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Abstract We compare the relative performance of
monolithic and segregated (partitioned) solvers for large-
displacement fluid–structure interaction (FSI) problems
within the framework of oomph- lib, the object-oriented
multi-physics finite-element library, available as open-source
software at http://www.oomph-lib.org. Monolithic solvers
are widely acknowledged to be more robust than their seg-
regated counterparts, but are believed to be too expensive
for use in large-scale problems. We demonstrate that mono-
lithic solvers are competitive even for problems in which
the fluid–solid coupling is weak and, hence, the segregated
solvers converge within a moderate number of iterations.
The efficient monolithic solution of large-scale FSI problems
requires the development of preconditioners for the iterative
solution of the linear systems that arise during the solution of
the monolithically coupled fluid and solid equations by New-
ton’s method. We demonstrate that recent improvements to
oomph- lib’s FSI preconditioner result in mesh-independent
convergence rates under uniform and non-uniform (adaptive)
mesh refinement, and explore its performance in a number
of two- and three-dimensional test problems involving the
interaction of finite-Reynolds-number flows with shell and
beam structures, as well as finite-thickness solids.

Keywords Fluid-structure interaction · Monolithic
solvers · Preconditioning

1 Introduction

Numerical methods for the solution of large-displacement
fluid–structure interaction (FSI) problems can be classified
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as either segregated (partitioned) or monolithic. In a mono-
lithic approach, the complete system of nonlinear algebraic
equations that arises from the coupled discretisation of the
equations of motion in the fluid and solid domains is solved
as a whole, typically using a variant of Newton’s method.
This approach is generally acknowledged to be more robust
than a segregated approach in which separate fluid and solid
problems are coupled via a Picard (fixed point) iteration. It is
widely believed, however, that monolithic solvers (i) are too
computationally expensive and (ii) cannot take advantage of
software modularity to the same extent as segregated solvers.
The alleged superiority of the latter approach is generally
attributed to the fact that in a segregated scheme “smaller
and better conditioned subsystems are solved instead of one
overall problem” [1]. It is also believed to be “difficult to
devise efficient global preconditioners and to maintain state-
of-the-art schemes in each solver” [2] when a monolithic
solver is used. As a result, the monolithic approach is often
regarded as unsuitable for large-scale problems.

oomph- lib, the object-oriented multi-physics finite-
element library, available as open-source software at http://
www.oomph-lib.org, was developed to address these con-
cerns. A main design goal is to provide an environment that
facilitates the monolithic discretisation and solution of multi-
physics problems. The overall design of the library has been
discussed in Ref. [3] and further details can be found in the
online documentation. Here, we provide a brief overview of
the library’s overall structure and an outline of the imple-
mentation for FSI problems (Sect. 2). The main objective of
the paper is to assess the performance of different solution
strategies for large-displacement FSI problems. In Sect. 3
we compare the performance of monolithic and segregated
solvers and demonstrate that the former are competitive even
in cases where the fluid–solid coupling is relatively weak
and, hence, segregated solvers converge in a moderate num-
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ber of iterations. In Sect. 4 we discuss recent improvements
to oomph- lib’s FSI preconditioner and demonstrate its
excellent performance in a number of test problems solved
using the library’s monolithic Newton solver.

2 Problem formulation and solution

2.1 oomph- lib’s overall design

oomph- lib’s design is based on a (finite-)element-like
framework in which the system of nonlinear algebraic equa-
tions arising from the fully coupled discretisation of multi-
physics problems is generated using an element-by-element
assembly procedure. Typically, time-derivatives are treated
implicitly and for the unsteady simulations described in this
paper a second-order, backward-difference method (BDF2)
is used for the unsteady terms in the fluid equations, and a
Newmark method is used for those in the solid equations.
The library provides a large number of single-physics ele-
ments that are easily (re-)used in multi-physics problems,
via a combination of inheritance and template (generic) pro-
gramming. In addition, the library provides a variety of node-
update strategies to accommodate moving boundaries. In all
the test problems below, an algebraic node-update strategy
was used to adjust the nodal positions within the fluid domain
in response to changes in its (solid) boundaries. The key
feature of this strategy is that the position of each node in
the fluid domain depends only on the positions of a small
number of solid nodes, resulting in fast mesh updates during
the assembly of the fully coupled system. Furthermore, the
approach leads to sparse shape-derivative matrices whose
entries are computed automatically by finite-differencing.
Further details can be found in Ref. [3] and on the oomph-
lib webpages. Also present in the library are numerous high-
level helper functions that facilitate the specification of multi-
physics interactions; for instance, functions that automati-
cally determine the (fluid mechanics) degrees of freedom
that affect the fluid load on the solid. It is, therefore, straight-
forward to combine two (or more) single-physics problems
to create a monolithically coupled multi-physics problem.

Once a monolithic discretisation has been specified, the
coupled problem can be solved by oomph- lib’s Newton
solver, acting on the fully coupled system of nonlinear alge-
braic equations. A variety of direct and iterative linear solvers,
together with appropriate preconditioners, are provided for
the solution of the linear systems that arise during the Newton
iteration.

