Transverse flows in rapidly oscillating cylindrical vessels

Matthias Heil & Sarah L. Waters
also:
Andrew L. Hazel (oomph-lib)

M.Heil@maths.man.ac.uk

http://www.maths.man.ac.uk/~mheil

School of Mathematics; University of Manchester (MH & ALH)
and
Centre for Mathematical Medicine; University of Nottingham (SLW)
The Starling Resistor

Originally developed by physiologists to study the behaviour of collapsible tubes in physiology:

- Blood flow in veins and arteries
- Flow of air in the airways of the lung
- ...

System readily develops large-amplitude, self-excited oscillations.
Governing Equations

- Unsteady Navier–Stokes equations

\[
\rho \left(\frac{\partial u^*_i}{\partial t^*} + u^*_j \frac{\partial u^*_i}{\partial x^*_j} \right) = - \frac{\partial p^*}{\partial x^*_i} + \mu \frac{\partial}{\partial x^*_i} \left(\frac{\partial u^*_i}{\partial x^*_j} + \frac{\partial u^*_j}{\partial x^*_i} \right), \quad \frac{\partial u^*_i}{\partial x^*_i} = 0
\]

- Coupled to Kirchhoff–Love, thin-shell theory

\[
\int_0^{2\pi a^*} \int_0^L E^{*\alpha\beta\gamma\delta} \left(\gamma^{\alpha\beta\delta\gamma\delta} + \frac{h^2}{12} \kappa^{*\alpha\beta\delta\kappa^{*\gamma\delta}} \right) \, d\xi^*1 \, d\xi^*2 =
\]
\[
\int_0^{2\pi a} \int_0^L \left(f^* - \rho_w h \frac{\partial^2 R^*_{w}}{\partial t^*} \right) \cdot \delta R^*_{w} \sqrt{A} \, d\xi^*1 \, d\xi^*2.
\]

formulated in Lagrangian coordinates \((\xi^*1, \xi^*2)\).
Governing Equations

- Unsteady Navier–Stokes equations

\[\rho \left(\frac{\partial u_i^*}{\partial t^*} + u_j^* \frac{\partial u_i^*}{\partial x_j^*} \right) = - \frac{\partial p^*}{\partial x_i^*} + \mu \frac{\partial}{\partial x_i^*} \left(\frac{\partial u_i^*}{\partial x_j^*} + \frac{\partial u_j^*}{\partial x_i^*} \right), \quad \frac{\partial u_i^*}{\partial x_i^*} = 0 \]

- Coupled to Kirchhoff–Love, thin-shell theory

\[
\int_0^{2\pi a^*} \int_0^L E^{*\alpha\beta\gamma\delta} \left(\gamma_{\alpha\beta} \delta_{\gamma\delta} + \frac{h^2}{12} \kappa_{\alpha\beta}^* \delta_{\gamma\delta} \kappa_{\gamma\delta}^* \right) \, d\xi^1 \, d\xi^2 = \]
\[
\int_0^{2\pi a^*} \int_0^L \left(f^* - \rho_w h \frac{\partial^2 R_{w^*}}{\partial t^*} \right) \cdot \delta R_{w^*} \sqrt{A} \, d\xi^1 \, d\xi^2.
\]

formulated in Lagrangian coordinates \((\xi^1, \xi^2)\).

Strategy:

- Use scaling to simplify equations in a previously unexplored parameter regime.
- Combined numerical/asymptotic study of the system in this regime.
Parameter regime [c.f. Jensen & Heil JFM 481 (2003)]

- Small amplitude of wall oscillation

\[\epsilon \ll 1. \]

- High frequency of wall oscillation (period \(T \)):

\[St = \frac{a/T}{U} = \frac{\text{Velocity induced by wall motion}}{\text{Steady velocity}} \gg 1 \]

- Large Reynolds number of the steady through flow

\[Re = \frac{a\rho U}{\mu} = \frac{\text{Fluid inertia}}{\text{Fluid viscosity}} \gg 1 \]

