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Abstract

Viscous flow in elastic (collapsible) tubes is a large-displacement fluid-structure interaction problem
frequently encountered in biomechanics. This paper presents a robust and rapidly converging procedure for
the solution of the steady three-dimensional Stokes equations, coupled to the geometrically non-linear shell
equations which describe the large deformations of the tube wall. The fluid and solid equations are coupled
in a segregated method whose slow convergence is accelerated by an extrapolation procedure based on the
scheme’s asymptotic convergence behaviour. A displacement control technique is developed to handle the
system’s snap-through behaviour. Finally, results for the tube’s post-buckling deformation and for the flow
in the strongly collapsed tube are shown.
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1 Introduction

The efficient solution of large-displacement fluid-structure interaction problems is still a challenging problem
in computational mechanics, especially if the system under consideration is three-dimensional. Numerous
applications exist in offshore engineering!, aeroelasticity? and bio-fluid mechanics. The problem considered
in this paper is that of steady viscous flow in an elastic vessel — a model problem applicable to a wide variety
of flows in the human body in which many fluid conveying vessels are elastic and deform substantially in
response to the traction exerted on them by the flow.

Previous computational studies investigated the effect of wall elasticity on the flow in the arteries and
in arterial bifurcations®*%°. Such computational analyses are facilitated by the fact that the transmural
pressure (internal minus external pressure) in these vessels is usually positive. Hence, the arteries tend to
be inflated and they maintain their original nearly axisymmetric shape throughout the deformation. The
magnitude of the deformations tends to be moderate since the vessels have a high extensional stiffness.

There are, however, numerous examples of fluid conveying vessels in the human body which are subject
to a negative (compressive) transmural pressure (e.g. the veins above the level of the heart, the veins and
arteries during sphygmomanometry, the airways during forced expiration). When the compressive transmural
pressure on these vessels exceeds a certain critical value, the vessels buckle non-axisymmetrically. Since the
vessels’ structural stiffness is greatly reduced after the buckling, the changes in the tube geometry are
typically quite large. Therefore, the interaction between fluid and solid mechanics tends to be very strong.
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Simple one-dimensional models which were developed to analyse the problem fail to describe many of the
important features, especially the system’s snap-through behaviour under a variety of parameter variations.

The problem has been studied experimentally by many authors [for a more detailed review of experiments
and of previous one-dimensional models see e.g. reference 7] and the typical experimental setup, shown in
Fig. 1, forms the basis for most theoretical analyses: inside a pressure chamber, a thin elastic tube (typically
made of rubber) of length L, undeformed radius Ro and wall thickness h is mounted on two rigid tubes.
The chamber pressure, pest, can be prescribed independently of the fluid pressure. Viscous fluid is pumped
through the tube at a steady flow rate (volume flux V) In the experiments the non-axisymmetric collapse
of the tube is often followed by large amplitude self-excited oscillations.

In order to develop a rational model of the problem while avoiding the complexities and computational
requirements of a fully three-dimensional computation, several authors®®10111%13 recently examined the
two-dimensional equivalent of the collapsible tube problem: the zero (or finite) Reynolds number steady (or
unsteady) flow in a two-dimensional channel in which part of one wall is replaced by an elastic membrane.
These studies provided a detailed picture of the fluid and solid mechanics involved in the large amplitude
self-excited oscillations in this simplified system.

In another series of studies'*1%1%17 the steady deformations of the fully coupled three-dimensional system
were investigated: the tube wall was modelled as a circular cylindrical shell and geometrically non-linear shell
theory was used to model its large non-axisymmetric post-buckling deformation. The fluid flow was modelled
using lubrication theory (assuming low Reynolds numbers and a small wall slope in the direction of the flow).
The coupled fluid-solid problem was solved using a parallelised Newton-Raphson technique based on a Finite
Element discretisation of the fluid and solid equations. The results revealed many features which are unique
to the three-dimensional geometry (snap-through buckling of the tube wall, flow division into the two lobes
which remain open during the buckling, buckling with higher circumferential wavenumbers for increased
upstream pressure, etc.). This model provides a very accurate description of the tube’s deformation but
some of the assumptions used in the simplification of the fluid equations were violated (after the buckling,
the wall slope at the downstream end tends to be quite large).

In order to develop the first entirely self-consistent model of the flow of viscous fluid in a collapsible tube,
the small slope assumption was abandoned and lubrication theory was replaced by a solution of the Stokes
equations which describe the flow in arbitrary geometries at zero Reynolds number. This paper describes the
computational technique developed to solve this fully coupled large-displacement fluid-structure interaction
problem.

2 Computational Technique

Before giving details of the computational technique used in this study, we will outline the overall strategy
and discuss possible alternative solution techniques. The fluid and solid equations will be discretised using
Finite Element methods. The large wall displacements require the use of Lagrangian coordinates for the
solid mechanics. In this formulation the computational domain for the solid equations remains fixed. The
fluid equations are based on an Eulerian description, hence the fluid mesh has to be adjusted by means of an
automatic mesh generator as the tube wall deforms. The solution of the fluid equations determines the fluid
pressure and velocity fields from which the fluid traction on the tube wall is obtained. The combination of
the fluid traction with the external pressure determines the load terms in the solid equations. Given these
load terms, the solid equations can be solved to find the wall’s corresponding equilibrium position.