Alternatively, a segregated solution strategy may be
employed: oomph- lib’s segregated FSI solver starts by “pin-
ning” the degrees of freedom associated with the solid
mechanics problem and modifies the assembly procedure to
include only those elements associated with the fluids prob-
lem. Thus, the Newton solver will solve the equations gov-

erning the fluid motion for the current, “frozen”, wall shape.
Next, the original boundary conditions for the solid problem
are re-assigned, the fluid degrees of freedom are “pinned”
and the assembly procedure is restricted to the solid ele-
ments. After these changes, the Newton solver computes a
new wall shape for the given flow field. If desired, differ-
ent linear solvers/preconditioners can be employed for the
fluid and solid solves, allowing the (re-)use of optimal solu-
tion methodologies for the solution of the sub-problems. The
basic fixed-point iteration can be augmented by constant or
adaptive under-relaxation (the latter based on Irons & Tuck’s
convergence acceleration technique for vector sequences [4]),
and predictors for the wall displacement at the next timestep
can be employed in time-dependent simulations. Numeri-
cal experiments showed that for problems with strong FSI
the convergence of the solid sub-solves within the segre-
gated solution strategy were dramatically improved by updat-
ing the fluid mesh (and hence the applied viscous stresses)
after each linear solve. The algebraic node-update procedure
allows mesh updates to be performed very quickly and so
this step was performed by default as it had very little effect
on the timings but significantly improved the robustness of
the fixed-point iteration.

Because oomph- lib’s monolithic and segregated solvers
are implemented within the same overall framework, it is
possible to perform a direct comparison between the two
approaches.

2.2 oomph- lib’s fluid and solid elements
and their interaction

Within oomph- lib it is generally assumed that all lengths
and coordinates have been non-dimensionalised on a
problem-specific lengthscale L, while time is non-
dimensionalised on some reference timescale T . Assuming
that the fluid velocities are non-dimensionalised on a repre-
sentative velocity U , the dimensionless Navier–Stokes equa-
tions, which govern the flow of an incompressible Newtonian
fluid with density ρ f and viscosity µ, are then given by1

Re

(
St

∂ui

∂t
+ u j

∂ui

∂x j

)
= − ∂p

∂xi
+ ∂

∂x j

(
∂ui

∂x j
+ ∂u j

∂xi

)

and
∂u j

∂x j
= 0, (1)

where Re=ρ f UL/µ is the Reynolds number, St =L/(UT )

is the Strouhal number, and the pressure is non-
dimensionalised on the viscous scale µU/L. Equation (1),
implemented in the Arbitrary–Lagrangian–Eulerian (ALE)

1 Throughout this paper, Latin indices take the values i = 1, 2, 3, Greek
indices take the values α = 1, 2, and we use the summation convention
that repeated indices are summed over all possible values of the index.
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form, are the basis of all Navier–Stokes elements in the
library.

oomph- lib’s geometrically nonlinear Kirchhoff–Love
beam and shell elements, used in the test cases in Sects. 3.1,
4.2.2 and 4.2.4, are based on the variational principle

∫∫ [
(σ

γ δ
0 + Eαβγ δγαβ) δγγ δ

+ 1

12

(
h

L

)2

Eαβγ δκαβ δκγ δ

]√
a dξ1 dξ2

=
∫∫ [(L

h

) √
A

a
f − Λ2 ∂2Rs

∂t2

]

×δRs
√

a dξ1 dξ2, (2)

which describes the large-displacements of an incrementally
linearly elastic shell of thickness h and density ρs , Young’s
modulus E and Poisson ratio ν. Here, Rs is the position
vector to the shell’s deformed midplane, parameterised by
the Lagrangian coordinates ξ1 and ξ2; a beam is understood
to be the (obvious) restriction to the case when the mid-
plane is parameterised by a single Lagrangian coordinate.
The stresses, the fourth-order elasticity tensor Eαβγ δ , and
the load vector f are non-dimensionalised by the structure’s
effective Young’s modulus, Eef f = E/(1 − ν2). The (sec-

ond Piola–Kirchhoff) pre-stress is represented by σ
αβ
0 , and

γαβ and καβ are the midplane strain and bending tensors.√
A dξ1dξ2 and

√
a dξ1dξ2 represent infinitesimal area ele-

ments of the shell’s deformed and undeformed midplanes,
respectively. The parameter Λ=(L/T )

√
ρs/Eef f is the ratio

of the structure’s natural timescale (for free in-plane vibra-
tions) to the timescale T used in the non-dimensionalisation
of the equations.

oomph- lib’s general large-displacement elasticity ele-
ments (available in displacement and pressure-displacement
forms for compressible and (near-)incompressible behav-
iour) are based on the variational principle

∫
σ i j δγi j dv =

∫ (
b−Λ2 ∂2Rs

∂t2

)
· δRs dv+

∮
f · δRs d A,

(3)

where the two integrals are performed over the undeformed
reference volume and over the deformed surface of the body,
respectively. The second Piola–Kirchhoff stress tensor, σ i j ,
is determined as a function of the Green strain tensor γi j via
a user-specified constitutive equation. σ i j is assumed to be
non-dimensionalised on some characteristic stiffness para-
meter, S, such as Young’s modulus E , which is also used
for the consistent non-dimensionalisations of the body force
b and the surface traction f ; and the timescale ratio is now
given by Λ = (L/T )

√
ρs/S .

