts of four-view mammogram 

case we would need to establish whether there are correlations in appearance between 

masses in different breasts of the same women. Again we note that we do not have 

enough data with which to make this judgement. However, given training data in which 

we did have sufficient cases with multiple masses in one or both breasts, then modelling 

any correlations in the data should be a simple extension of the methods used to model 

joint appearance in both CC and MLO views. 
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3-D Image Modalities 

We conclude this section by considering the appearance of breast masses in imaging 

modalities other than mammograms. In section 2.2.1, we observed that x-ray 

mammography is still the only widely used modality for asymptomatic screening for 

breast cancer. Therefore the vast majority images used in the detection of breast cancer 

are mammograms.  

However, in recent years there have been developments in 3-D image modalities such as 

MRI and digital breast tomosynthesis (DBT) to the extent that they may be used in 

place of mammography to detect breast cancer (particularly when imaging women 

whose breasts are too densely composed to obtain meaningful information in a 

mammogram). Therefore it may be clinically useful to attempt to synthesise signs of 

disease in 3-D modalities. 

Moreover, having a method for synthesising disease within a 3-D image of the breast 

has useful implications for synthesising disease concurrently in both CC and MLO 

views. For example, given a mass simulated within a 3-D breast shape, by considering 

the projection of the breast into the two mammographic views, we can constrain the 

location and main appearance characteristics of the mass in both mammograms. We 

would then need only to consider synthesising the high-frequency details of the 

mammographic masses to account for the difference in spatial resolution between the 2-

D and 3-D images. 

We recall that in section 3.2, we reviewed methods in which a 3-D model was used to 

synthesise abnormalities in 2-D mammograms [17, 84]. We rejected these methods 

because the 3-D models generated were not learnt from real data. However, with a 
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suitable set of training data in a 3-D modality, then the models of appearance developed 

in this thesis could be extended in to 3-D. For example, as noted in section 4.2.3, similar 

statistical models have already been used in the Active Appearance Model framework to 

segment structures in 3-D medical image data [12, 83]. 

Finally we note that recent research by Hipwell et al. [57] has attempted to model the 

projected appearance of a mammogram given an MRI volume of a breast. Combined 

with a model of breast masses in 3-D, this could help create a complete set of methods 

to synthesise disease in both MR images and mammograms. 

12.3 Detecting abnormal distortions in mammograms 

Commercial computer-aided detection systems focus on detecting malignant masses and 

microcalcifications. They have proved successful at this task. However, it is less clear if 

such systems can detect abnormalities such breast asymmetry and architectural 

distortion in which no focal mass is present [13]. A study by Burrell reported that 

approximately a third of cancers that are missed during screening initially appeared in 

mammograms as undetected distortions [20]. 

From a research perspective, we reviewed methods by Karssemeijer [63], Parr et al. 

[88], and Rangayyan et al. [96] that attempted to detect and classify patterns of 

abnormal structure in mammograms (see section 3.3.1). Both Karssemeijer [63] and 

Parr et al. [88] reported a detection sensitivity of approximately 80% whilst generating, 

on average, less than 1 false positive per image. However both these studies 

concentrated on patterns of structure associated with spiculated masses. The more recent 

study by Rangayyan et al. [96] attempted to detect more general signs of architectural 

distortion, including examples where no focal mass was present. However, to obtain a 
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sensitivity of 84%, 7-8 false positives were generated per image. This suggests there is a 

need for developing a sensitive yet specific method to detect architectural distortion. 

In this thesis, the mass background images we have generated have a close relationship 

to regions of distorted tissue in which no focal mass is present. Although we have 

focused on synthesis, the models we are attempting to build of mass background 

appearance may be equally applicable to analysing regions of architectural distortion. 

Moreover, not only do we think classifying and detecting abnormal distortion in breast 

tissue is possible, it may be an easier task than the synthesis problem we have been 

trying to solve. To produce photo-realistic mass region appearance by reconstructing 

synthesised DT-CWT coefficients, we need to recreate all the coefficients that 

contribute to appearance in a region. As we saw in section 8.6.6, attempting to model all 

the coefficients within a single model proved unsuccessful. However, for detection we 

need only learn variation in the subset of coefficients that discriminate between classes 

of region appearance. If we can learn this subset of coefficients, then we can build a 

more compact representation of local texture that is easier to model. 