Ideally, the fluid and solid equations would be solved simultaneously, using a global Newton-Raphson
technique [as in references 9, 12, 18 or — in a modified form — in references 15 and 16]. However, the
memory requirements for the storage of the global Jacobian matrix are prohibitive — even for ‘pure’ fluid
computations'®. Pre-conditioned conjugate gradient solvers incorporated into the Uzawa scheme provide an
efficient procedure to solve the Stokes equations without storing the system matrix. However, the convergence
of most iterative solvers relies heavily on the properties of the system matrix. Unfortunately, the coupled
system matrix for the fluid and solid equations is neither symmetric nor positive definite. More general
iterative solvers like GMRES tend to perform poorly unless a good pre-conditioner can be found — this is
not an easy task for the complicated coupled system matrix. Hence, the simultaneous solution of the fluid
and solid equations does not appear promising.

The scheme used in the present computations is the segregated solution procedure used previously by
other authors’®!*!®: start with an initial guess for the wall deformation; solve the fluid equations in the
corresponding fluid domain; compute the fluid traction; use the fluid traction as the load term in the solid
equations; compute the corresponding equilibrium wall deformation; update the fluid domain and iterate
until convergence. In this scheme, the fluid and solid equations are only loosely coupled which makes it easy



to use the most appropriate solution techniques for each individual sub-problem (Uzawa scheme for the fluid
equations, direct Newton-Raphson solver for the solid equations). However, the convergence of this iterative
scheme tends to be very slow and — even more worrying — convergence cannot be guarenteed a priori, even if a
good initial guess can be provided. Furthermore, the strongly non-linear behaviour of the coupled fluid-solid
system gives rise to additional computational difficulties such as the convergence problems caused by the
snap-through behaviour frequently displayed by shell structures.

The development of a fast and robust solver for this problem will be presented in the following sections.
Section 2.1 gives a brief summary of the shell theory used to model the wall deformation and describes the
Finite Element technique used to discretise the shell equations. Section 2.2 describes the Finite Element
solution of the Stokes equations and Section 2.3 gives details of the coupling between the fluid and solid
domains. In Section 2.4, the scheme’s convergence characteristics are analysed and an acceleration technique
is developed. Results of the computations are presented in Section 3 and the concluding section discusses
possible future extensions of the coupled solver.

2.1 Shell Equations

We model the flexible tube of length L, undeformed radius Ry and wall thickness h as a cylindrical shell and
describe its deformation using the geometrically non-linear Kirchhoff-Love type shell theory used in reference
16. The deformation of the shell is expressed in terms of the dimensionless midplane displacements v =
v*/Ry. The superscript star distinguishes dimensional quantities from their non-dimensional equivalents.
We use Lagrangian coordinates (¢ = (** /Ry (Greek and Latin indices have values 1,2 and 1,2,3, respectively,
and the summation convention is used) to parameterise the shell’s midplane such that the non-dimensional
vector to the undeformed midplane, r® = r*° /Ry, is given by:

r’ = (Sin(<2): COS(CZ): CI)T ’ Cl € [0: L/Ro], Cz € [Oa 27T]' (1)

Then the position of a material point at a non-dimensional distance ¢* = ¢*3/R, from the shell’s undeformed
midplane is given by
r=r"+¢"n, ¢ €[-h/(2R0),h/(2R0)], (2)

where n = (sin(CQ), cos(¢?), O)T is the vector normal to the undeformed midplane; see Fig. 2.

After the deformation, the material point on the midplane with the Lagrangian coordinates (* has been
displaced to a new position R%(¢*) = r°(¢*) + v(¢*). We decompose the displacement vector v into the
undeformed basis, v = v’ a;, where the undeformed base vectors are given by a, = r?a and az = n. The
comma denotes the partial derivative with respect to the Lagrangian coordinates. Lowercase and uppercase
letters are used for shell variables associated with the undeformed and deformed geometry, respectively.

The Kirchhoff-Love assumption states that material lines which were normal to the undeformed mid-
plane remain normal to the shell’s midplane thoughout its deformation and that they remain unstretched.
Therefore, the vector to an arbitrary material point in the shell after the deformation is given by

R=R°+(°N, (3)

where N is the vector normal to the deformed shell.

In spite of the large deformations, the strain is typically fairly small which allows Hooke’s law to be
used as the constitutive equation. Then the principle of virtual displacements which governs the shell’s
deformation is given by

2r  pL/Rg 1 B2
B (05 1 (-) s
/0 /0 [ (7 B 0Yyé + 12 \ R’ Kop OKys

- (%) (f-0R) |43=ih/(2R0)] ¢t d¢® =0, (4)

where f = f* /E is the traction per unit area of the undeformed midplane, non-dimensionalised with Young’s
modulus E. 7,3 and kap are the non-dimensional strain and bending tensors (given in the appendix) and
the dimensionless plane stress stiffness tensor, E*#7® = g*of7° /E is given by
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where v is Poisson’s ratio.

The variations of strain and bending tensor have to be taken with respect to the displacements v* and
their derivatives. The tube is clamped at both ends. Therefore, at {* = 0 and ¢! = L/R, the displacements



have to be prescribed and we have dv3/d¢' = 0. A more detailed discussion of the large-displacement shell
theory can be found in reference 20.