The solid displacements affect the fluid via the induced
changes in the domain geometry and via the no-slip condition

u = St
∂Rs

∂t
on fluid–solid interfaces. (4)

The Cartesian components of the traction that the Newtonian
fluid exerts onto the solid (on the solid stress scale) is given
by

f [FSI]
i = Q

(
−pδi j +

(
∂ui

∂x j
+ ∂u j

∂xi

))
N j , (5)

where the N j are the Cartesian components of the outer
unit normal on the deformed solid (pointing into the fluid)
and Q is the ratio of the stress scales used in the non-
dimensionalisation of the solid and fluid equations. The para-
meter Q indicates the strength of the FSI: as Q → 0, the fluid
stresses acting on the structure become negligible, effectively
decoupling the fluid and solid problems. We stress, however,
that this statement is to be understood in an asymptotic sense.
A “small” but finite value of Q does not necessarily imply
that FSI can be neglected, particularly if the stiffness para-
meter used to non-dimensionalise the solid stresses does not
provide a good indication of the structure’s stiffness. For
instance, a small value of Q in a thin-shell problem indicates
that the fluid stresses are small relative to the shell’s exten-
sional stiffness. If the shell deforms in a bending mode (in
which it is much more flexible) the fluid stresses may still
induce large deformations at small Q.

3 Comparing monolithic and segregated solvers

3.1 The test problem: flow in a collapsible channel

We shall explore the relative performance of segregated and
monolithic solvers using the well-studied FSI problem of
flow in a collapsible channel. Incompressible, Newtonian
fluid is driven through a 2D channel whose width is used
as the lengthscale L. A Poiseuille (parabolic) velocity pro-
file of mean velocity U is imposed at the inflow boundary and
the outflow velocity is set to be parallel and axially traction
free. A section of the upper channel wall is elastic and mod-
elled as a pre-stressed Kirchhoff–Love beam loaded by an
external pressure, pext, and the fluid traction (5). The system
is known to develop large-displacement, self-excited oscil-
lations (see, e.g., Ref. [5] and Fig. 2), provided that Re and
Q are sufficiently large.

We employed oomph- lib’s QTaylorHood (Q2 Q1)
Navier–Stokes elements to discretise the ALE form of the
unsteady Navier–Stokes equations and used the Kirchhoff–
Love HermiteBeamElements to discretise the flexible
part of the channel wall. Displacement control (prescribing
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Fig. 1 a Load–displacement diagram: the vertical position, x [ctrl]
2 , of

a control point on the elastic wall (located at 50, 50, 60 and 70% of its
length for Q = 0, 10−4, 10−3 and 10−2, respectively) as a function
of the external pressure, pext . b, c Steady flow fields (streamlines and
pressure contours in the vicinity of the elastic segment) at Re = 500,
for b Q = 10−4 and c Q = 10−2

the vertical displacement of a control point near the antici-
pated point of strongest collapse and solving for the unknown
external pressure required to achieve that deformation) was
employed to handle the system’s possible snap-through
behaviour in steady simulations; see Fig. 1a.

3.2 Results of the simulations

Simulations were performed for a channel in which a
massless (Λ = 0) flexible wall segment of thickness h/L =
1/20 and length L = 5 was subjected to an axial prestress
of σ0 = 103 and mounted on two rigid channels of length
Lup = 1 and Ldown = 10.

In Fig. 1a we illustrate the system’s load–displacement
characteristics by plotting the vertical position of a control
point on the elastic section of the wall, x [ctrl]

2 , as a function of
the non-dimensional external pressure, pext. For small values
of the FSI parameter Q, the fluid traction is a small fraction
of the load on the wall and an increase in pext leads to an
approximately proportional increase in the wall deflection;
the fluid reacts passively to the changes in the wall geome-
try. For instance, in Fig. 1b the wall deformation is virtually
symmetric, with the point of strongest collapse located at
the centre of the elastic segment, indicating that the load
on the wall is dominated by the spatially constant external
pressure. As Q increases, the fluid traction noticeably affects

Fig. 2 a Time-trace of the vertical position of the control point on the
wall (located at 70% of its length) during a self-excited oscillation at
Re = 500, St = 1 and Q = 10−2. b–d Snapshots of the unsteady flow
fields (instantaneous streamlines and pressure contours) at b t = 32.4,
b t = 34.9 and c t = 37.4

the load–displacement curve. At larger values of Q, a larger
external pressure is required to keep the wall in its (approxi-
mately) undeformed position because pext must balance the
increasingly large fluid pressure in the elastic section, and so
the load–displacement curves shift to the right. The increase
in fluid pressure is a consequence of the fact that the outflow
boundary conditions impose a zero fluid pressure at the end
of the rigid downstream section, but the viscous pressure drop
through that section increases with Q. Another consequence
of the increased viscous pressure drop is that the point of
strongest collapse moves downstream and so the control point
is varied accordingly. In addition, the Bernoulli effect causes
a reduction in fluid pressure in the most strongly collapsed
part of the channel, locally increasing the compressive load
on the wall. Hence, at larger values of Q a smaller increase in
external pressure is required to collapse the channel to a given
degree. At Q = 10−2 this destabilising effect is so strong that
limit points develop in the load-displacement curve, indicat-
ing that, at sufficiently large pext, the wall “snaps through”
into a strongly deformed equilibrium configuration. The cor-
responding plot of the wall shape in Fig. 1c illustrates that the
wall deformation is now strongly affected by fluid pressure
distribution.

