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 This paper examines the stability of cylindrical shells conveying viscous flow .  Geometri-
 cally nonlinear Lagrangian shell theory is used to describe the deformation of the tube
 wall .  The fluid flow is modelled using lubrication theory .  The coupled fluid – solid problem
 is discretized with finite dif ferences and the critical parameter combinations (upstream
 pressure and volume flux) for which the tube buckles are examined .  The most unstable
 circumferential buckling wavenumber and the buckling modes are determined for an
 experimental procedure in which the upstream pressure is held at a constant value while
 the volume flux is increased until buckling occurs .  Finally ,  the ef fect of variations in the
 tube geometry and the ef fects of the axial pre-stretch are examined .

 ÷   1996 Academic Press Limited

 1 .  INTRODUCTION

 T HE PROBLEM OF FLOW THROUGH COLLAPSIBLE  tubes has been studied both theoretically
 and experimentally by many authors [for a recent review see Kamm & Pedley (1989)] .
 The main motivation for this work comes from the investigation of certain biological
 flows such as blood flow in veins and arteries or air flow in the bronchial airways during
 forced expiration .

 A typical experimental set-up is shown in Figure 1 .  Inside a pressure chamber ,  a
 finite-length collapsible tube is mounted on two rigid tubes ,  and viscous fluid is pumped
 through .  Various combinations of parameters can be varied in the experiments (e . g .,
 external pressure and volume flux or external pressure and upstream pressure ,  etc . ) .
 For suf ficiently large external pressure and / or volume flux ,  the tube collapses at the
 downstream end ,  i . e .  it buckles nonaxisymmetrically [see Conrad (1969) ,  Katz  et al .
 (1969) or Elad  et al .  (1992)] .  Following the collapse ,  large amplitude self-excited
 oscillations can be observed for a wide range of parameters .

 So far ,  most theoretical models of the complex interaction between fluid and solid
 mechanics have used relatively simple ‘‘tube laws’’ to describe the elastic behaviour of
 the tube wall .  These tube laws relate the cross-sectional area of the tube to the local
 transmural pressure-dif ference .  The fluid flow was either modelled one-dimensionally
 or  ad hoc  assumptions about the shape of the deformed cross-sectional area had to be
 made (Wild  et al .  1977) .

 To derive a more realistic model of the fluid – solid interaction in this problem it is
 necessary to develop an improved description of the wall mechanics .  Therefore ,  Heil &
 Pedley (1995a) used geometrically nonlinear shell theory to describe the deformation
 of the tube wall .  They used lubrication theory to model the fluid flow and developed a
 FEM code to study the axisymmetric prebuckling deformation of the tube .  Meanwhile ,
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 Figure 1 .  Sketch of the model problem .

 this code has been extended to study the large displacement postbuckling deformation
 of the collapsed tube (Heil & Pedley 1995b) .

 The stability analysis ,  presented in this paper ,  forms a link between the steady pre-
 and postbuckling deformation .  We investigate the linear stability of the axisymmetric
 tube to establish the critical parameter combinations (e . g .  volume flux and external
 pressure) for which the axisymmetric deformation of the tube loses its stability by
 divergence .

 We use the same fluid and solid models as in Heil & Pedley (1995a) ,  i . e .
 geometrically nonlinear shell theory and lubrication theory .  The governing equations
 are derived from the principle of virtual displacements and they are discretized with
 finite dif ferences .  The equations for the pre-buckling displacements are solved with a
 Newton-Raphson method .  A secant Newton method is used to determine the critical
 parameters (upstream pressure ,  volume flux and axial pre-stretch) for which the
 axisymmetric tube becomes unstable .

 We analyse the buckling mechanism corresponding to an experimental procedure in
 which the fluid pressure at the upstream end of the collapsible tube is held constant
 while the volume flux is increased until buckling occurs .  The ef fects of variations in the
 tube geometry and the ef fects of axial pre-stretch are studied .
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 This approach dif fers from previous work ,  e . g .  by Paidoussis and co-workers [an
 extensive review of which is given in Paidoussis & Li (1993)] ,  who were primarily
 interested in the flutter instability of cylindrical shells .  They used linear shell equations
 (mostly Flu ̈  gge’s equations) coupled to an inviscid potential flow to determine the
 growth rate of traveling wave disturbances to the shell .  It is interesting to note that ,  in
 spite of their fundamentally dif ferent fluid model ,  they found that clamped – clamped
 shells lose their stability by divergence (buckling) ,  followed by flutter (a Hopf
 bifurcation) at a slightly higher flow rate (Paidoussis & Denise 1972) .  This led to the
 proposition that the large displacement self-excited oscillations observed in the
 experiments could be :  (a) flutter instabilities ,  or (b) ‘  ‘‘periodic divergence’’ ,  with the
 antinodes snapping through alternately between the positive and negative extremes of
 the modal form involved’ (Paidoussis & Li 1993 ;  p .  186) .