Since a variational equation exists for the solid mechanics, we choose a displacement based Finite Element
technique to discretise the equations. Carrying out the variations in (4) is a straightforward process but
involves some lengthy algebra. The computer algebra package MAPLE was used to express (4) in terms of
the displacements and their derivatives, giving

2m L/Rg . . .
/ / (¢i 0V + Bia ' + Biap dlag) dC' dC® = 0. (6)
0 0

The ¢ terms contain up to second derivatives of the displacements, therefore we need shape functions with
continuous first derivatives across the element boundaries. Quadrilateral isoparametric Hermite elements
with nodal displacements and slopes as independent degrees of freedom?' were chosen. Within element
number £ (£ = 1, N;, where Nj is the total number of shell elements) the displacements v* were interpolated
as

4
vl =Y VIO (s1,80) sa €0,1]. (7)
jrk=1
The shape functions were chosen to be tensor products of the one-dimensional Hermite polynomials h(s) =
25% — 3s% + 1, ha(s) = s® — 25 +5, ha(s) = —(25® — 35?) and ha(s) = s®> — s?. The first index of the shape
function ;) stands for the local node number (j = 1,4). The shape function’s second index (k = 1,4)
stands for the type of the degree of freedom (interpolating the displacement, the two first derivatives or the
mixed second derivative with respect to the local coordinates); J(j, £) represents the global node number of
local node j in element £.
To generate isoparametric elements, the same shape functions were used to map the local coordinates
(s1,52) to the global coordinates (¢*,¢?),

4

¢ =Y 20 sy, ), (8)

Jk=1

Details of the choice of the coefficients Z*77-¥)* are given in reference 16.

The tube’s buckled configuration is symmetric and for the relatively long tubes considered here, the most
unstable buckling mode has two circumferential waves'#, as sketched in Fig. 1. Therefore, only one quarter
of the tube needs to be discretised.

We insert (7) and (8) into (6) and obtain

Ns 4 1,1
DD {/ / (¢i Yik + bia Yjka + diap Yikas) T dsi d52} VHEEk = o, (9)
0 0

£=1j,k=1

where J is the determinant of the Jacobian of the I_napping between the local coordinates (s1,s2) and the
global coordinates (¢', ¢?). The variations of those V** which are not determined by the boundary conditions
are arbitrary. This leads to the following set of nonlinear algebraic equations f;;x for the unknown yiik,

N 1 pl
fije = Z/ / {(dh— Yik + Pia Yika + Gias Yikas)ljoe)=j T } dsi dsy = 0. (10)
g=170 70

These equations still contain the load terms, which have to be determined from the solution of the fluid
equations. The double integral over the elements was evaluated using a 3 x3 Gaussian integration. Therefore,
the load terms only need to be determined at the Gauss points within each element. The above set of
equations was solved using a Newton-Raphson method. Since the exact expressions for strain and bending
tensor have to be used'®, the integrand in (10) contains very complex algebraic expressions. Therefore, it
is computationally more efficient to determine the Jacobian matrix by finite differencing than to use the
analytical expressions for its coefficients. The linear systems were solved using LU-decomposition since the
presence of follower loads and the displacement control technique (described below) make the system matrix
non-symmetric.



2.2 Fluid Equations

For sufficiently low Reynolds number the Navier-Stokes equations, which govern the fluid flow, can be
approximated by the linear Stokes equations given in dimensionless form by

2
o =7 ot ()
and the continuity equation
gzz =0, (12)
where -
=5 E (13)

and p is the dynamic viscosity of the fluid. In (11) and (12) the velocities were non-dimensionalised with
the average velocity through the tube, u; = u} /U, where U = V/(xR2), and Young’s modulus was used to
non-dimensionalise the pressure, p = p*/E. The cartesian coordinates z; were non-dimensionalised with the
undeformed tube radius, z; = z; /Ro.

The fluid traction acting on the tube wall is given by

_ Bui ou;
fz‘IpNi—u<aml +6mJ4>Nj’ (14)
j 7

where the V; are the cartesian components of the normal vector, N, on the tube wall.

We transform the Stokes equation into their weak form by multiplying the momentum and continuity
equations by test functions ¥ and ¥, respectively, and integrating them by parts. This yields

av* | ou; 9" Oui\ o F
_ i = ¢ (—pn; + it A 1
/( pami +“8x]~ ij)dv f( pn +“8n)q’ d (15)

c Oy _
/ <—\II E) dV =0, (16)

where the volume and area integrals have to be taken over the fluid domain V' and its boundary A, respec-
tively.

We discretise the weak equations with [Ny isoparametric Taylor-Hood type brick shaped Finite Elements.
The velocities and pressures within fluid element £ (£ = 1, Ny) are thus interpolated as

and

27
u; = Z U108 4 (51, 59, 53) (17)
j=1
and
8
p= ZPJP(],E) 1/)31'3(31,82,'53): (18)
j=1

respectively. The isoparametric mapping between local and global coordinates uses the velocity shape
functions, i.e.

27
xr; = ZXiJf(j’g) ¢f(51, 82,83), (19)
j=1
where the X% are the z; coordinates of the global node j.

The three-dimensional velocity and pressure shape functions are tensor products of the one-dimensional
quadratic and linear Lagrangian interpolants Ly1(s) = s(s — 1)/2, Lu2(s) = (s + 1)(s — 1)/2, Lua(s) =
s(s+1)/2 and Lpi(s) = —(s — 1)/2, Lp2(s) = (s + 1)/2, respectively, where s € [-1,1]. J¢(4,€) and
Jp(j, E) are the global velocity and pressure node numbers of the local node j in fluid element £. Choosing
the test functions ¥ and ¥© in the momentum and continuity equations to be the velocity and pressure
shape functions, respectively, transforms the volume integrals in (15) and (16) into the following set of linear



equations
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+l_t jF d81d82d83 = 0, (20)
Jg(L,E)=k

where 1 =1,3; k=1, My and
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jr=1
5 Jp(L,E)=k

where k = 1, M,,. My and M, are the total number of velocity and pressure nodes and JF is the determinant
of the Jacobian of the isoparametric mapping (19). The minus sign in the discretised continuity equation
was introduced to make the system symmetric. The integrals were evaluated numerically with a 3 x 3 Gauss
rule.