In constructing a compact representation of texture, we aim to produce a richer labelling 

of local structure than a binary split between linear structures and background. 

Specifically, we aim to identify structure that is salient when assessing signs of 

abnormal distortion in breast tissue. We believe this is possible because of the structural 

information provided by DT-CWT coefficients (and particularly measures of local 

phase and orientation). 

If this was achieved, we could then build models of orientation patterns as, for example, 
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in the work by Parr et al., but using only salient structures. With the addition of a 

suitable search algorithm, such a model could be used to detect regions of architectural 

distortion in mammograms. We believe that such a scheme would have improved 

specificity compared to the methods that consider all types of linear structure when 

classifying patterns of orientation. 

12.4 Key contributions of our work 

Having summarised our project on synthesising malignant breast masses in 

mammograms, and considered the ways in which our work could be improved and 

extended, we now detail the contributions we believe our work has made. 

12.4.1 Lesion synthesis 

For any work within the field of mammographic imaging research, the ultimate goal is 

to improve the way in which breast cancer is detected and/or diagnosed. As discussed in 

sections 2.2.7 and 2.2.8, we identified the task of synthesising malignant breast masses 

within mammogram as having significant benefit towards many other projects that have 

a direct impact on this overall goal.  

Following a review of previous work, we concluded there had yet to be a method for 

synthesising malignant breast masses in mammograms that met the criteria we 

demanded.  

In summary, previous methods: 

- controlled synthetic appearance using parameters subjectively adjusted by 

human observers without attempting to learn the appearance of real masses [17, 

54, 99, 112] 
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- lacked a probabilistic interpretation of appearance parameters thus preventing 

unique instantiations of synthetic masses being generated [17, 54, 99, 112] 

- failed to account for the interaction between a mass and surrounding background 

tissue [17, 23, 54, 99, 101, 102, 112]  

- lacked a method for automatically locating a synthetic mass and thus required 

manual intervention to position each mass in a mammogram [23, 54, 99, 101, 

102, 112] 

Therefore the principal contribution of work included in this thesis is the development 

of a method to generate malignant mammographic masses that overcomes all the 

limitations outlined above.  

Of the previous methods reviewed, we identified one, described by Caulkin [23], as 

having the most potential as a basic framework from which to synthesise masses. 

However, having applied the method described by Caulkin to our set of training data, 

we identified several areas in which significant development was required. These 

developments are described below. 

- The method for separating each mass in the training data from the local background 

tissue was improved in two significant ways: firstly, by re-ordering the steps in 

which the separation was computed, we ensured high-frequency structures belonging 

in the local breast tissue were not subtracted along with the mass (see section 6.4). 

Secondly, we employed the method for estimating background tissue intensities in an 

iterative algorithm to negate the effect mass intensities may have had on the initial 

estimation. We also conducted a new experiment to select the best set of parameters 
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to control the separation algorithm. As a result of these changes we significantly 

improved how mass texture was modelled, and provided a set of image data in which 

the interaction between mass spicules and local breast tissue could be analysed. 

- To reduce the rotational variation between similar mass shapes, we applied the MDL 

optimisation algorithm [34] to our data prior to building a model of mass shape. As 

described in section 7.4.3, this produced a significant improvement in the ability of 

our shape model to generalise to unseen mass shapes. 

- To improve how the individual models of shape, texture and scale were combined, 

we optimised the weighting applied to each model parameter (section 7.6.4). Using 

the method for weighting parameters described by Caulkin on our data, shape and 

texture were suppressed to the extent that variation in the combined model was 

comprised almost entirely of changes in mass size. As discussed in section 7.6.1, we 

believe the weighting method originally applied by Caulkin was theoretically flawed 

and by chance happened to produce a satisfactory weighting given the relative 

metrics of shape and texture in Caulkin’s data. Given a different set of data with 

metrics on a different scale (for example, the mammograms we used had double the 

spatial resolution of those used in Caulkin’s work, and thus distances in pixels are a 

factor of two larger in our data), the weighting proved unsuitable.  The optimisation 

method we proposed in section 7.6.3 can be applied to any dataset of masses 

(regardless of a change in metric) to compute a suitable sets of weights. Thus the 

method we have described can be used in any future models. 