 The latter view is supported by Conrad’s (1969) experiments .  Figure 4 in his paper
 shows a sequence of photographs of partially and fully collapsed rubber tubes
 conveying a viscous flow and Conrad reports that ‘‘these configurations could be
 maintained as long as desired’’ (p .  286)—clearly indicating that the collapse was not
 necessarily coupled to a flutter instability .  Further support for the latter view is given
 by Conrad’s observation that ‘‘during oscillation ,  the motion of the walls of the tube
 was essentially a succession ,  within a limited range ,  of the steady flow collapse
 states  .  .  . ’’ (p .  291) .

 2 .  THE MODEL

 2 . 1 .  S HELL  T HEORY

 We model the tube of length  L ,  undeformed radius  R 0  and wall thickness  h  as a
 cylindrical shell and describe its deformation using a geometrically nonlinear
 Kirchhof f / Love type shell theory [e . g .  Wempner (1973)] .  Using the usual assumptions
 (thickness of the shell is constant ,  normals to the undeformed mid-plane remain
 normal) ,  the deformation of the shell can be expressed in terms of the mid-plane
 displacements  y ̃  .  We use Lagrangian coordinates  x ̃  a   (Greek and Latin indices have
 values 1 , 2 and 1 , 2 , 3 ,  respectively ,  and the summation convention is used) to
 parameterize the shell mid-plane .  A tilde is used to distinguish dimensional variables
 from their nondimensionalized equivalents .

 Let  r ̃  0 ( x ̃  a ) be the vector to a material point on the mid-plane before deformation .
 We choose cylindrical coordinates as the Lagrangian coordinates ( x ̃  1  and  x ̃  2  are the arc
 lengths in the axial and circumferential direction ,  respectively ;  see Figure 2) .  Lower
 case letters refer to the undeformed reference state and the superscript 0 indicates the
 vector to the mid-plane .  Thus ,

 r ̃  0  5  ( R 0  sin( x ̃  2 / R 0 ) , R 0  cos( x ̃  2 / R 0 ) ,  x ̃  1 ) T ,  x ̃  1  P  [0 ,  L ] ,  x ̃  2  P  [0 ,  2 π R 0 ] .  (1)

 The position of an arbitrary point in the shell at a distance  x ̃  3  from the mid-plane can
 be written as

 r ̃  5  r ̃  0  1  x ̃  3 n ,  x ̃  3  P  [ 2 h  / 2 ,  h  / 2] ;  (2)

 n  5  a 3  is the unit vector normal to the two mid-plane base vectors  a a  5  r ̃  0
 , a   where the

 comma denotes partial dif ferentiation with respect to  x ̃  a .  Let  a a b  5  a a  ?  a b   be the
 covariant mid-plane metric tensor ,   a  its determinant and  b ̃  a b  5  n  ?  a a  , b   the curvature
 tensor of the undeformed mid-plane .  After deformation ,  the material point on the
 mid-plane with the Lagrangian coordinates  x ̃  a   has been displaced to a new position
 R ̃  0 ( x ̃  a )  5  r ̃  0 ( x ̃  a  )  1  y ̃  ( x ̃  a  ) .  We decompose the displacement vector ,   y ̃  ,  into the
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 Figure 2 .  Sketch of the Lagrangian and Eulerian coordinate systems used in the analysis .

 undeformed basis ,   y ̃  5  y ̃  j a j  .  We use capital letters for the quantities associated with the
 deformed tube :  mid-plane base vectors  A a  5  R ̃  0

 , a  ,  unit normal  N  5  A 3  ,  mid-plane
 metric tensor  A a b  5  A a  ?  A b  ,  curvature tensor  B ̃  a b  5  N  ?  A a  , b  ,  and vector to a point in
 the deformed shell

 R ̃  5  R ̃  0  1  x ̃  3 N .  (3)