The tube’s deformation is symmetric, therefore we discretise only one quarter of the fluid domain and
apply the following boundary conditions: (i) at the tube’s upstream end we prescribe a fully developed
parabolic velocity profile, ua = 0, us = 2 [1 — («} + 23)/(1 - %)2]; (ii) at the tube’s downstream end
we impose normal outflow, u, = 0, and —p + i Ous/dz3 = 0 which sets the pressure to zero; (iii) at the
symmetry boundaries we set the normal velocities and the tangential shear stresses to zero (e.g. at z1 = 0:
uy = 0, Ouz/0zx1 = dus/dx1 = 0); (iv) on the rigid walls we apply the no-slip condition u; = 0. With
these boundary conditions the surface integral in (15) vanishes everywhere and after applying the Dirichlet
velocity boundary conditions, the linear equations (20) and (21) fully determine the unknown velocity and
pressure variables. Symbolically, the equations (20) and (21) can be written as

A, 0 0 -DI7/w fi

0 A, 0 _Qg‘ uz _ f

0o o A, D ||w]|T|&] (22)
_21 _22 _23 Q P fP

where the A, are the symmetric positive definite matrices resulting from the Finite Element discretisation
of the Laplace operator in the ¢-th momentum equation and the Qf and D, are the discretised gradient and
divergence operators, respectively. The vectors u; and p contain the unknown velocity and pressure values
and the right hand side vector contains the contributions due to the Dirichlet boundary conditions.

The equations were solved using the classical Uzawa scheme??, operating on the equation

3 3
> DA'D/p=-f,- Y DA, (23)
i=1 i=1

which is obtained by block elimination from (22). A preconditioned conjugate gradient solver is used to solve
equation (23) for the pressure unknowns (see Appendix B for details). Once the pressure is determined, the
velocities are obtained from the systems

Aug =fi+ D/p (no summation on ) (24)

which were also solved with a preconditioned conjugate gradient method (the diagonal of A, was used as
the preconditioner).

2.3 Fluid Solid Coupling

The fluid and solid solvers interact through the traction exerted by the fluid on the tube wall. Also, the fluid
mesh generator has to adjust the fluid mesh in response to the wall deformation. This is achieved as follows:
a structured fluid mesh is generated in the undeformed cylindrical tube. In this reference configuration, the
fluid nodes on the tube wall coincide with certain material points in the shell. When the tube wall deforms,
the fluid mesh is re-generated by keeping the fluid mesh ‘attached’ to the same material points. Hence, the
wall displacement directly determines the position of the fluid nodes on the tube wall. The construction of



the mesh in the interior is illustrated in Fig. 3. The nodal points in the fluid mesh are arranged in axial
layers. In each layer a central box whose dimensions are based on the local height and width of the tube
is constructed. During the buckling the tube wall warps slightly. The warping displaces material points on
the wall which had the same x3 coordinate in the reference configuration to different axial positions. The
central box is located at the average axial position of the corresponding nodal points on the tube wall. The
edges of the elements in the region surrounding the central box are formed by straight lines to the tube wall.

As the tube collapses, the axial spacing of the fluid elements is occasionally updated to refine the fluid
mesh in the region of strongest collapse. This refinement is based on the requirement that the depth of the
elements (in the axial direction) in each layer be approximately equal to their average height (measured in
the plane of strongest collapse).

Once the fluid equations are solved on this mesh, the fluid traction on the tube wall needs to be determined
at the solid Gauss points. Let us denote the vector to the solid Gauss point is (is = 1,9) in the solid element
Es by f{(i s.,£g)- Since different element types and isoparametric mappings were used for the fluid and solid
domains, points on the boundary of the fluid domain do not necessarily coincide exactly with points on the
tube wall (unless they are nodal points in the fluid mesh). This is illustrated in Fig. 4. The fluid traction for
a given solid Gauss point (point A in Fig. 4) was therefore determined at the intersection of the boundary
of the discretised fluid domain with the normal vector on the tube wall at the Gauss point, N(is,gs). This
point (point B in Fig. 4), whose position vector we denote by R , is located on one of the faces of the
fluid elements. Therefore, one of the local fluid coordinates of this point is known (sgp) =11in Fig. 4). The
other two local coordinates, s (together with the fluid element number, £)) and the distance ¢ between
Gauss point and the fluid mesh are then determined from the equation

R(is,fs) + éN(i.SWgS) =R (S(F)’ ng), SgF): SZ(SF) = 1) ) (25)

which is solved using a Newton-Raphson method. The gap between the tube wall and the discretised fluid
domain is g = £N(1 s.£5)- Since the fluid and solid domains are very tightly coupled, the fluid coordinates
corresponding to each solid Gauss point change very little during the tube’s deformation and the Newton-
Raphson iteration usually converges within one step.

An estimate of the errors introduced by the approximate transfer of the traction is readily obtained from
a Taylor expansion. For instance, the error for the pressure is approximately

; (26)

op
D oz, g
where the g; are the cartesian components of the gap vector g. The error estimates can readily be evaluated
during the traction transfer. In all computations the discretisation of the fluid and solid domains was
sufficiently fine to ensure that max |0p/(Pentry — Pewit)] < 5.0 X 1074

2.4 The Coupled Solution

As mentioned in the introduction, the basic iterative scheme (switching between fluid and solid solver) tends
to be very slowly convergent and the computational cost can easily become prohibitive since each iteration
requires the solution of a full three-dimensional Stokes problem. Furthermore, in its simplest (and easiest to
implement) form the scheme does not provide any means of handling the snap-through behaviour frequently
displayed by shell structures.