In addition to the changes outlined above, we have developed a method for 

automatically selecting target locations at which to sample synthetic masses within 



Chapter 12 - Future Work and Conclusions 

  377

normal mammograms. A method for constructing a statistical model of mass location in 

MLO mammograms had been proposed by Caulkin [23], however the steps required to 

make such a model viable for sampling new locations had not been developed. 

Caulkin’s model of mass location relied on manual segmentations of the breast a 

pectoral muscle; was designed only for MLO mammograms; and allowed unrealistic 

locations in the immediate vicinity of the skin-air boundary in a mammogram to be 

selected. To overcome these limitations we: 

- Developed an automatic breast segmentation algorithm to extract the smooth skin-air 

boundary from each mammogram in our training data as described in section 10.2 

- Implemented Karssemeijer’s algorithm [62] to fit a straight line to the pectoral 

muscle edge in each MLO mammogram. This, coupled with the segmentation of the 

skin-air boundary allowed us to automatically extract the breast shape from each 

MLO mammogram in the data, and thus allowed us to implement to model of 

location proposed by Caulkin 

- Defined a set of correspondences to describe breast shape in CC mammograms, and 

thus developed an equivalent location model for CC mammograms on automatic 

segmentations of the breast as described in section 10.3.2 

- Developed a sampling method in which the model distributions were masked at the 

skin-air boundary of the mean breast shapes, with the radius of the mask dependent 

on the size of synthetic mass to be generated, as described in section 10.3.3. This 

prevented masses from being unrealistically located at or on the skin-air boundary in 

target normal mammograms, and had the additional effect of recording a correlation 
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between mass appearance and mass location. 

By developing the steps outlined above we were able to automate a complete method 

for generating a synthetic mass in a normal mammogram. Thus of the methods to 

synthesise malignant masses that have been quantitatively evaluated [23, 101, 102], 

ours is the only one that generates masses without requiring user input. As stated 

previously in section 2.2.7, we believe this is crucial in harnessing the full potential of 

using synthetic data. 

The most novel contribution of our mass method for generating synthetic masses is the 

attempt we made to model the interaction between a mass and the surrounding breast 

tissue. As acknowledged in previous attempts at synthesising malignant breast masses 

[23, 101, 102], this is an issue that has not previously been addressed. Indeed to the best 

of our knowledge our method is the first in the synthesis literature to properly consider 

the problem. We believe this problem must be considered for the full characteristics of 

real malignant masses to be recreated. Therefore whilst the solution we adopted to 

synthesise the distortion of breast tissue in mass regions produced unrealistic artefacts 

in some regions, we believe the way in which we framed the problem provides a 

starting point from which future methods can embark. Further, in section 8.7, we 

described a possible solution to modelling the distortion caused to breast tissue by the 

presence of a mass and showed promising resulting in the form of some initial 

synthesised textures. 

Therefore despite not achieving our target of generating malignant breast masses that 

are all indistinguishable from real masses, we believe the work presented in this thesis is 

to date the most comprehensive treatment of synthesising disease signs in mammograms 
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and makes a significant contribution to the literature in this area of research. 

We also note that within our complete method for generating synthetic masses, separate 

modules can be applied individually in other synthesis methods. For example, the 

method we have described to construct a model of mass location requires only a set of 

training mammograms in which lesion location is known, whilst sampling a new 

location requires only knowledge of the size of synthetic mass being generated. Thus 

this method could be used as part of any algorithm to simulate lesions in whole 

mammograms. A reliable method for locating synthetic lesions in whole mammograms 

has yet to be published, and so this work may be of direct benefit to researchers 

currently working with synthetic lesions. 