 The tangent vectors on the inner surface of the deformed shell at  x ̃  3  5  2 h  / 2 are given
 by  G a  5  R ̃  , a   and the area dif ferential d !   on this surface is

 d !  5  4 G  d x ̃  1  d x ̃  2 ,  (4)

 where  G  is the determinant of the of f mid-plane metric tensor  G a b  5  G a  ?  G b  .
 The deformation is described by the strain tensor  g a b  5  1 – 2 ( A a b  2  a a b  ) and the

 bending tensor  k ̃  a b  5  2 ( B ̃  a b  2  b ̃  a b  ) .  In spite of the large deformations ,  the strain of the
 shell is still relatively small [Elad  et al .  (1992) report about 2 – 3% maximum extension
 in their experiments] ,  therefore we use Hooke’s law (linear constitutive equations) and
 Love’s first approximation to express the strain energy function ,   f ̃  ,  (strain energy per
 unit area of the undeformed mid-plane of the shell) in terms of the strain and bending
 tensors :

 f ̃  5
 1
 2

 hE ̃  a b g d S g a b g g d  1
 1

 12
 h 2 k ̃  a b k ̃  g d D  (5)

 with the plane stress stif fness tensor

 E ̃  a b g d  5
 E

 2(1  1  …  )
 S a  a g a  b d  1  a  a d a  b g  1

 2 …
 1  2  …

 a  a b a  g d D  ,  (6)

 where  E  is Young’s modulus ,   …   is Poisson’s ratio and  a  a b   is the contravariant metric
 tensor of the undeformed mid-plane ,   a a b a b g  5  d  a

 g .
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 We use the principle of virtual displacements ,

 d  P strain  2  d P load  5  0 ,  (7)

 where  d P strain  is the variation of the strain energy stored in the deformed tube wall and
 d P load  is the work done by the load  f ̃  ,  acting on the tube surface ,  during a virtual
 displacement .  We nondimensionalize the coordinates  x ̃  i ,  the displacements  y ̃    and the
 bending tensor  k ̃  a b   with the undeformed radius ,   x ̃  j  5  x i R 0  ,  y ̃  5  y  R 0  , k ̃  a b  5  k a b  / R 0  and
 the stif fness tensor and the loads with Young’s modulus ,   E ̃  a b g d  5  E a b g d E  and  f ̃  5  f E .
 The strain tensor ,   g a b  ,  is already dimensionless .  Then the variation of the strain energy
 is given by

 d P strain  5 E 2 π

 0
 E L / R 0

 0
 S  h

 R 0
 D F E  a b g d S g a b d g g d  1

 1
 12

 S  h

 R 0
 D 2

 k a b d k g d D G 4 a  d x  1  d x 2 ,  (8)

 where the variations of strain and bending tensor have to be taken with respect to the
 displacements  y  i   and their derivatives .

 In Heil & Pedley (1995a) we compared the exact ,  fully nonlinear expressions for the
 strain and bending tensors to the simplified expressions which were derived in Sanders’
 (1963) first-order nonlinear moderate rotation theory .  We found that for large
 pre-buckling deformations Sanders’ theory could be improved considerably by using
 the exact expression for the strain tensor ,   g a b  ,  while using Sanders’ linearized
 expressions for the bending tensor ,   k a b  .  The resulting nonlinear partial dif ferential
 equations are only slightly more complicated than those derived in Sanders’ original
 theory since the main complication arises from the nonlinearity in the bending tensor .
 This approach allows us to investigate cases where the tube upstream end is subject to
 a high internal pressure .  In these cases ,  the pre-buckling deformation of the tube can
 be large enough to make relevant those nonlinearities in the strain tensor ,  which were
 neglected by Sanders .  The moderate rotation assumption ,  leading to the linearization
 of the bending tensor ,  is still valid in these cases .

 Hence ,  we use Sanders’ expression for the bending tensor ,  i . e .

 k  1 1  5  2 y  3
 , 11 ,  (9)

 k  1 2  5  k  2 1  5  2 y  3
 , 12  1

 3
 4

 y  2
 , 1  2

 1
 4

 y  1
 , 2 ,  (10)

 k  2 2  5  2 y  3
 , 22  1  y  2

 , 2 .  (11)

 The numerical results presented in Heil & Pedley (1995b) confirm that this linearized
 bending tensor yields accurate results for the initial stages of the nonaxisymmetric
 buckling deformation of the tube .

 For the purposes of linear stability analysis ,  we linearize the exact nonlinear strain
 tensor with respect to the buckling displacements (for the axisymmetric pre-buckling
 deformation we have  y  2  5  0 and  Û / Û x  2  5  0) ,  i . e .

 g  1 1  5  y  1
 , 1  1

 1
 2

 [( y  1
 , 1 )

 2  1  ( y  3
 , 1 )

 2 ] ,  (12)

 g  1 2  5  g  2 1  5
 1
 2

 [(1  1  y  3 ) y  2
 , 1  1  ( y  3

 , 2  2  y  2 ) y  3
 , 1  1  ( y  1

 , 1  1  1) y  1
 , 2 ] ,  (13)

 g  2 2  5
 1
 2

 [2 y  2
 , 2  1  2( y  2

 , 2  1  1) y  3  1  ( y  3 ) 2 ] .  (14)
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 Figure 3 .  The tube deformation under the moderate rotation assumption .