- Large Womersley number

\[\alpha^2 = \frac{\rho a^2}{\mu T} = \frac{\text{Timescale for diffusion of vorticity}}{\text{Period of oscillation}} \gg 1 \]
Parameter regime [c.f. Jensen & Heil JFM 481 (2003)]

- Small amplitude of wall oscillation

\[\epsilon \ll 1. \]

- High frequency of wall oscillation (period \(T \)):

\[St = \frac{a/T}{U} = \frac{\text{Velocity induced by wall motion}}{\text{Steady velocity}} \gg 1 \]

- Large Reynolds number of the steady through flow

\[Re = \frac{a\rho U}{\mu} = \frac{\text{Fluid inertia}}{\text{Fluid viscosity}} \gg 1 \]

- Large Womersley number

\[\alpha^2 = \frac{\rho a^2}{\mu T} = \frac{\text{Timescale for diffusion of vorticity}}{\text{Period of oscillation}} \gg 1 \]

Such that

\[\alpha^2 \gg St \sim \frac{1}{\epsilon} \gg \alpha^{3/2} \]
Scaling

- Decompose all quantities into steady and unsteady components:

\[
\mathbf{u} = \mathbf{\bar{u}}(x_j) + \mathbf{\hat{u}}(x_j, t),
\]

\[
p = \bar{p}(x_j) + \hat{p}(x_j, t),
\]
Scaling

• Decompose all quantities into steady and unsteady components:

\[u = \bar{u}(x_j) + \hat{u}(x_j, t), \]
\[p = \bar{p}(x_j) + \hat{p}(x_j, t), \]

• Expand everything in powers of \(\epsilon \):

\[\hat{u}(x_j, t) = \hat{u}_0(x_j, t) + \epsilon \hat{u}_1(x_j, t) + \ldots \quad \text{etc.} \]
Scaling

- Decompose all quantities into steady and unsteady components:

\[u = \overline{u}(x_j) + \hat{u}(x_j, t), \]

\[p = \overline{p}(x_j) + \hat{p}(x_j, t), \]

- Expand everything in powers of \(\epsilon \):

\(\hat{u}(x_j, t) = \hat{u}_0(x_j, t) + \epsilon \hat{u}_1(x_j, t) + \ldots \) etc.

- Leading-order oscillatory flow \((\hat{u}_0, \hat{p}_0)\) is governed by

\[
\frac{\partial \hat{u}_0}{\partial t} = -\nabla \hat{p}_0 + \left[\frac{1}{\alpha^2} \nabla^2 \hat{u}_0 \right] \quad \text{and} \quad \nabla \cdot \hat{u}_0 = 0,
\]

(linearised Euler equations with Stokes boundary layers), subject to

\[\hat{u}_0 = \frac{\partial v_w(t)}{\partial t} \quad \text{on the wall} \]
Scaling

- Decompose all quantities into steady and unsteady components:
 \[
 u = \bar{u}(x_j) + \hat{u}(x_j, t), \\
 p = \bar{p}(x_j) + \hat{p}(x_j, t),
 \]

- Expand everything in powers of \(\epsilon \):
 \[
 \hat{u}(x_j, t) = \hat{u}_0(x_j, t) + \epsilon \hat{u}_1(x_j, t) + \cdots \quad \text{etc.}
 \]

- Leading-order oscillatory flow \((\hat{u}_0, \hat{p}_0) \) is governed by
 \[
 \frac{\partial \hat{u}_0}{\partial t} = -\nabla \hat{p}_0 + \left[\frac{1}{\alpha^2} \nabla^2 \hat{u}_0 \right] \quad \text{and} \quad \nabla \cdot \hat{u}_0 = 0,
 \]
 (linearised Euler equations with Stokes boundary layers), subject to
 \[
 \hat{u}_0 = \frac{\partial v_w(t)}{\partial t} \quad \text{on the wall}
 \]

- **Note:** Leading-order unsteady flow is independent of the steady through flow.
Fluid-structure interaction

- Wall deforms in response to fluid traction: What is the period of the oscillation?

Fluid inertia \(\sim \) Wall elasticity (\(\sim \) bending stiffness)

\[\rho \left(\frac{a}{T} \right)^2 \sim K \]
Fluid-structure interaction

- Wall deforms in response to fluid traction: What is the period of the oscillation?