12.4.2 Modelling mammographic tissue 

With regard to the wider field of image analysis in mammography, we note that there 

have been very few attempts at modelling the appearance of general distortions of breast 

tissue in mammograms that may be indicative of disease. Whilst computer-aided 

detection algorithms have been used to detect mammographic masses in a clinical 

setting for several years [74], such systems focus on detecting masses and 

microcalcifications. However, it is estimated that approximately a third of cancers that 

are missed during screening initially appeared in mammograms as undetected 

distortions [20], highlighting the clinical importance of detecting such abnormalities. 

In this thesis we have concentrated on how breast tissue is affected by the presence of a 

central mass. However, as discussed in section 12.3, work aimed at modelling this form 

of tissue distortion in mammograms is equally applicable towards distortions of breast 

tissue in which a mass is not present or not visible. Therefore, although the 
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experimental work in chapter 8 was originally developed for synthesis, it can be seen as 

initial work towards an analysis problem that has a much more direct benefit to 

detecting breast cancer in a clinical setting. 

From a technical point of view, modelling and synthesising the appearance of 

mammographic tissue is extremely challenging. The complex projection of structures in 

a breast forms an image that cannot adequately be described by local texture models. 

However, the structures in any given region do not form a consistent set of 

correspondences and are often ill-defined; globally constraining appearance is also 

problematic. To obtain a richer description of mammographic texture than that provided 

by image grey levels alone, we decomposed mammogram regions using the dual-tree 

wavelet transform (DT-CWT) [65].  

As described in sections 4.3.3 and 8.3.2, the properties of the DT-CWT make it highly 

applicable to analysing texture and structure in mammograms and we believe it will be a 

powerful tool in further research. However, as yet there is no published work in which 

the dual-tree complex wavelet (DT-CWT) has been applied to mammograms. Therefore 

the work described throughout chapter 8 comprises a novel contribution to 

mammography research. As discussed in section 8.6.6, we acknowledge that we have 

not yet made full use of the properties offered by the DT-CWT (for example, we have 

not used its ability to create rotation invariant feature vectors or its ability to model 

intrinsically 2-D structures such as junctions in addition to 1-D structures such as lines 

and edges). However, because of the lack of previous research in this area, our work 

forms the first steps towards realising the potential of the DT-CWT as a tool in 

mammography research. 
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More generally, the methods for synthesising mass region appearance presented in 

sections 8.6 and 8.7 are novel texture synthesis algorithms. In particular, if the 

algorithm combining a global structure model with local texture models described in 

section 8.7 can be refined, this could be applied to any image class with similar 

properties to mammograms. Such image classes cannot be adequately synthesised by 

the algorithms currently published in the literature and so our algorithm is of benefit to 

the general field of texture synthesis. 

12.4.3 Additional contributions 

In addition to the main contributions we have outlined above, there are several smaller 

contributions that have been made during our project. These are listed below: 

- We have developed standalone software with which radiologists can annotate 

mammographic masses. As described in section 5.2 and appendix B, we have 

designed and implemented a software interface for annotating mammograms. The 

software allowed the user to highlight regions of a mammogram, delineate the 

boundaries of any mass in the region and annotated spicules belonging to the mass. 

- We have developed standalone software to run observer studies in which 

participants visually assess mammogram regions. As described in section 11.4.2, we 

designed and implemented the software used by mammography readers an observer 

study. The software provided instructions for the users and allowed them to 

complete the study unaided. It allowed users to assign ratings for each mass in the 

study and provide feedback on masses identified as synthetic. The basic framework 

of the software can easily be adapted to perform similar observer studies and thus 

may be beneficial testing other forms of synthetic data. 