 For moderate rotations of the tube wall ,  the tube geometry changes as sketched in
 Figure 3 .  The components  I i   of the nondimensional vector  I  5  I i a i   to a point on the
 inside of the deformed tube are

 (15) I 1  5  x  1  1  y  1  1
 h

 2 R 0
 y  3

 , 1 ,  I 2  5  y  2 S 1  2
 h

 2 R 0
 D  1

 h
 2 R 0

 y  3
 , 2  and  I 3  5  1  1  y  3  2

 h
 2 R 0

 .

 The inside of the tube forms the boundary of the fluid domain .  We use the
 nondimensional Lagrangian coordinates  x a   to parametrize the Eulerian cylindrical
 polar coordinates ( r ,  z ,  w )  5  ( r ̃  / R 0  ,  z ̃  / R 0  ,  w ) of this boundary .  The  z -coordinate of a
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 point on the tube inner surface is equal to the projection of  I  on the tube’s centre line ,
 i . e .

 z  5  I  ?  a 1  5  x  1  1  y  1  1
 h

 2 R 0
 y  3

 , 1 .  (16)

 The Eulerian tube radius is given by

 R  5  4 I  ?  I  2  z  2  5 – S y  2 S 1  2
 h

 2 R 0
 D  1

 h
 2 R 0

 y  3
 , 2 D 2

 1 S 1  1  y  3  2
 h

 2 R 0
 D 2

 ,  (17)

 and the Eulerian polar angle of a point on the tube wall is

 tan  w  5
 I  ?  e x

 I  ?  e y
 5

 F y  2 S 1  2
 h

 2 R 0
 D  1

 h
 2 R 0

 y  3
 , 2 G  cos( x  2 )  1 F 1  1  y  3  2

 h
 2 R 0

 G  sin( x 2 )

 2 F y  2 S 1  2
 h

 2 R 0
 D  1

 h
 2 R 0

 y  3
 , 2 G  sin( x 2 )  1 F 1  1  y  3  2

 h
 2 R 0

 G  cos( x  2 )
 .  (18)

 These transformations provide an Eulerian description of the fluid domain in terms of
 the shell coordinates  x a   and the mid-plane displacement field  y  i ( x  a  ) .  In Section 2 . 2
 we shall use these transformations to determine the fluid traction in the Eulerian
 basis  f fluid  5  f r e r  1  f z e z  1  f w e w  ,  where the Eulerian base vectors are given by
 e r  5  (sin  w ,  cos  w ,  0) T ,   e z  5  (0 ,  0 ,  1) T ,   e w  5  (cos  w ,  2 sin  w ,  0) T .  Since the traction exerted
 by the fluid on the wall is opposite to the traction exerted by the wall on the fluid ,  the
 load acting on the tube wall is  f  5  2 f fluid .  We decompose  f  into the undeformed base
 vectors  a i  ,  f  5  f  i a i  .  The load components  f i   are then given by

 f  i  5  2 (  f z e z  ?  a i  1  f r e r  ?  a i  1  f w e w  ?  a  i ) ,  (19)

 where the  a i   are the contravariant mid-plane base vectors ,  given by  a  i  ?  a j  5  d  i
 j  .  The

 fluid traction acts on area elements d !   on the inside of the tube .  Therefore ,  the work
 done by the fluid traction during a virtual displacement  d R u x  3 52 ( h /2 R 0 )  5  d I  5  d I i a i   is
 equal to

 d P load  5 E 2 π

 0
 E L / R 0

 0
 f  i d I i 4 G  u x  3 52 ( h /2 R 0 )  d x  1  d x 2 .  (20)

 Again the variations have to be carried out with respect to the displacements and their
 derivatives ,  e . g .

 d I 1  5  d y  1  1
 h

 2 R 0
 d y  3

 , 1  (21)

 etc .  We set the pressure ,   p e x t ,  in the pressure chamber to zero (a transmural pressure
 dif ference can be created by changing the fluid pressure) .  Then the load on the outside
 of the tube is zero and does not contribute to the virtual work done during the
 deformation .