 Fluid inertia \(\sim \) Wall elasticity (\(\sim \) bending stiffness)

 \[
 \rho \left(\frac{a}{T} \right)^2 \sim K
 \]

- \(\implies \) Timescale of oscillation:

 \[
 T = a \sqrt{\frac{\rho}{K}}
 \]
Fluid-structure interaction

- Wall deforms in response to fluid traction: What is the period of the oscillation?

\[\rho \left(\frac{a}{T} \right)^2 \sim K \]

- Timescale of oscillation:

\[T = a \sqrt{\frac{\rho}{K}} \]

- Womersley number:

\[\alpha = \left(\frac{a}{\mu} \right)^{1/2} (K \rho)^{1/4} \]

- Strouhal number:

\[St = \frac{1}{U} \left(\frac{K}{\rho} \right)^{1/2} \]

Note: \(\alpha \) is a material parameter.
Fluid-structure interaction

- Wall deforms in response to fluid traction: What is the period of the oscillation?

\[
\text{Fluid inertia } \sim \text{ Wall elasticity (} \sim \text{ bending stiffness)}
\]

\[
\rho \left(\frac{a}{T} \right)^2 \sim K
\]

- \(\implies \) Timescale of oscillation:

\[
T = \alpha \sqrt{\frac{\rho}{K}}
\]

- \(\implies \) Womersley number: Strouhal number:

\[
\alpha = \left(\frac{a}{\mu} \right)^{1/2} (K \rho)^{1/4}
\]
\[
St = \frac{1}{U} \left(\frac{K}{\rho} \right)^{1/2}
\]

Note: \(\alpha \) is a material parameter.

- \(\alpha, St \gg 1 \) can be realised by having relatively stiff walls (large \(K \)).
The wall displacement field

The wall performs small-amplitude non-axisymmetric oscillations about the axisymmetric wall shape

\[A = A_{\text{undef}} + O(2^2) \]
The wall displacement field

The wall performs small-amplitude non-axisymmetric oscillations about the axisymmetric wall shape.
The wall displacement field

The wall performs small-amplitude non-axisymmetric oscillations about the axisymmetric wall shape
The wall displacement field

The wall performs small-amplitude non-axisymmetric oscillations about the axisymmetric wall shape
The wall displacement field

The wall performs small-amplitude non-axisymmetric oscillations about the axisymmetric wall shape.

Observation:
- The change in the tube’s cross-sectional area is a second-order effect:

\[A = A_{undef} + O(\varepsilon^2). \]
The wall displacement field

The wall performs small-amplitude non-axisymmetric oscillations about the axisymmetric wall shape.

\[A = A_{undef} + \mathcal{O}(\varepsilon^2). \]

Observation:
- The change in the tube’s cross-sectional area is a second-order effect:
- For small wall displacements, the oscillatory wall motion does not drive any (net) axial flows!
The wall displacement field

The wall performs small-amplitude non-axisymmetric oscillations about the axisymmetric wall shape

![Diagram of wall displacement](image)

Observation:
- The change in the tube’s cross-sectional area is a second-order effect:
 \[A = A_{undef} + \mathcal{O}(\epsilon^2). \]
- For small wall displacements, the oscillatory wall motion does not drive any (net) axial flows!

- [Formally:
 \[\alpha^{1/2} \ll \frac{L}{a} \ll \frac{1}{\alpha \epsilon}, \]
 allows us to neglect axial flows and to replace \(\nabla^2 \) by its 2D equivalent.]
3D to 2D: “Executive summary”

In the parameter regime considered here:

- Unsteady flow uncouples from mean flow.
- Unsteady flow is dominated by its 2D transverse components
- No coupling between the 2D transverse flows in the tube’s cross-sections.

\[
\text{(unsteady)} = \text{(steady)} + \text{(unsteady)}
\]
3D to 2D: “Executive summary”

In the parameter regime considered here:

- Unsteady flow uncouples from mean flow.
- Unsteady flow is dominated by its 2D transverse components.
- No coupling between the 2D transverse flows in the tube’s cross-sections.