Chapter 12 - Future Work and Conclusions 

  382

- We have developed a segmentation algorithm to delineate the border of breasts in 

both CC and MLO mammograms. As discussed in section 3.3.2, breast 

segmentation algorithms have previously been published. However the algorithm 

we developed was designed to meet the specific requirements of the task in which it 

was used (to obtain breast shape for mass location modelling). Within our 

algorithm, we note that our formulation of the traditional active contour algorithm, 

in which image edge energy was maximised in a separate co-ordinate frame to that 

in which contour energy was minimised could be an efficient way of refining the 

breast border returned by existing segmentation algorithms 

- In sections 8.4.2 and 8.4.3, we described two further transforms of the DT-CWT: 

the inter-level product (ILP) [7] and the inter-coefficient product (ICP) [8]. These 

transforms were developed by Anderson et al. and provide a valuable way of 

extracting structural information in an image from the phase of DT-CWT 

coefficients. We suggested technical changes to how both the ICP and ILP should 

be computed. Whilst these modifications do not alter the concept of the transforms, 

they allow the coefficients computed by the transforms to vary more consistently 

with rotation. We suggest that any researcher applying both the ICP and ILP as a 

tool in image analysis considers the changes we recommend. 

12.5 Final conclusions 

In this thesis we have presented a method for generating malignant breast masses in 

normal mammograms. Our method is the first that allows masses to be synthesised 

directly in a whole mammogram without requiring a user to manually adjust any 

appearance parameters. Given the relative ease with which whole normal mammograms 
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can be obtained, this allows large sets of malignant masses to be generated 

automatically, thus realising the full potential of using synthetic data. 

Whilst a proportion of the masses we have generated can be identified as synthetic by 

mammography experts, we have identified ways in which our synthesis method can be 

improved to overcome this limitation. If these changes are successfully implemented we 

envisage a system in which synthetic masses may be used in place of real masses in a 

variety of applications. In particular, we propose that software in which a potentially 

infinite set of synthetic masses could be generated with which to train readers in 

mammography would be of great benefit. 

As part of our synthesis method we have attempted to model the way in which breast 

tissue is distorted by the presence of a mass. This is a subject of great clinical 

importance, but one that as yet has little published research. The work in this thesis 

includes initial experiments to fit statistical models describing distortions in breast 

tissue and we intend to continue work in this exciting area of mammography research. 
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Appendix A: Computational Techniques 

A.1 Principal component analysis 

Principal Component Analysis (PCA) is a well established and commonly used 

statistical technique that can be used to parameterise high dimensional data in a compact 

way. PCA is fundamental to the application of the appearance models described in 

section 4.2 and applied throughout this thesis. A brief review of the technique is given 

below.  

Consider we have data consisting of  examples, each of which is an -dimensional 

vector. That is,  
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each of our sample points as  

i Pb= +
ixx x  

That is, each data point is described by its displacement from the mean along a set of 

orthogonal principal components (modes) defined by the eigenvectors. The variance of 

the data along each of the modes is given by the associated eigenvalues, and the total 

variance by the sum of the eigenvalues. Since many of the eigenvalues will be very 

small, we can discard the associated modes by using only the first t  rather than all  

eigenvectors. That is, we define 
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each data point is approximated as:  
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Thus our data is now represented in the smaller t -dimensional space as opposed to the 

original -dimensional space. The total variance encapsulated in this model is n
1

t
ii
λ

=∑ , 

and so the value of t  can be chosen to ensure an arbitrary level of accuracy is 

maintained. 

A.2: Thin-plate spline interpolation 

The thin-plate spline is a commonly used tool for interpolating surfaces over scattered 

data. We assume we have set of data {( ) 1 }i i ix y z i n, , = ,...,  where ( )i ix y,  are 

coordinates on an infinite thin plate of metal, and  is the vertical displacement of the 

plate at that point. The thin-plate spline returns a function 

iz

( )f x y,  that defines the 

height of the plate for any ( )x y,  pair such that the overall bending energy of the plate is 

minimised.  
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Formally, we aim to find the function ( )f x y,  that minimises  

2 2 22 2 2

2 2f
f f fI dxdy

x x y y

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎜ ⎟= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ ∫  

The solution can be expressed as a superposition of fundamental solutions of the 

biharmonic equation 2 0UΔ =  given by   2 2 2 2( ) ( ) log( )U x y x y x y, = + +

First we define the following matrices:  

12 1

21 2

1 2

0 ( ) ( )
( ) 0 ( )

( )