 We insert (8) and (20) into (7) and combine the terms which are multiplied by the
 same displacement variations .  This transforms (7) into a variational equation of the
 form

 E 2 π

 0
 E L / R 0

 0
 ( f i d y  i  1  f i a d y  i

 , a  1  f  i a b d y  i
 , a b )  d x  1  d x 2 ,  (22)

 where the  f  -terms depend on the load terms  f  i   and on the displacements  y  i   and their
 first and second derivatives with respect to the Lagrangian coordinates  x a .  Partial
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 integration transforms (22) into the following system of three partial dif ferential
 equations

 ̂  i  5  f i  2  f  i a  , a  1  f  i a b  , a b  5  0 .  (23)

 The algebraic manipulations involved in the last two steps are straightforward but
 rather lengthy ,  therefore they were carried out using the symbolic formula manipulator
 REDUCE .  The boundary conditions are obtained naturally during the partial
 integration .  In the experiment described above ,  the tube is clamped at both ends and
 the displacements have to be periodic in the circumferential direction ;  at  x  1  5  0 and
 x 1  5  L / R 0   the displacements have to be prescribed (which allows the possibility of
 pre-stretch) and we have d y  3 / d x  1  5  0 .

 For the purpose of the stability analysis we consider small nonaxisymmetric
 disturbances  y  i

 B ( x 1 ,  x  2 ) to the axisymmetric pre-buckling deformation  y  i
 A ( x 1 ) .  We

 separate the buckling displacements into mode shapes  V  i
 B ( x 1 ) and trigonometric

 functions ,  i . e .

 [ y  1
 B ,  y  2

 B ,  y  3
 B ]  5  [ V  1

 B ( x 1 )  cos( Nx 2 ) ,  V  2
 B ( x 1 )  sin( Nx 2 ) ,  V  3

 B ( x 1 )  cos( Nx 2 )] ,  (24)

 where  N  is the circumferential buckling wavenumber .  Linearization of the transforma-
 tions (16) to (18) between the Eulerian and Lagrangian coordinates with respect to the
 buckling displacements yields

 z  5  x  1  1  y  1
 A  1

 h
 2 R 0

 y  3
 A , 1  1 S V  1

 B  1
 h

 2 R 0
 V  3

 B , 1 D  cos( Nx 2 ) ,  (25)

 R  5  1  1  y  3
 A  2

 h

 2 R 0
 1  V  3

 B  cos( Nx 2 ) ,  (26)

 and

 w  5  x  2  1
 V  2

 B [1  2  ( h  / 2 R 0 )]  2  NV  3
 B ( h  / 2 R 0 )

 1  1  y  3
 A  2  ( h  / 2 R 0 )

 sin( Nx 2 ) .  (27)

 2 . 2 .  F LUID  M ECHANICS

 For physiologically realistic values of the Reynolds number (Pedley 1980) ,  the fluid
 mechanics would be governed by the full Navier Stokes equations .  If we assume ,
 however ,  that the product of Reynolds number and wall slope in the streamwise
 direction ( a  ,  say) and the wall slope itself are small everywhere ,  we can simplify the
 equations considerably .  The small wall slope assumption is justifiable in the context of
 the stability analysis since we are only concerned with the initial stages of the buckling
 for which the tube is not yet severely collapsed at the downstream end .

 We use Eulerian cylindrical polar coordinates (see Figure 2) for the fluid flow and
 base the Reynolds number on the average axial fluid velocity  U #  ,  i . e .  Re  5  U #  R 0 / …  ,
 where  …   is the kinematic viscosity of the fluid .  Under the assumption  a  Ô  1 ,  the
 equation of continuity provides a scaling for the velocity components ,   u #  r  / u #  z  , u #  w  / u #  z  5
 2 ( a  )  Ô  1 .  Using this scaling and the assumption Re  a  Ô  1 in the momentum equations
 shows that ,  at leading order ,  the fluid pressure ,   p ̃    is only a function of the axial
 coordinate  z ̃  , p ̃  5  p ̃  ( z ̃  ) .

 We scale the  z -component of the velocity as  u ̃  z  5  u z V ~  / R 2
 0 ,  where  V ~    is the volume

 flux through the tube ,  and nondimensionalize the pressure with Young’s modulus ,
 p ̃  5  pE .  Then the  z -component of the momentum equation reduces to

 Û p

 Û z
 5  q

 π R 0

 8 L
 =  2 u z  ,  (28)
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 where  =  2  stands for the nondimensional Laplace operator in the ( r , w )-plane .  The
 parameter  q  represents the nondimensional pressure drop through an undeformed tube
 of length  L  and inner radius  R 0  ,

 q  5
 8 m V ~  L

 π R 4
 0 E

 ,  (29)

 and it is proportional to the volume flux .  The parabolic equation (28) is subject to the
 normalization condition

 E
 A ( z )

 u z  d A  5  1 ,  (30)

 which requires that the same volume flux ,   V ~  ,  passes through every cross-section  A ( z )
 and to a no-slip boundary condition on the tube walls ,

 u z  u Û A  5  0 .  (31)

 At one  z -coordinate ,  an initial value for the pressure has to be prescribed ,  e . g .
 p ( z  5  0)  5  p entry .  Physically ,  these equations imply that the flow through every
 cross-section  A ( z ) is identical to the flow through an infinitely long tube of the same
 constant cross-section .