\[
\text{(unsteady)} = \text{(steady)} + \text{(unsteady)} \implies 2D \text{ problem in each transverse cross section.}
\]
Results: Numerics and asymptotics

- Use Heil & Hazel’s `oomph-lib` library to solve the ALE formulation of the 2D Navier-Stokes equations.
 - Equations discretised with LBB-stable, quadrilateral Q2Q-1 elements.
 - Time-stepping performed with BDF4 scheme (BDF2 for FSI cases).
 - Unstructured quadtree mesh refinement, based on Z2 error estimation, to resolve the thin Stokes layers that develop near the wall.

- Asymptotics solution of the unsteady Stokes equations, based on expansions in inverse powers of α (SLW).
Velocity field: Numerics vs asymptotics

Velocity and pressure fields for $\alpha^2 = 100, \epsilon = 0.1, N = 2, \Lambda = -0.5$

<table>
<thead>
<tr>
<th>FE simulation</th>
<th>Composite asymptotic solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FSI simulations

Procedure:

- Initial conditions:
 - Wall deformed statically into buckled shape with amplitude ε.
 - Fluid is at rest.
- At $t = 0$ ‘release’ the wall and follow the system’s evolution.
- Characterise the system’s state by plotting the time evolution of the control radius R_{ctrl}.
Results

Evolution of control radius for $\alpha^2 = 100$:

- Damped harmonic oscillation.
- Period of oscillation $= \mathcal{O}(1)$ \Rightarrow scaling estimates were correct.
- \Rightarrow Fluid inertia is indeed balanced by wall stiffness.
- Slightly dull...
Results

Evolution of control radius for $\alpha^2 = 50$:

- $\alpha \propto \mu^{-1/2}$.
- Smaller $\alpha \iff$ Larger dissipation. \iff More rapid decay of the oscillation.

What happens at $t \approx 11$??
Results

Evolution of control radius for $\alpha^2 = 10$:

- $\alpha \propto \mu^{-1/2}$.
- Smaller $\alpha \iff$ Larger dissipation. \iff More rapid decay of the oscillation.

What happens at $t \approx 3.5$

???
What is going on?

Consider case with $\alpha^2 = 10$:

```
\begin{tikzpicture}
  \begin{axis}[
    xlabel={time},
    ylabel={control radius $R_{\text{ctrl}}$},
    xmin=0, xmax=6,
    ymin=0.9, ymax=1.1,
    xtick={1,2,3,4,5,6},
    ytick={0.9,0.95,1,1.05,1.1},
    \]
  \addplot[red, thick] coordinates {
    (0,1.0)
    (1,1.1)
    (2,1.05)
    (3,0.95)
    (4,1.0)
    (5,1.1)
    (6,1.05)
  };
  \end{axis}
\end{tikzpicture}
```

“Type I” oscillation:

Initially:
What is going on?

Consider case with $\alpha^2 = 10$:

"Type I" oscillation:
What is going on?

“Type I” oscillation:

Initial configuration:

- Cross-sectional area $A < A_{undef}$.
- Change in cross-sectional area is second-order effect but Navier-Stokes equations conserve volume (area) exactly [...and so does our code!].
What is really going on?