We will now present two modifications to the iteration scheme that increase its convergence rate dramat-
ically and also make the overall scheme much more robust. For this purpose we introduce a slightly more
abstract notation for the problem. Let us denote the discretised fluid and solid variables by V; (i = 1, Nspeur)
and U; (j = 1, Npiuia), respectively, where Ngpen and Npyyiq are the number of degrees of freedom in the
respective domains. We write the discretised shell equations, S;, which depend on the displacement variables
and — through the load terms f — on the fluid variables, as

S:(Vi,£(U;)) = S:(Vi, Uj) =0, t=1,Nshet Jj=1,NFivid- (27)

Similarly, the discretised fluid equations, F;, depend not only on the fluid variables but also on the dis-
placement variables which determine the tube geometry and hence the nodal positions in the fluid mesh,
ie.

F;i(Vi,Uj) =0, t=1,Nspeu J=1,NFiuia- (28)



2.4.1 The Continuation Technique

The strong non-linearity of the shell equations requires the use of a continuation technique to compute
the displacement fields corresponding to a strongly collapsed tube. For simplicity we will first discuss the
continuation technique for the simpler case of zero flow and vanishing external pressure. In this case, the
load terms are given by the hydrostatic pressure on the tube wall, i.e. f = pN, where N is the normal
vector on the tube wall. The displacement field corresponding to a large negative (compressive) pressure
can readily be computed through a sequence of intermediate displacement fields corresponding to slowly
increasing compressive loads. The sequence is started with a slightly buckled tube and the equilibrium
displacement field for each load level is used as the initial guess for the Newton-Raphson iteration at the
next level.

This basic continuation technique usually fails if the shell displays a snap-through (a sudden large change
in the displacement field for a critical value of the load p). One way to overcome this problem is to choose
a Finite Element node in the collapsing part of the tube and to prescribe its radial displacement, V7, in an
additional equation, i.e. _

SNShell+1 =Vi-Vv=0 (29)
If the control node is chosen such that its radial displacement increases monotonically during the tube’s
collapse, the continuation procedure can be based on a stepwise increase of the prescribed displacement
value, V, and the pressure, p, can be regarded as an additional unknown®®. The Jacobian matrix of this
augmented system has the form

OF; OF;
[8‘/1'] ‘ ( 9 ) (4,7 =1, Nsheu). (30)
0..010..0] 0

The only non-zero entry in the last row of this matrix is in the I-th column, corresponding to the degree of
freedom prescribed by (29). The additional column contains the derivatives of the discretised shell equations
with respect to the pressure. Since the shell equations are linear in the pressure (see (4)), these are easily
evaluated.

In the case of non-zero flow, the fluid traction varies through the tube and it is not possible to regard the
fluid pressure as a load parameter. We can, however, make use of the fact that the incompressible Stokes
equations only determine the pressure up to an arbitrary constant. This allows us to add a spatially constant
pressure, ps, to the pressure field obtained from the solution of the Stokes equations when we determine the
fluid traction on the tube wall, i.e.

f =f5iokes +p6N (31)

The scalar ps can be used as the load parameter in the displacement control technique described above.
This approach corresponds to an experimental procedure in which we adjust the external pressure, pez:, to
control the tube’s collapse while keeping the volume flux and the downstream fluid pressure constant.

Other experimental procedures (e.g. controlling the tube’s collapse by varying the volume flux while
keeping the external pressure constant) cannot be simulated directly because the derivative of the discretised
shell equations with respect to the volume flux (required in the last column of the augmented Jacobian
matrix) cannot be evaluated in a segregated approach. The data corresponding to such parameter variations
has to be generated by interpolation.

It should be noted that the continuation technique does not ensure that the solution switches from
the axisymmetric pre-buckling solution onto the post-buckled solution branch when the critical value of
the control pressure is exceeded. A more sophisticated continuation technique, such as Keller’s arclength
method?*, would be required for this purpose. However, such branch selecting methods have to evaluate the
global Jacobian matrix at the bifurcation point. This is clearly not possible in a segregated approach which
was specifically designed to operate without this matrix. To force the tube onto the buckled path, a small
non-axisymmetric disturbance, peos cos(2¢?) with peos < 1, was therefore superimposed onto the pressure
field. This disturbance made the tube buckle in the required mode shape and the value of the control
displacement could be increased in small steps until opposite wall contact was detected for the first time.
The last displacement field before the occurrence of opposite wall contact was then used as an initial guess
for the second part of the run in which the disturbance pressure was set to zero and the control displacement
was reduced until the tube was re-opened to its axisymmetric shape. Since the first part of the run merely
serves to provide an initial guess for the wall shape of the strongly collapsed tube, the solver based on the
lubrication theory approximation of the Stokes equations'®, which is computationally much cheaper, was
used as the fluid solver for this part of the computation.



2.4.2 The Iteration Procedure

We will now analyse the convergence characteristics of the iteration procedure. Using the abstract notation
introduced above, the procedure is given by:
1) Provide an initial guess for the displacement field: n =0, Vi(o).

2) Solve ]:j(Vi(n), UJ.("‘H)) =0 for Uj(n“)7 or symbolically
Uj(n-‘rl) _ ‘7:3'_1(‘/1'("))'
3) Solve Si(Vi(nH), Uj("+1)) =0 for Vi(n+1), or symbolically
(n+1) _ o1 pr(n+1)
VI = S U,

4) Check for convergence, i.e.

JVTS;)E = max Vi(n+l) — V;(n) < €tol.
i1=1,Nghpell

5) Set n:=n+1 and go to 2).

The tolerance level for convergence, €;,; was coupled to the value of the prescribed displacement value by
setting B
o1 = 1072 x V. (32)

Figure 5 shows the convergence history of an iteration based on this scheme: the radial displacements of the
FEM nodes along the line of strongest collapse (¢* = 7/2) are plotted against the number of iterations. The
dashed line shows the displacement of the control node whose displacement was changed from V =-08
to V = —0.7. The displacement control technique ensures that its value is kept constant at the prescribed
value. All other nodes oscillate around their final equilibrium position and 56 iterations are required to
achieve a fully converged solution.