Figure 2a shows the time-trace of the wall displacement in
an unsteady simulation at Re = 500, St = 1 and Q = 10−2.
For this simulation the steady solution for pext = 1.68 was
used as the initial condition for a time-dependent simulation
in which pext was set to 2.51 at t = 0. The time-trace and
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Fig. 3 Convergence histories
of the segregated (dashed lines)
and monolithic (solid lines)
solvers for a steady computation
at Re = 500 and various values
of the interaction parameter Q.
In a-c the convergence is
characterised by the maximum
residual of the coupled
equations; in d convergence is
assessed in terms of the
maximum change in the solid
variables between two
successive iterations

the snapshots of the flow field show that, following the initial
perturbation, the system performs sustained, large-amplitude
self-excited oscillations during which complex vortical flow
structures develop downstream of the oscillating wall seg-
ment.

3.3 The relative performance of the segregated
and monolithic solvers

Figures 3a–c show the convergence histories (maximum
residual of the coupled equations vs. CPU time on a 3.60 GHz
Intel Xeon processor with 2 GB of memory) of the mono-
lithic and segregated solvers for a steady computation at
Re = 500, and for three different values of the interaction
parameter Q. The six curves in each figure represent the
convergence histories during six nonlinear solves performed
in the course of a parameter study during which the chan-
nel’s maximum collapse was increased from 0 to 35% of its
width. For simplicity, all linear systems were solved with
oomph- lib’s default linear solver, SuperLU [6], a sparse
direct solver which is efficient for this moderately sized 2D
problem (20,390 unknowns); see Tables 1 and 3.

For all cases considered, both nonlinear solvers converge
in a moderate number of iterations, with roughly comparable

Table 1 Average CPU times (in seconds) for the monolithic Newton
solver applied to the steady collapsible channel problem with Re = 500
and Q = 10−2, for different linear solvers/preconditioners

NDOF SuperLU GMRES & PPP1 GMRES & PPP2

8987 9.7 12.2(12.4) 11.8(11.0)

20391 27.7 27.1(31.2) 25.4(29.2)

36403 65.8 52.4(61.5) 49.7(60.2)

57023 130.5 87.7(116.2) 83.6(110.8)

82251 230.7 153.5(213.7) 147.3(205.7)

112087 394.4 227.6(324.6) 218.8(329.4)

146531 − 332.5(470.5) 321.2(499.7)

185583 − 459.8(653.2) 432.7(729.5)

Numbers in brackets are for the original version of the preconditioner
used in Ref. [7], i.e. without the scaling factor Q̂

CPU times, irrespective of the convergence criterion (maxi-
mum global residual or maximum change in the position of
the solid nodes between two successive nonlinear iterations;
see Figs. 3c, d). The variable CPU time increments in the con-
vergence histories for the segregated solver indicate that the
number of Newton iterations required by the two sub-solvers
tends to decrease as the Picard iteration proceeds.
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Table 2 Average GMRES iteration counts for the steady collapsible
channel problem with Re = 500 and Q = 10−2, for different precon-
ditioners

NDOF GMRES & PPP1 GMRES & PPP2

8987 71.5 (70.0) 56.5 (58.9)

20391 65.5 (66.1) 56.5 (59.0)

36403 59.8 (72.6) 51.8 (64.4)

57023 52.6 (70.0) 45.6 (67.1)

82251 47.3 (76.1) 41.1 (71.4)

112087 43.4 (80.7) 38.0 (77.1)

146531 40.2 (86.2) 35.2 (84.0)

185583 38.4 (95.0) 33.9 (88.5)

Numbers in brackets as in Table 1

Table 3 Average CPU times (in seconds) for the monolithic New-
ton solver applied to the unsteady collapsible channel problem for
Re = 500, St = 1 and Q = 10−2, with different linear
solvers/preconditioners

NDOF SuperLU GMRES & PPP1 GMRES & PPP2

8986 5.3 5.7(5.7) 5.6(5.5)

20390 17.8 14.6(14.8) 14.4(14.2)

36402 38.2 28.9(29.3) 28.4(28.7)

57022 72.0 51.7(52.1) 49.9(50.5)

82250 120.3 91.0(92.8) 88.9(91.1)

112086 197.7 137.3(140.5) 133.9(138.1)

146530 − 197.3(202.8) 193.6(199.2)

185582 − 277.8(286.4) 273.4(282.7)

Numbers in brackets as in Table 1

As expected, the monolithic solver performs better when
the coupling is strong (large Q) and the segregated solver
performs best for weak coupling (small Q). Nonetheless, for
the steady solutions computed here, both methods are com-
petitive. In all cases with non-negligible FSI the monolithic
solver tends to perform better than the segregated approach—
recall that Fig. 1a shows that for Q = 10−4 the fluid load has a
minimal effect on the system’s load–displacement character-
istics. Qualitatively similar behaviour was found at different
Reynolds numbers and at different spatial resolutions.