 The fluid stress vector ,   t ,  at the tube wall can be obtained from the stress tensor  T I
 and the normal vector  N ,

 t  5  T I  ?  N ,  (32)

 where the normal vector  N  is the third base vector on the shell surface ,   N  5  G 3  5  A 3  .
 Using the moderate rotation assumption as illustrated in Figure 3 ,  we write the normal
 vector as

 N  5  e r  2  y  3
 , 1 e z  2  y  3

 , 2 e w .  (33)

 Inserting the velocity scalings ,  derived above ,  into the stress tensor  T I    for a Newtonian
 fluid in cylindrical polar coordinates and nondimensionalizing all stresses with Young’s
 modulus  E ,  we obtain the following approximation for the components of the stress
 vector  t fluid  5  t r e r  1  t z e z  1  t w e w :

 t r  5  2 p ,  t z  5  p y  3
 , 1  1  τ w  and  t w  5  p y  3

 , 2 .  (34)

 The nondimensional wall shear stress  τ w   is given by

 τ w  5  q
 π R 0

 8 L

 Û u z

 Û n
 ,  (35)

 where  Û / Û n  stands for the normal derivative in the ( r , w )-plane .
 The displacement derivatives in (34) reflect the change in the direction of the fluid

 traction during the buckling .  Due to the fluid – solid interaction ,  the pressure and the
 wall shear stress depend on the wall displacements as well .  The fluid equations ,  which
 determine the fluid traction ,  have to be solved in the slightly buckled tube ,  the
 description of which is based on the Lagrangian coordinates ,   x a .  Therefore ,  we will
 now transform the fluid equations into Lagrangian coordinates .

 During the axisymmetric pre-buckling deformation of the tube ,  particles on the
 inside of the tube wall with the Lagrangian coordinate  x 1  (which were on a level
 z undef  5  x 1   in the undeformed tube) are displaced to the new axial position

 z axisym ( x 1 )  5  x  1  1  y  1
 A  1

 h

 2 R 0
 y  3

 A , 1  (36)
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 and they remain in one plane .  We use this relation to establish a mapping between
 Eulerian and Lagrangian coordinates before the buckling and express the pressure
 gradient in terms of the axial Lagrangian coordinate  x 1 ,  i . e .

 d p
 d z

 5
 1

 1  1  y  1
 A , 1  1  ( h  / 2 R 0 ) y  3

 A , 11

 d p
 d x 1  .  (37)

 During the buckling ,  the axial component of the buckling displacement moves material
 points with the coordinate  x 1  out of the plane  z  5  z axisym ( x 1 ) ;  material points with
 dif ferent  x 1 -coordinates move into the plane  z  5  z axisym ( x 1 ) and the radius and the polar
 angle of material points in the cross-section  z  5  z axisym ( x 1 ) are no longer functions of
 the circumferential Lagrangian coordinate  x 2  alone .  However ,  this can be shown to be
 a second-order ef fect (see Appendix) which allows us to neglect the warping of the
 cross-sections in the linear stability analysis .

 We denote the radius of the unbuckled tube by  r A  5  1  1  y  3
 A  2  h  / 2 R 0  and denote the

 amplitude of the radial buckling displacement by  V  3
 B  5  »  Ô  1 .  Then the radius and

 polar angle to a point on the tube wall in the cross-section  z  5  z axisym ( x 1 ) are given by

 R tube  5  r A  1  »  cos( Nx 2 ) ,  (38)

 w  5  x  2  1  »
 ( V  2

 B / V  3
 B )[1  2  ( h  / 2 R 0 )]  2  ( h  / 2 R 0 ) N

 r A
 sin( Nx 2 ) .  (39)

 To solve the Poisson equation (28) in the slightly buckled cross-section we construct
 a body-fitted coordinate system involving the circumferential Lagrangian coordinate  x 2 .
 For this purpose we change the coordinates in the cross-section from the Eulerian
 cylindrical polar coordinates ( r ,  w ) to ( r  ,  x 2 ) by using (39) and by writing the radius ,   r ,
 as

 r  5  r  ( r A  1  »  cos( Nx 2 )] .  (40)