In order to analyse this convergence behaviour in a more compact form we eliminate the intermediate
fluid solve and thereby condense the iteration into an iterative procedure involving only the solid variables,
ie.

v = st (57 V). (3)

This equation shows that the procedure has the character of a Picard fixpoint iteration. Using the Taylor
expansion of (33) we obtain

SV = gy 5V 40 (0V)?) (34)
where ) )
88, 0F,
iy = ; ’ .:.:LN ell; :1;N ui
Qij oUx 0V, %] Sheu; k Fluid (35)

and 5‘/;(") = Vi("""l) - Vi("). The scheme converges only if the spectral radius of a;; is less than one. It
is impractical to check the scheme’s convergence in this way as the the coefficients «;; are very expensive
to compute. They also have to be evaluated ‘near’ the converged solution, which is not known a priori.
However, the asymptotic equation (34) can be exploited to accelerate the procedure if it converges.

From (34) it is evident that the increment in each displacement variable is affected by the increments in
all other displacement variables during the previous iteration. A more detailed examination of the successive
displacement fields during the iteration reveals that this is an overly pessimistic estimate. Figure 6 shows
the deformation of the two symmetry lines on the tube wall (at (> = 0 and ¢* = 7/2) as the iteration
proceeds. The dashed lines are the initial guesses, the solid lines are the converged solutions and the dotted
lines represent the intermediate wall shapes. Figure 6 shows that the displacement control technique has a
very positive side effect: since a nodal point in the interior of the shell has been pinned at a fixed position,
the shell is forced to pivot around this point. As the iteration proceeds, the successive tube shapes approach
the equilibrium position in a damped oscillation with approximately constant mode shapes (see Fig. 6) and
geometrically decreasing amplitudes (see Fig. 5) . If the displacement control technique is disabled, the tube
usually either re-opens until it reaches an axisymmetric shape or it collapses so strongly that the opposite
walls come into contact. The latter situation forces the computation to be terminated since the wall contact
problem has not yet been incorporated.

The observed geometrical convergence behaviour is consistent with the behaviour predicted by (34) and
indicates that the matrix of the coefficients o;; is dominated by its diagonal elements which are negative.



Therefore we neglect the off-diagonal elements in (34) and thereby assume that the displacement variables
geometrically approach their asymptotic values Vi(oo) i.e.

V;(") = Vi(m) + Agafiy  asn — co; no summation on i. (36)

In the asymptotic regime, the coeflicients Vi(oo) ,Ai and a(;;) can be determined from the displacement values
in three successive iterations. In particular, the asymptotic value for the displacement is given by

(V_(n+2) _ V(n+1)) :

V(OO) — V(n+2) _
V'i("+2) _ 2‘/7;("+1) + V'i(")

7 3

(37)

This equation is only valid in the asymptotic regime but numerical experiments showed that it is beneficial
to apply the extrapolation as soon as possible, i.e. after every third iteration, since even the initial stages of
the iteration tend to be well described by (36).

A further acceleration of the scheme in terms of computer time was achieved by exploiting the observation
that the lubrication theory approximation of the Stokes equations'® provides a good estimate of the pressure
distribution in the flow. Therefore, the lubrication theory solver was used as the fluid solver in the first
stage of the iteration. Once this iteration converged (in very little CPU time since the lubrication theory
solution is much less computationally expensive than the full 3D Stokes solution) its equilibrium wall shape
was used as the initial guess for the final iteration in which the Stokes solver was used. The overall procedure
is summarised in the flowchart shown in Fig. 7.

Fig. 8 shows the convergence history for the same case as in Fig. 5 using the accelerated iteration
procedure. The first stage of the iteration (based on the lubrication theory approximation for the fluid
equations) converges in nine steps, applying the extrapolation procedure (37) twice. Then another five
iterations with the Stokes solver suffice to produce the final converged solution.

It should be noted that the extrapolation procedure not only accelerates convergent iterations, but often
makes otherwise divergent iterations converge. An example of this is shown in Fig. 9 where the basic iteration
procedure leads to a situation in which the tube wall flip-flops between two extreme shapes. This phenomenon
has been reported in previous investigations '®!! in which it prevented the scheme’s convergence in certain
regions of parameter space. The non-convergent oscillatory behaviour corresponds to the case a;; = —d;;.
Only two applications of the extrapolation procedure are required to achieve convergence with the lubrication
theory solver (see Fig. 10).

2.5 Validation and Performance

The shell solver was only slightly modified from the previous version which was documented in more detail in
reference 16. The newly developed Stokes solver was tested by computing the flow through the undeformed
tube (Hagen-Poiseuille flow). Furthermore, the numerical results for the flow through a slightly buckled
tube were compared to the analytical results from a first order perturbation analysis. Excellent agreement
between the analytical and numerical solutions was found?®. Finally, the code was used to compute the flow
through a moderately buckled tube and the predictions for the axial velocity component and the pressure
distribution were compared to the predictions from the lubrication theory solver'®. Good agreement was
found, even for flows in tubes which were too strongly collapsed to properly justify the use of lubrication
theory?®. The overall conservation of mass was monitored by computing the volume flux through the
upstream and downstream ends of the rigid tubes. Even for strongly collapsed tubes, the inflow and outflow
rates differed by less than 0.1% from their theoretical value. Other tests included doubling the lengths of
the rigid upstream and downstream tubes (Rup = Rdiown = Lup = Ro and Lgouwn = 2R were used in the
computations) to verify that the upstream and downstream boundary conditions did not affect the flow. The
typical fluid and solid meshes are shown in Fig. 3. Typical discretisations involved 60 shell elements and
approximately 1200 fluid elements, resulting in a total of approximately 500 and 30,000 degrees of freedom,
respectively. For one test case this resolution was increased to ensure mesh independence of the solutions (a
further refinement of the fluid mesh to approximately 89,000 degrees of freedom changed the fluid pressure
distribution by less than 6.6 x 1073%). The code was originally developed on a DEC Alpha workstation
and the final production runs were carried out on the Cray C90 at the Pittsburgh Supercomputing Center.
The main computational cost is associated with the solution of the three-dimensional Stokes equations.
The matrix-free evaluations of the matrix vector products required in the conjugate gradient iterations
were carried out using sum factorisation techniques®®. The procedure was optimised for the Cray vector
architecture by pre-calculating the relevant quantities in (20) and (21) at the integration points and using
a special node numbering scheme that enhanced vectorisation. The Stokes solver alone achieved a peak