Consider case with $\alpha^2 = 10$:

```
<table>
<thead>
<tr>
<th>time</th>
<th>control radius $R_{\text{ctrl}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>0.95</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1.05</td>
</tr>
<tr>
<td>5</td>
<td>1.1</td>
</tr>
</tbody>
</table>

“Type I” oscillation at constant volume (area):

• When passing through the axisymmetric state, the wall is strongly compressed.

• $\Longrightarrow$ Local maximum in strain energy $\Pi_{\text{strain}}$. 
This is going on:

Evolution of control displacement and energy budget for $\alpha^2 = 10$:

- Note maxima in strain energy $\Pi_{\text{strain}}$ whenever the wall is in its (approximately) axisymmetric and its most strongly buckled configurations.
This is going on:

Evolution of control displacement and energy budget for $\alpha^2 = 10$:

- Initially: Large total energy $\Pi_{total} \gg \Pi^{(\text{barrier})}_{\text{strain}}$ allows the system to overcome the potential energy barrier associated with the approximately axisymmetric state.
This is going on:

Evolution of control displacement and energy budget for $\alpha^2 = 10$:

- Viscous dissipation causes (rapid) decay of the total energy:

$$\frac{d\Pi_{\text{total}}}{dt} = -D.$$
This is going on:

Evolution of control displacement and energy budget for $\alpha^2 = 10$:

- Once $\Pi_{\text{total}} < \Pi_{\text{strain}}^{(\text{barrier})}$, system becomes ‘trapped’ in one of the two buckled states.

"Type II" oscillation at constant volume (area):
Oscillations about axisymmetric equilibrium states

- Transition from type I to type II oscillation can only be avoided if the initial configuration satisfies $A = A_{undef}$.

- Start simulation from undeformed state and initiate oscillations with transient perturbation

$$f_{\text{transient}} = \begin{cases} 
  p \cos \cos(Nx^2) \mathbf{N} & \text{for } t \leq 0.3 \\
  0 & \text{for } t > 0.3
\end{cases}$$

Evolution for $\alpha^2 = 200$: Beautiful exponential decay to axisymmetric state.
**Analytical predictions for decay rates**

- Multiple-scales analysis for decay rate (SLW): Amplitude decays like

\[ A \sim \exp(kt) \]

- Compare against numerical results:
Conclusions

- A dynamic balance between fluid inertia and wall stiffness can support high-frequency, small-amplitude oscillations so that:

\[
\text{(unsteady)} + \text{(steady)} = \text{(unsteady)}
\]

- In the 2D system studied here, oscillations inevitably decay but they do so in an ‘interesting’ and generic manner.
- The transition between type I and type II oscillations is not an artefact of the 2D system!
- Decay rates indicate how much energy we have to extract from the flow (by other mechanisms) to maintain the oscillations.
- Parameter values required for the oscillations analysed here can be realised experimentally for sufficiently stiff tubes.
The two types of oscillation are an artefact of the 2D system...(?)

Admittedly...

- ...in 3D, the area constraint does not exist because axial inflow into the cross-sections is possible.

But...
The two types of oscillation are an artefact of the 2D system...(?)

Admittedly...

- ...in 3D, the area constraint does not exist because axial inflow into the cross-sections is possible.

But...

- ...the scenario observed here is generic for oscillations of externally compressed collapsible tubes.
The two types of oscillation are an artefact of the 2D system... (?)

Admittedly...
- ...in 3D, the area constraint does not exist because axial inflow into the cross-sections is possible.

But...
- ...the scenario observed here is generic for oscillations of externally compressed collapsible tubes.

Recall:
- Transition from type I to type II oscillation is due to a local maximum in the strain energy of the axisymmetric state.
The two types of oscillation are an artefact of the 2D system...

Admittedly...
- ...in 3D, the area constraint does not exist because axial inflow into the cross-sections is possible.

But...
- ...the scenario observed here is **generic** for oscillations of externally compressed collapsible tubes.

Recall:
- Transition from type I to type II oscillation is due to a local maximum in the strain energy of the axisymmetric state.