 The new coordinate system is illustrated in Figure 4 and the sketch shows that the

x2= π/2
n

x2= 0

y

ρ = 1ρ = 0

Rtube

x

 Figure 4 .  The body-fitted coordinate system ( r  ,  x 2 ) in the buckled cross-section .  The dashed lines are the
 isolines  x 2  5  const .  and  r  5  const .
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 transformation is one-to-one even for relatively large buckling deformations .  The
 Jacobian of the mapping is given by

 (41) )  5
 Û r

 Û r

 Û w

 Û x 2  2
 Û r

 Û x 2

 Û w

 Û r
 5  r A  1  » F 1  1  N S S 1  2

 h

 2 R 0
 D  V  2

 B

 V  3
 B

 2
 h

 2 R 0
 N D G  cos( Nx 2 )  1  2 ( »  2 ) .

 The curvilinear boundary of the fluid domain is thus transformed into the line  r  5  1 .
 We transform the Laplace operator to the new coordinates and expand the velocity

 field ,   u z  ,  and the pressure gradient ,  d p  / d z ,  in powers of the buckling amplitude ,   »  ,

 u z  5  u z 0  1  » u z 1  1  .  .  .  (42)
 and

 d p

 d z
 5

 d p 0

 d z
 1  »

 d p 1

 d z
 1  .  .  .  (43)

 The zero th  order equation is the equation for the flow in the unbuckled tube ,

 Û
 2 u z 0

 Û r  2  1
 1
 r

 Û u z 0

 Û r
 1

 1
 r  2

 Û
 2 u z 0

 Û ( x 2 ) 2  5
 8 r  2

 A L

 π qR 0

 d p 0

 d z
 ,  (44)

 the solution of which ,  subject to the boundary condition  u z  u r  5 1  5  0 ,  is a Poiseuille flow
 in the mapped plane ,  i . e .

 u z 0  5  2
 2 r  2

 A (1  2  r  2 ) L

 π qR 0

 d p 0

 d z
 .  (45)

 Inserting this into the first-order equation yields an equation for the perturbation
 velocity  u z 1  ,

 Û
 2 u z 1

 Û r  2  1
 1
 r

 Û u z 1

 Û r
 1

 1
 r  2

 Û
 2 u z 1

 Û ( x 2 ) 2  5
 4 L

 π qR 0
 F 2 r  2

 A
 d p 1

 d z
 2  r A ( N 2  2  4)  cos( Nx 2 )

 d p 0

 d z
 G  ,  (46)

 which has the solution

 u z 1  5  2
 2 r  2

 A (1  2  r  2 ) L

 π qR 0

 d p 1

 d z
 1

 4 L r A

 π qR 0
 ( r  2  2  r  N )

 d p 0

 d z
 cos( Nx 2 ) .  (47)

 The pressure gradients are determined by imposing the normalization condition (30) in
 the transformed coordinates ,  i . e .

 V ~  5  V ~  0  1  » V 1  1  .  .  .  5 E 2 π

 0
 E 1

 0
 u z [ r A  1  »  cos( Nx 2 )] 7  d r  d x  2  5  1 .  (48)

 Normalization of the velocity field  u z 0  ,  i . e .   V ~  0  5  1 ,  yields

 d p 0

 d z
 5  2

 qR 0

 r  4
 A L

 .  (49)

 We assume that the upstream pressure and the volume flux are held at a constant value
 during the buckling .  Then the condition  V ~  1  5  0 ,  inserted into (48) ,  forces the
 disturbance pressure gradient to vanish and we have

 p 1  5
 d p 1

 d z
 5  0 .  (50)

 This is closely related to the fact that at leading order the cross-sectional area of the
 buckled tube remains constant .
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 Finally ,  we work out the wall shear stress  τ w  5  τ w 0  1  » τ w 1  1  .  .  .  The vector to a point
 on the tube wall is

 R tube  5  [ R x  ,  R y ] T  5  [ r A  1  »  cos( Nx 2 )][sin( w ( x  2 )) ,  cos( w ( x 2 ))] T ,  (51)

 where  w ( x  2 ) is given by (39) .  The normal vector on the tube wall is obtained from

 n  5
 1

 – S  d R x

 d( x 2 )
 D 2

 1 S  d R y

 d( x 2 )
 D 2

 F  2
 d R y

 d( x 2 )
 ,

 d R x

 d( x 2 )
 G T

 .  (52)

 After transforming the Cartesian components of  =  5  ( Û / Û x ,  Û / Û y ) T  to  r   and  x 2 ,  we
 expand  Û u z  / Û n  5  n  ?  = u z   in powers of  »   and obtain

 τ w 0  5  2
 qR 0

 2 r  3
 A L

 (53)

 and

 τ w 1  5
 q ( N  2  1) R 0

 2 r  4
 A L

 cos( Nx 2 ) .  (54)

 The last equation shows that the wall shear stress is reduced where the tube is bulging
 out and increased where the tube is collapsing ,  as one would expect .