10



performance of about 350 MFlop/s. The coupled solver typically executed at around 300 MFlop/s. About
four to five hours of CPU time were required to trace an entire post-buckling deformation (from strong
collapse with near opposite wall contact to the unbuckled axisymmetric tube). The convergence histories
shown in Figs. 8 and 10 are fairly characteristic for the the scheme’s behaviour in a wide range of parameters.

3 Results

In all computations h/Ryp = 1/20 and v = 0.49 were chosen to approximate the nearly incompressible
behaviour of the relatively thick walled (by the standards of shell theory) rubber tubes typically used in the
experiments mentioned above. Figure 11 shows a strongly collapsed tube subject to an external pressure
of Pext = —ps = 6.38 x 107* and a volume flux which corresponds to i = 1.875 x 107%. The viscous
flow through the most strongly collapsed part of the tube causes a large pressure drop in the fluid. This
significantly increases the compressive load on the downstream end of the tube and forces two small regions
on the side of the tube to buckle inwards as well. Fig. 12 shows the flow through three cross sections in
the most strongly collapsed part of this tube. The contours indicate the magnitude of the axial velocity
component and show that the flow is already beginning to split up into the two channels that will remain
open when the opposite walls touch. The vectors represent the transverse velocity components and show
the transverse flow changing its direction while passing through the point of strongest collapse. Further
results, extensive parameter studies of the flow characteristics of the collapsible tube and a comparison with
experimental results can be found in reference 25.

Finally, the bifurcation diagram shown in Fig. 13 illustrates the snap-through behaviour of the system as
the control pressure, ps, is varied. The diagram shows the radial displacement of two material points on the
tube wall (at ¢! = 7.4 and ¢? = 0, /2, respectively) versus the control pressure when the volume flux is held
at a constant value (Z = 1.875 x 1075). For large positive values of the control pressure ps; (negative values
of the external pressure, pest), the tube is completely inflated and it deforms axisymmetrically. Hence, both
material points have the same radial displacements. As the control pressure is reduced (the chamber pressure
increased), the transmural pressure at the tube’s downstream end is reduced and becomes compressive.
When this compressive transmural pressure exceeds a critical value, the axisymmetric deformation becomes
unstable and the tube buckles — one of the material points collapses towards the tube’s centreline (negative
radial displacement) while the other one is displaced radially outward (positive radial displacement). The
diagram shows that the buckling process is indeed subcritical: the loss of stability is accompanied by a
sudden large change in the displacement field.

In a narrow range of control pressures, two solutions (one stable, the other one unstable) exist simulta-
neously. This raises the question if the solutions obtained in the present computations, in which the value
of the control displacement is prescribed, are unique. In other words, for a given volume flux could there
be multiple tube shapes with the same value of the control displacement? Numerical experiments suggest
that this is not the case: the same solutions were obtained for different initial guesses (obtained by varying
the magnitude of the pressure disturbance, pcos, when generating the initial guess for the tube shape) and
if different stepsizes were used in the incrementation of the control displacement.

It should be noted that the linear stability analysis in reference 14 shows that buckling modes with
a higher number of circumferential waves exist. These represent further solutions and in this sense the
solutions obtained here are not unique. However, according to the linear stability analysis the tube shapes
with two circumferential waves are the only physically realisable ones since they have the lowest buckling
pressure.

4 Conclusion

This paper has described the development of a fast and robust solver for a three-dimensional large-displacement
fluid-structure interaction problem. The basic iterative approach (simple switching between fluid and solid
solver) was accelerated by an extrapolation procedure based on the scheme’s asymptotic convergence be-
haviour. A displacement control technique which was primarily implemented to overcome the convergence
problems caused by the strong nonlinearities of the shell equations also proved necessary to stabilise the
iteration procedure itself.

The further development of the scheme will have to address the following three areas: (i) extension to
finite Reynolds number (ii) incorporation of the wall contact problem (iii) development of a stable time
integration scheme for the unsteady problem based on the segregated approach. The extension to finite
Reynolds number will be the most straightforward modification even though the solution of the non-linear
Navier-Stokes equations will require a substantially larger amount of CPU time. It will be interesting to
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investigate how the additional nonlinearity in the fluid equations will affect the convergence behaviour of the
overall scheme. The incorporation of the wall contact problem is mainly a meshing problem since the topology
of the fluid domain changes when opposite wall contact occurs. Finally, the development of a segregated
time-dependent solver will be necessary to examine the large-displacement self-excited oscillations frequently
observed in the experiments. A previous investigation of this problem in a two-dimensional geometry*?
revealed potential stability problems in the segregated time integration, indicating that further studies will
be required before a three-dimensional version can be developed.
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Appendix A: The Strain and Bending Tensors

The strain and bending tensors which describe the deformation of the shell in the variational principle (4) are
obtained from the tangential base vectors to the deformed shell’s midplane, A, = R?a. With the deformed
midplane metric tensor A,3 = A, - Ag the strain tensor is given by

Yap = 1/2(Aap — bap)

since the undeformed midplane metric is orthogonal (the undeformed midplane metric tensor is aag = dag).
With the normal vector to the deformed shell, N = A; x Ay/|A1 x As|, the non-dimensional curvature
tensor of the deformed midplane is Bog =N - Aq . The non-dimensional bending tensor is given by

kap = —(Bag — bag),

where the only non-zero entry in the undeformed curvature tensor bog is b2z = —1.