( ) ( ) 0

n

n
ij i j i j

n n

U r … U r
U r … U r

K r
… … … …

U r U r …

⎛ ⎞
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎝ ⎠

x x y y− , −

)

 

1 1

2 2

1
1

1

T

n n

x y
x y K P

P L
… … … P O

x y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

and the vector of known displacements  

( )1 2 0 0 0 T
z nV z z … z=  

From these we can calculate a set of weighting coefficients  

1
1 2 1

T

z z n x yW L V w w … w a a a− ⎛ ⎞
⎜ ⎟
⎝ ⎠

= =  

We can now explicitly write  

1
1

( ) ( ( ) ( )
n

x y i i i
i

f x y a a x a y wU x y x y
=

, = + + + | , − , |∑  
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The method as shown above leads itself naturally to interpolating grey levels in a 2-D 

by thinking of the image as a surface with vertical displacements defined by the known 

grey levels of a set of source pixels. The method can also be extended to be used a 

warping tool, performing non-linear deformations as is described in the following 

section. 

A.2.1 Warping using thin-plate spline interpolation 

Thin-plate spline interpolation can be used to warp one image (the source) to another 

(the target), based on a set of landmark points in the two images. 

Let {( ) 1 }i ix y i n, = ,...,

)i i

be the coordinates of the landmark points in the source image. 

Similarly, let  {( 1 }x y i′ ′, n= ,...,  be the coordinates of the landmark points in the target 

image. 

To compute a function that maps every point in the source image to a point in the target 

image we calculate two thin-plate splines, defining the displacement of the source 

points to the target points in the x  and  directions.  y

Thus using the method described in the previous section, we calculate the first spline 

using input data 

{( ) 1 }i i i i ix y z x x i n′, , = − = ,...,  

to compute an interpolating function ( )xf x y, . Similarly, we compute ( )yf x y,  using 

input data 

{( ) 1 }i i i i ix y z y y i n′, , = − = ,...,  
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)The resulting ( x yf f,  defines a non-linear mapping of any point in the source image to 

the target image 

A.3 Chord length curvature 

In this section we describe a measure of curvature for a 2-D curve. We assume the curve 

has been discretised to be defined by control points { }( )i ix y,  such that the points are 

spread equidistantly along the curve. 

At each point ( )i ix y, , we consider the triangle formed by the triplet 

{ }1 1 1( ), (i i i ix y x y− − +, , 1), ( i ix y+ , ) . If we label this triangle  such that ABC ( , )i iB x y=

ic ( i

,  and 

 forms the base of the triangle, then the we compute the curvature  at AC )ix y,  as 

the square of height of the triangle. 
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Appendix B: Annotation Software 
We created software to allow radiologists to annotate the salient features of malignant 

spiculated masses in mammograms. The software was designed using the graphical user 

interface tools in Matlab®. Its key features are described below: 

− The user can inspect a whole mammogram, and select a region of interest containing 

an abnormality. The user can zoom and pan within the full mammogram and mark 

the location of the nipple 

− Having selected a region of interest, the region is displayed simultaneously in three 

windows using: the original grey-scale colour map; a contrast enhanced grey-scale 

colour map; and a contrast enhanced colour representation. A further option of 

displaying the region with lines enhanced using the linear operator [36] was 

developed, but after consultation with radiologists at the Nightingale Breast Centre, 

Manchester, this was deemed unnecessary. The user can enlarge the region of 

interest windows to any size, and can zoom and pan within the regions. 

− Having selected a region of interest, the user can outline the border of a mass and/or 

mark any spicules in the region. Annotation may be performed in any of the three 

region of interest windows and appears simultaneously in all three. Any annotation 

can be saved, reloaded and modified at a later date. 

A screen shot of the software is depicted in Figure B.1. The figure displays: the tools 

panel used to operate the software; the window in which the full mammogram is 

displayed - the nipple has been marked (red star) and region of interest containing a 

mass selected (blue rectangle); the enhanced grey-scale and colour representation of the 
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region of interest in which the mass border has been annotated. 

 

Figure B.1: Screen shot of the software we developed to allow radiologists to make an accurate 

annotation of the salient features in our dataset of masses 
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