During the steady simulations under-relaxation was nei-
ther required nor beneficial and the most rapid convergence
was achieved in a simple, unmodified Picard iteration. Con-
versely, in unsteady problems the segregated solver was
found to diverge rapidly unless very strong under-relaxation
was applied. Under-relaxation parameters of less than 10−3

were required to stabilise the segregated solution procedure.
Figure 4b shows the CPU times for the different nonlin-

ear solvers during the course of an unsteady simulation at
Re = 500, St = 1 and Q = 10−2. Since the impulsive start

Fig. 4 a Time-trace of the vertical position of the control point on the
wall (located at 70% of its length) during a time-dependent simulation
with Re = 500, St = 1 and Q = 10−2, computed with the monolithic
and segregated solvers. b CPU times required by the various nonlinear
solvers

at the beginning of the simulation is likely to cause particular
problems for a segregated solution procedure, we performed
the first few timesteps with the monolithic Newton solver
and then restarted the simulation, either with the monolithic
or the segregated solver. If a fixed under-relaxation parame-
ter of ω = 10−4 is used throughout the Picard iteration,
the convergence rates are so slow that the segregated solver
never converges within (the maximum number of) 50 itera-
tions. The effect is seen is Fig. 4a in which the solution drifts
away from the “exact” solution (computed by the monolithic
Newton solver) until, at t ≈ 9.5, the Newton iteration fails to
converge during the solid solve. At larger values of the under-
relaxation parameter the segregated solver fails even earlier.
The adaptive adjustment of the under-relaxation parameter
by Irons & Tuck’s convergence acceleration procedure [4]
leads to significant improvements in the convergence rates
and hence a much more accurate solution. However, even in
this case the Picard iteration ultimately fails near t ≈ 15,
again because the Newton solver diverges during the solid
solve. Furthermore, the CPU times required by the segregated
solver are now significantly larger than those required by the
monolithic solver which continues to converge in approxi-
mately the same CPU times observed in the steady compu-
tations.

These results confirm the widely acknowledged fact that
monolithic solvers tend to be more robust than their segre-
gated counterparts. More importantly, we demonstrated that
even in problems with weak FSI in which segregated solvers
are expected to perform well, the monolithic and segregated
solvers converge in comparable CPU times, dispelling the
myth that the former are necessarily more expensive.
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4 Preconditioners for monolithic FSI solvers

4.1 oomph- lib’s FSI preconditioning strategy

We still have to address the fact that the use of direct solvers
for the solution of the linear systems that arise during the
solution of the monolithically coupled nonlinear algebraic
equations by Newton’s method ceases to be feasible for larger
problems, particularly in 3D. We therefore turn our attention
to the solution of the linear systems by iterative, Krylov sub-
space, methods, such as GMRES, which require the provi-
sion of efficient preconditioners. As discussed in the intro-
duction, the ability to re-use highly optimised solvers and
preconditioners for the solution of the individual sub-
problems is often regarded as one of the key advantages of the
segregated approach. We shall now demonstrate that a block-
triangular FSI preconditioner allows the re-use of existing
single-physics solver/preconditioning strategies within the
framework of a monolithic solver.

For this purpose we write the discretised fluid and solid
equations as FFF(u, p; s) = 0, and SSS(s; u, p) = 0, where u, p
and s are the vectors containing discrete fluid velocities, fluid
pressures and solid displacements, respectively. The assumed
existence of “optimal” solvers for the uncoupled fluid and
solid sub-problems implies that we can efficiently solve the
linear systems

(
F G
D 0

) (
δu
δp

)
= −

(
ru

rp

)
, (6)

which arise during the Newton iteration for the fluid equa-
tions, while keeping the solid unknowns s fixed. Here the
matrix F arises from the discretisation of the unsteady
advection-diffusion parts of the fluid momentum equations
while G and D represent discrete gradient and divergence
operators.

Similarly, we assume that there exist efficient solvers for
the linear systems that arise during the Newton iteration for
the solid equations while the fluid velocities and pressures
are held fixed,

S δs = −rs, (7)

where S is the solid’s tangent stiffness matrix.
The challenge is to re-use the existing optimal solvers in

the context of the linear systems

⎛
⎝ F G Cus

D 0 Cps

Csu Csp S

⎞
⎠

⎛
⎝ δu

δp
δs

⎞
⎠ = −

⎛
⎝ ru

rp

rs

⎞
⎠ (8)

that must be solved during the Newton iteration of the mono-
lithically coupled equations. Here the off-diagonal matrix

blocks C∗∗ arise from the interaction between fluid and solid
equations: Cus and Cps contain the so-called “shape
derivatives”—the derivatives of the Navier–Stokes residu-
als with respect to the solid displacements that affect the
nodal positions in the fluid mesh. Similarly, Csu and Csp

contain the derivatives of the solid residuals with respect to
the fluid variables; this interaction arises through the fluid
loading on the wall via Eq. (5). As discussed in Sect. 2.1,
oomph- lib’s algebraic node-update strategy ensures that the
interaction matrices are very sparse. The maximum fill level
for the examples presented in this paper is about 3% and such
(relatively) large values only arose in computations with very
coarse meshes; the much finer meshes used in typical pro-
duction runs resulted in much sparser matrices.