Many authors derived approximate shell theories in which different approximations to these exact strain
and bending tensors were used. However, it was shown in reference 16, that the full non-linear expressions
have to be retained to obtain accurate results in the large-displacement regime.

Appendix B: The Uzawa Method

The solution of the discretised Stokes equations is based on the pressure equation (22) which is solved with
a conjugate gradient iteration, preconditioned by the pressure mass matrix. The products of the pressure
vector p with the matrix G = Z?zl QiAi_lQlT, which are required during this iteration, are evaluated by
an inner iteration since the formation of the matrix G is computationally very expensive. The inner iteration
evaluates Gp by first computing the three auxiliary vectors y; = QiTp which are then used as the right
hand sides in A;z; = y;. These equations are solved with conjugate gradient iterations, preconditioned by
the diagonals of the A,. Finally, the required result is obtained from Gp = 2?21 D,z;.
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Figure 2: Sketch of the coordinate system used in the analysis.
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Figure 3: Fluid and solid meshes used for the Finite Element discretisation of the Stokes and shell equations.

Only one quarter of the tube is discretised.
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Figure 4: Sketch illustrating the transfer of the fluid traction from the discretised fluid domain to the FEM
integration point in the solid domain. The solid squares and circles represent the corner nodes of the shell and
fluid elements, respectively, and for simplicity the transfer is only illustrated for a two-dimensional geometry.
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Figure 5: Displacement history of the nodal points on the material line ¢(? = 7/2 during the Picard iteration.
The dashed line shows the displacement of the control node (at ¢ 1 =7.4). The control displacement is reduced
from V = —0.8to V =—0.7. L/Ry = 10, i = 3.125 x 10~".
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Figure 6: Displacement of the material lines (2 = 0 (bulging out) and (2

= /2 (collapsing) during the

Picard iteration. The dashed line shows the initial guess, the solid line is the final equilibrium shape and the
dotted lines represent the intermediate tube shapes during the iteration. Note how the tube pivots around the
control node at ¢! = 7.4 and (2 = w/2. The control displacement is reduced from V = —0.8 to V = —0.7.

L/Ry =10, p=3.125x 107".
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Initial guess for wall displacement field and
value of control displacement given.
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Fluid solver = lubrication theory solver.

i

Compute fluid flow in the present tube geometry.
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Obtain the fluid traction on the tube wall.
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traction and the displacement control.

Convergence of wall
displacement field ?
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since last extrapolation?
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Convergence with
Stokes solver ?
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Figure 7: Flowchart summarising the accelerated iteration procedure. This procedure is embedded in an outer
loop in which the value of the control displacement is varied to trace the entire range of the tube’s collapse.
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radial displacement of nodal point

number of iterations

Figure 8: Displacement history of the nodal points on the material line (2 = 7/2 during the accelerated Picard
iteration. The iteration process begins with lubrication theory solves for the fluid equation. This iteration
converges in nine steps (convergence marked by the vertical dotted line). With this initial guess only five Stokes
solves are required to achieve a fully converged solution. The dashed line shows the displacement of the control
node (at ¢! = 7.4). The control displacement is reduced from V = —0.8 to V. = —0.7. L/Ry = 10, i =
3.125 x 1077,
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Figure 9: Displacement of the material lines ¢? = 0 (bulging out) and ¢?> = 7/2 (collapsing) during the Picard
iteration. The dashed line shows the initial guess, the solid line is the equilibrium shape and the dotted lines
represent the intermediate tube shapes during the iteration. The iteration fails to converge in spite of the good
initial guess. The control displacement (at (' = 16.4 and ¢2 = 7/2) is reduced from V = —0.7 to V = —0.6.
L/Ry =20, i =6.25 x 1078.
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Figure 10: Displacement history of the nodal points on the material line (2 = /2 during the accelerated
Picard iteration (solid and dash-dotted lines). The dashed line shows the displacement of the control node (at
¢! = 16.4). The extrapolation procedure stabilises the iteration procedure and achieves convergence with the
lubrication theory solver after 10 iterations. Five iterations with the Stokes solver suffice to achieve a fully
converged solution. The control displacement is reduced from V = —0.7 to V = —0.6. L/Ry = 20, o =
6.25 x 1078,

22



Figure 11: Strongly collapsed tube subject to p.ss = 6.38 x 10™*. L/Ro = 10, i = 1.875 x 1076,
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Figure 12: Flow through the strongly collapsed tube shown in the previous figure. Only one quarter of each cross
section is shown. The contours indicate the magnitude of the axial velocity, the arrows represent the transverse
velocity components. The cross sections are located at z = 7.25, 7.75 and 8.25. L/Ro = 10, ji = 1.875 x 1076,
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Figure 13: Bifurcation diagram, showing the tube deformation under constant volume flux (z = 1.875 x 107°).
The radial deformation of two material points on the tube wall (at (! = 7.4 and ¢? = 0,7/2) is plotted as a
function of the control pressure, ps. The dashed line represents the axisymmetric pre-buckling deformation, the
solid line represents the post-buckling solution.



