Manchester Applied Mathematics and Numerical Analysis Seminars

Winter 1999/2000

November 17, 1999, 4.00 pm

Lecture Theatre OF/B9 Oddfellows Hall (Material Science)


The `Indian rope trick' for a continuously flexible rod

Dr. Alan Champneys, Dept of Engineering Maths, University of Bristol

It is well known that if a column exceeds a certain critical length it will, when placed upright, buckle under its own weight. In a recent experiment Tom Mullin has demonstrated that a column that is longer than its critical length can be stabilized by subjecting its bottom support point to a vertical vibration of appropriate amplitude and frequency. This talk, which describes joint with with Barrie Fraser from the University of Sydney, proposes a theory for this phenomenon.

Geometrically nonlinear dynamical equations are derived for a stiff rod (with linearly elastic constitutive laws) held vertically upwards via a clamped base point that is harmonically excited. Taking the torsion free problem, the equations are linearized about the trivial response to produce a linear, non-autonomous, inhomogeneous partial differential equation. Solutions to the PDE are examined using two-timing asymptotics and numerical Floquet theory in an in finite-dimensional analogue of the analysis of the Mathieu equation. A weakly non-linear analysis is also undertaken. Good agreement is found between asymptotics and numerics for the conditions on amplitude and frequency of vibration for stabilizing an upside-down column of longer than critical length. A simple condition is derived for the lower bound on frequency for stability in terms of amplitude and the column's length. An upper bound is more subtle, due to the presence of infinitely many resonance tongues inside the stability region of parameter space.

Back to the Seminar Homepage


For further info contact either Matthias Heil (mheil@ma.man.ac.uk), Mark Muldoon (M.Muldoon@umist.ac.uk)or the seminar secretary (Tel. 0161 275 5800).


Page last modified: August 25, 1999

Back to the department's home page.