We showed in Ref. [7] that the use of block-triangular
approximations to the global Jacobian matrix, obtained by
neglecting the fluid–solid or solid–fluid interaction blocks,

PPP1 =
⎛
⎝ F G 0

D 0 0
Csu Csp S

⎞
⎠ and PPP2 =

⎛
⎝ F G Cus

D 0 Cps

0 0 S

⎞
⎠ (9)

in the Newton method seriously degrades its performance,
resulting in the loss of its quadratic convergence and thus
one of its the most attractive features. However, the block-
triangular approximations were shown to be excellent pre-
conditioners for the solution of the linear system (8) by
Krylov subspace methods. Because of their block-triangular
structure each application of the preconditioners involves lin-
ear solves with each of the two single-physics systems (6) and
(7), and matrix–vector products with the retained interaction
matrices.

The current implementation of this preconditioner within
oomph- lib uses Elman, Silvester & Wathen’s “least squares
commutator” (LSC) preconditioner [9] to approximately
solve the fluid system (6). Compared to the original imple-
mentation of the FSI preconditioner, discussed in Ref. [7],
this version of the Navier–Stokes preconditioner incorpo-
rates additional scaling operations which result in a signifi-
cant improvement in its performance.

Each application of the LSC preconditioner to a vector
(yu, yp) requires the solution of the linear system

(
F G
0 −M̃s

) (
xu

xp

)
=

(
yu

yp

)
, (10)

for (xu, xp). Here M̃s is an approximation to the pressure
Schur complement Ms = DF−1G. The solution is performed
in two stages. First we (formally) solve the second row of (10)
for xp via

xp = −M̃−1
s yp. (11)
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Given xp, we then obtain xu from the linear system

Fxu = yu − Gxp. (12)

The action of the inverse pressure Schur complement M̃−1
s

in (11) is approximated by

xp = −
(

DQ̂−1G
)−1 (

DQ̂−1FQ̂−1G
) (

DQ̂−1G
)−1

yp,

(13)

where Q̂ is the diagonal of the velocity mass matrix which is
easy to compute and cheap to invert. The evaluation of this
expression involves two linear solves with the matrix

P =
(

DQ̂−1G
)

(14)

which has the character of a discrete pressure Poisson oper-
ator. We also have to evaluate matrix–vector products with
the matrix

E = DQ̂−1FQ̂−1G. (15)

oomph- lib allows the use of different (approximate) lin-
ear solvers for the solution of the various linear systems.
Linear systems involving the scaled pressure Poisson matrix
(14) can be solved efficiently with algebraic (or geometric)
multigrid. Within oomph- lib we typically employ the alge-
braic multigrid solvers from the Hypre [11] or Trilinos
[12] libraries and perform a single multigrid cycle to obtain
an approximate solution. We demonstrated in Ref. [7] that
the system (12) can be solved efficiently by geometric multi-
grid with grid-dependent stabilisation. Geometric multigrid
is currently under development in oomph- lib, and in the
studies presented below the linear system (12) was solved
with SuperLU.

4.2 Performance of the FSI preconditioner

4.2.1 The collapsible channel problem

Tables 1–4 illustrate the performance of the FSI precondi-
tioner for the collapsible channel problem of Sect. 3. Tables
1 and 3 compare the average CPU times for the monolithic
Newton solver when the linear system (8) is solved by
SuperLU or by GMRES (with a convergence tolerance of
10−6), preconditioned with the two block-triangular FSI
preconditioners PPP1 and PPP2. While the direct solution of the
linear systems with SuperLU is competitive at moderate spa-
tial resolutions, the CPU times (and memory requirements)
increase rapidly with the number of degrees of freedom; for
the two finest discretisation considered, the total memory
required by SuperLU exceeded the 2 GB memory available

Table 4 Average GMRES iteration counts for the unsteady collapsible
channel problem with Re = 500, St = 1 and Q = 10−2, for different
preconditioners

NDOF GMRES & PPP1 GMRES & PPP2

8986 22.8 (23.5) 19.9 (20.3)

20390 25.5 (26.7) 22.2 (22.9)

36402 25.7 (28.2) 22.4 (24.0)

57022 25.6 (29.0) 22.4 (25.1)

82250 25.4 (29.0) 22.1 (24.8)

112086 25.2 (28.9) 21.9 (25.1)

146530 24.1 (28.6) 21.1 (25.4)

185582 23.3 (27.7) 20.5 (25.8)

Numbers in brackets as in Table 1

on our computer. Conversely, the CPU (and memory) require-
ments for the iterative linear solvers increase much more
slowly with the number of degrees of freedom, allowing the
solution of much larger problems.

A comparison between the CPU times and iteration counts
for the old and new versions of the preconditioner shows that
the inclusion of the scaling factor Q̂ into Eqs. (13), (14) and
(15) leads to a dramatic improvement in its performance,
particularly for steady problems where an increase in the
number of degrees of freedom now leads to a rapid reduction
in the average iteration counts. For unsteady problems the
old version of the preconditioner only suffered from a mod-
est deterioration of the GMRES convergence rates with an
increase in the number of degrees of freedom. The inclusion
of the scaling factor makes the convergence rates essentially
mesh independent.