- In the 3D case, the maximum in the strain energy of the axisymmetric state can be inferred from its static instability.
The two types of oscillation are an artefact of the 2D system...(?)

- In the 3D case, the maximum in the strain energy of the axisymmetric state can be inferred from its static instability.

  Example: Decaying large-amplitude oscillation.

- System approaches (buckled!) equilibrium state.
The two types of oscillation are an artefact of the 2D system... (?)

- In the 3D case, the maximum in the strain energy of the axisymmetric state can be inferred from its static instability.

Example: Decaying large-amplitude oscillation.

- System approaches (buckled!) equilibrium state.
The two types of oscillation are an artefact of the 2D system...

Example: Large-amplitude oscillation develops from linearly unstable buckled equilibrium state.

- Initial stages of the oscillation must be of type I:
**The two types of oscillation are an artefact of the 2D system...**

Example: Large-amplitude oscillation develops from linearly unstable buckled equilibrium state.

- Initial stages of the oscillation must be of type I:
OK – but what about the parameter values?

- Are sufficiently large values of Strouhal and Womersley numbers ever observed in ‘real’ collapsible tubes?
OK – but what about the parameter values?

Parameter estimates:

- Fluid density (water):
  \[ \rho = 1000 \, \text{kg/m}^3 \]

- Fluid viscosity (water):
  \[ \mu = 1.0 \times 10^{-3} \, \text{kg/(m sec)} \]

- Elastic modulus and Poisson ratio (rubber)
  \[ E = 1.1 \times 10^6 \, \text{Pa} \quad \text{and} \quad \nu = 0.49 \]
OK – but what about the parameter values?

Parameter estimates:

- Fluid density (water):
  \[ \rho = 1000 \text{ kg/m}^3 \]

- Fluid viscosity (water):
  \[ \mu = 1.0 \times 10^{-3} \text{ kg/(m sec)} \]

- Elastic modulus and Poisson ratio (rubber)
  \[ E = 1.1 \times 10^6 \text{ Pa} \quad \text{and} \quad \nu = 0.49 \]

Relatively thin-walled tube [Heil, JFM 353]

- Tube radius
  \[ a = 4.2 \times 10^{-3} \text{ m} \]

- Wall-thickness-to-radius ratio
  \[ h/a = 0.1 \]
**OK – but what about the parameter values?**

Parameter estimates:
- Fluid density (water):
  \[ \rho = 1000 \text{ kg/m}^3 \]
- Fluid viscosity (water):
  \[ \mu = 1.0 \times 10^{-3} \text{ kg/(m sec)} \]
- Elastic modulus and Poisson ratio (rubber)
  \[ E = 1.1 \times 10^6 \text{ Pa} \quad \text{and} \quad \nu = 0.49 \]

Relatively thin-walled tube [Heil, JFM 353]
- Tube radius
  \[ a = 4.2 \times 10^{-3} \text{ m} \]
- Wall-thickness-to-radius ratio
  \[ h/a = 0.1 \]

\[ \alpha = \left( \frac{a}{\mu} \right)^{1/2} \left( K \rho \right)^{1/4} = 38.20 \]
OK – but what about the parameter values?

Relatively thick-walled tube [Bertram et al., JFS 4]

- Tube radius
  \[ a = 6.5 \times 10^{-3} m \]

- Wall-thickness-to-radius ratio
  \[ h/a = 0.3 \]
OK – but what about the parameter values?

Relatively thick-walled tube [Bertram et al., JFS 4]

- Tube radius

\[ a = 6.5 \times 10^{-3} m \]

- Wall-thickness-to-radius ratio

\[ \frac{h}{a} = 0.3 \]

\[
\alpha = \left( \frac{a}{\mu} \right)^{1/2} (K \rho)^{1/4} = 108.3
\]
**OK – but what about the parameter values?**

Relatively thick-walled tube [Bertram et al., JFS 4]

- Tube radius
  \[ a = 6.5 \times 10^{-3} \text{m} \]

- Wall-thickness-to-radius ratio
  \[ h/a = 0.3 \]

- Flow rate
  \[ Q = 180 \times 10^{-3} \text{Liter/sec} \]

- Similar values directly from \( St = a/(UT) \) and measured periods of oscillation.
**OK – but what about the parameter values?**

Relatively thick-walled tube [Bertram *et al.*, JFS 4]

- Tube radius

  \[ a = 6.5 \times 10^{-3} m \]

- Wall-thickness-to-radius ratio

  \[ h/a = 0.3 \]

- Flow rate

  \[ Q = 180 \times 10^{-3} \text{Liter/sec} \]

\[
St = \frac{1}{U} \left( \frac{K}{\rho} \right)^{1/2} = 1.33
\]

- Similar values directly from \( St = a/(UT) \) and measured periods of oscillation.

- Not huge, but Jensen & Heil found that large Strouhal-number theory works perfectly for \( St = 0.5 \) and still catches the essential physics (macroscopically, little interaction between mean flow and oscillation) at \( St = 0.05 \).

- [ This doesn’t prove anything but it’s encouraging...]