A detailed analysis of the timings confirms that the present
implementation is not completely optimal, i.e. the CPU time
does not scale linearly with the number of degrees of free-
dom. This is because SuperLU is still used for the solution
of the linear systems (7) and (12). We expect to gain fur-
ther improvements and near-optimal scalings by replacing
the direct solver for (12) by a stabilised geometric multigrid
solver, as in Ref. [7].

4.2.2 An immersed leaflet in pulsatile flow

The next test problem involves a fully-immersed beam struc-
ture and explores the performance of the FSI preconditioner
in simulations with spatial adaptivity. The problem is illus-
trated in Fig. 5. A rigid-walled 2D channel whose dimen-
sional width L is used to non-dimensionalise all lengths, is
partially occluded by a thin-walled elastic leaflet of unde-
formed length 1

2L, represented by a massless Kirchhoff–
Love beam of thickness h/L = 1/20. A pulsatile Poiseuille
flow whose mean velocity fluctuates between U and 2U is
imposed at the upstream and of the channel. We scale the
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Fig. 5 Pulsatile flow in a 2D
channel that is partially
occluded by a thin-walled elastic
leaflet. The Reynolds number
associated with the minimum
mean velocity of the prescribed
pulsatile inflow is Re = 200.
a Snapshot of the flow field
(instantaneous streamlines and
pressure contours) at t = 1.55.
b Time-trace of the horizontal
position of the leaflet tip.
c Detail of the adaptively refined
mesh in the vicinity of the leaflet

velocity on U and impose

u = 6 x2(1 − x2)

(
1 + 1

2
(1 − cos (π t))

)
e1 (16)

at x1 = 0, while parallel, axially traction-free outflow is
imposed at the outflow. Time is non-dimensionalised on the
flow’s intrinsic timescale T = L/U implying that St = 1.
The flow is started from the steady solution for the inflow
profile (16) evaluated at t = 0.

Figure 5a,b show a snapshot of the flow field and the
time-trace of the horizontal position of the leaflet’s tip for a
Reynolds number of Re = 200 and an interaction parameter
of Q = 10−6. Following the decay of initial transients, the
leaflet performs periodic large-amplitude oscillations with
the period of the pulsating inflow. Large velocity gradients
develop at the front of the leaflet and in the shear layer
that emanates from its tip and separates the recirculating
flow region behind the leaflet from the main flow. Figure 5c
illustrates the non-uniform mesh refinement and shows the
improved resolution in the high-shear regions, particularly
near the leaflet’s tip where the pressure is singular. The mesh
was continuously adapted throughout the simulation and con-
tained an average of about 32,000 degrees of freedom. This
is a fraction of the 1,324,343 degrees of freedom that would
be required to achieve the same local resolution via uniform
mesh refinement. On average the monolithic Newton solver
computed a fully converged solution in 47.8 s, with an aver-
age GMRES iteration count (over all linear solves) of 46.5
when PPP1 was used as the preconditioner.

4.2.3 Flow around a cylinder with a “flag”

Next we consider Turek & Hron’s FSI benchmark problem of
the flow around an elastic “flag” attached to a circular cylin-
der that is mounted slightly asymmetrically in a 2D channel.
The full problem specification may be found in Ref. [10].
We non-dimensionalise all lengths on the cylinder’s diame-
ter and use a timescale of T =1 sec to facilitate comparisons
against the (dimensional) results presented in Ref. [10]. This
test involves FSI with genuine solid (rather than beam) ele-
ments, and includes non-zero wall mass.

Figure 6 shows a snapshot of the flow field and the time-
trace of the vertical position of the flag’s tip for parameter
values that correspond to those of Turek & Hron’s test case
“FSI2”: Re = 100, St = 0.1 and Q = 7.143 × 10−6. The
ratio of solid and fluid densities is ρs/ρ f = 10, resulting in
a timescale ratio of Λ2 = 7.143 × 10−5.

Following an initial transient period, the system settles
into a large-amplitude self-excited oscillation during which
the oscillating “flag” generates a regular vortex pattern that
is advected along the channel. The computation was per-
formed with spatial adaptivity for the fluid and solid meshes,
resulting in an average of approximately 65,000 degrees of
freedom. A relatively large timestep of ∆t = 0.01—
corresponding to about 50 timesteps per period of the
oscillation—was used. With this discretisation the system
settled into oscillations with a period of ≈ 0.52 and an
amplitude of the vertical tip displacement of 0.01 ± 0.83.
GMRES was preconditioned with PPP1 and required an aver-
age of 44.2 iterations to converge, resulting in an average
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Fig. 6 Flow past a cylinder with an attached flag for the parameter
values of test case “FSI2” in Ref. [10]. a Time-trace of the x2-coordinate
of the flag’s tip. b Snapshot of the flow field (instantaneous streamlines
and pressure contours) at t = 6.04

Fig. 7 Flow past a cylinder with an attached flag for the parameter
values of test case “FSI3” in Ref. [10]. a Time-trace of the x2-coordinate
of the flag’s tip. b Snapshot of the flow field (instantaneous streamlines
and pressure contours) at t = 3.615

time of 75.3 s for the monolithic Newton solver at each
timestep.

Figure 7 shows the corresponding results for the test case
“FSI3” where fluid and wall densities are equal and Re =
200, St = 0.05, Q = 3.571 × 10−6 and Λ2 = 1.7855 ×
10−6. Compared to the conditions in test case “FSI2”, the
system performs oscillations of much higher frequency and
smaller amplitude. Our computation was performed with a
fixed timestep of ∆t = 0.005 and resulted in oscillations
with a period of ≈ 0.19 and an amplitude of the vertical tip
displacement of ≈ 0.01±0.36. The increase in frequency and
Reynolds number leads to the development of thinner bound-
ary and shear layers which require a finer spatial resolution,
involving an average of 84,000 degrees of freedom. This had
very little effect on the GMRES convergence rates. With PPP1

used as preconditioner an average of 45.8 iterations were
required to obtain a converged solution of the linear sys-
tems, while the solution of the nonlinear systems by Newton’s
method now required an average of 104.4 s.

Fig. 8 Unsteady flow through a collapsible tube for Q = 10−7, St =
1. a Time-trace of the radial position of a control point located at 70% of
the tube length, at the most strongly collapsed point in the cross section,
for various Reynolds numbers. b Snapshot of the axial velocity profiles
at t = 181.26 for the Re = 100 case

4.2.4 Self-excited oscillations of a 3D collapsible tube

In the final example we evaluate the performance of the FSI
preconditioner in preliminary 3D simulations of unsteady
finite-Reynolds number flows in a collapsible tube, mod-
elled as a circular cylindrical shell of radius L, length 10L
and wall thickness h/L = 1/20, and a Poisson ratio of
ν = 0.49, mounted on two short rigid tubes of length L.
We prescribe Poiseuille flow with average velocity U at the
far downstream end and impose parallel, axially traction-
free inflow upstream. Figure 8 shows the time-trace, rctrl(t),
of the radial position of a control point on the tube wall,
located towards the downstream end of the tube at 70% of
its length, for Q = 10−7, St = 1 and Λ = 0 at various
Reynolds numbers. In all cases the simulation was started
from the steady solution with rctrl = 0.55, which required
different external pressures for each different Reynolds num-
ber. At t = 0 we reduced pext to a value corresponding to an
equilibrium configuration in which rctrl = 0.6 and followed
the system’s evolution. The time-trace shows that the sys-
tem oscillates about the new equilibrium position. At small
Reynolds numbers the oscillations decay but for sufficiently
large Reynolds number they grow in amplitude, as observed
in physical experiments; see e.g. [8].

The results presented here are preliminary in the sense that
the assessment of their mesh and timestep independence has
not yet been completed. However, the plot of the velocity field
in Fig. 8 suggests that even for a relatively coarse discretisa-
tion with 57,486 degrees of freedom, the velocity field is well
resolved. The Jacobian matrix arising from the monolithic
discretisation of 3D problems is significantly more dense
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than in the 2D problems considered earlier. Hence, despite
the relatively modest number of degrees of freedom there
was not sufficient memory available for SuperLU to solve
the linear systems during the Newton iteration. The FSI pre-
conditioner performs as well as in the 2D examples consid-
ered earlier, however, and GMRES, preconditioned by PPP1,
converged with an average of 27.4 iterations, requiring an
average of 90.2 s to solve each linear system.

5 Summary

Monolithic solvers for large-displacement FSI problems are
known to be more robust than their segregated counterparts,
but they are often believed to be too expensive both in terms
of memory and in terms of CPU time requirements. We
have compared both solution strategies within the same over-
all framework, implemented in oomph- lib, which allows a
direct comparison of their performance and have found these
beliefs to be unjustified. We demonstrated that monolithic
solvers are competitive even in test cases with very weak
FSI, for which segregated solvers converge reliably and in
a small number of iterations. For strongly coupled prob-
lems segregated solvers tend to suffer from severe conver-
gence problems and the use of monolithic solvers becomes
essential. However, for large problems, particularly in 3D,
the effective use of monolithic solvers requires the provi-
sion of efficient preconditioners for the iterative solution
of the large linear systems that arise during the solution
of the fully coupled system of nonlinear algebraic equa-
tions by Newton’s method. Block-triangular preconditioners,
obtained by neglecting selected interaction blocks from the
full Jacobian matrix, performed extremely well in a num-
ber of challenging test problems involving the interaction
of finite-Reynolds-number flows with beam and shell struc-
tures, as well as finite-thickness solids. The implementation
of the preconditioner within oomph- lib allows the re-use
of existing optimal solvers/preconditioning strategies for the
constituent sub-problems. The key component of our
implementation is the use of Elman, Silvester & Wathen’s
LSC Navier–Stokes preconditioner [9] which produced
mesh-independent convergence rates for unsteady problems,
and convergence rates that improve under uniform mesh
refinement for steady problems. The preconditioner was
shown to work equally well when used with adaptive mesh
refinement—a key requirement for the efficient solution of
problems in which the flow field contains thin shear or
boundary layers.

The test cases presented in this paper are scheduled for
inclusion into the next release of oomph-lib, expected in
early 2008.
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