 3 .  THE GOVERNING EQUATIONS

 The governing equations are obtained by inserting the expressions for the wall shear
 stress into the load terms in the three shell equations  ̂  i  5  0 .  While the wall shear stress
 is directly related to the shell’s displacement field ,  the pressure distribution is governed
 by the fourth equation ,

 ̂  4  5
 Û p
 Û x 1  1 S 1  1  y  1

 A , 1  1
 h

 2 R 0
 y  3

 A , 11 D  qR 0

 S 1  1  y  3
 A  2

 h
 2 R 0

 D 4

 L

 5  0 ,  (55)

 which is obtained from (37) and (49) .
 The tube is subject to an axial pre-stretch ,  which changes its length from  L  to  L  1  U .

 Denoting this pre-stretch by  » U  5  U  / R 0  ,  we obtain the following boundary conditions
 for the displacements :

 y  1  u x  1 5 0  5  2
 » U

 2
 and  y  1  u x  1 5 L / R 0  5

 » U

 2
 ,  (56)

 y  3  u x  1 5 0  5  y  3  u x  1 5 L / R 0
 5  0  and  y  3

 , 1  u x  1 5 0  5  y  3
 , 1  u x  1 5 L / R 0

 5  0 .  (57)

 The fluid pressure is prescribed at the upstream end of the tube ,  i . e .

 p  u x 1 5 0  5  p entry .  (58)

 Before the buckling ,  the tube deformation is axisymmetric and the displacement field
 depends only on the  x 1 -coordinate .  We insert  y  i ( x  a )  5  y  i

 A ( x 1 ) with  y  2
 A ( x 1 )  5  0 into the

 shell equations  ̂  i  5  0 and obtain two ordinary dif ferential equations for the pre-
 buckling displacements  y  1

 A ( x 1 ) and  y  3
 A ( x 1 ) .  The equation for equilibrium in the
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 circumferential direction ,   ̂  2  5  0 ,  is fulfilled automatically .  The pressure distribution is
 governed by (55) .

 To derive the equations for the buckling deformation ,  we insert  y  i ( x  1 ,  x 2 )  5  y  i
 A ( x 1 )  1

 y  j
 B ( x 1 ,  x  2 )   into the shell equations  ̂  i  5  0 .  Since we are only interested in the linear

 stability ,  we linearize with respect to the buckling displacements and use the ansatz
 (24) .  This leads to a system of linear ordinary dif ferential equations of the form

 + i  5  O 4
 k 5 0

 L i j k
 Û

 k V  j
 B

 Û ( x 1 ) k  5  0 ,  (59)

 where the coef ficients  L ijk   are functions of the pre-buckling displacement  y  i
 A ( x 1 ) and

 the pressure distribution  p ( x  1 ) .  As shown in the last section ,  the pressure distribution
 remains unchanged during the buckling .  The buckling modes  V  i

 B ( x 1 ) are subject to the
 eight homogeneous boundary conditions

 V  i
 B  u x  1 5 0  5  V  i

 B  u x  1 5 L / R 0  5  0  and  V  3
 B , 1  u x  1 5 0  5  V  3

 B , 1 u x  1 5 L / R 0  5  0 .  (60)

 4 .  THE NUMERICAL SOLUTION

 4 . 1 .  T HE  A XISYMMETRIC  P RE-BUCKLING  D EFORMATION

 We discretize the equations by replacing the derivatives with respect to  x 1  by
 second-order accurate finite dif ferences on a uniformly spaced mesh with spacing
 h F D  5  L / ( N F D R 0 )   (Almroth 1966) .  We denote the discretized pre-buckling displace-
 ments by  y  i

 A  u x  1 5 ( Jh F D )  5  9 i
 A ( J ) .  Then the derivatives at  x  1  5  Jh F D   ( J  5  0 ,  .  .  .  ,  N F D ) are

 approximated by standard central dif ferences .  The highest derivatives of the axial and
 radial displacements are  y  1

 A , 11  and  y  3
 A , 1111 ,  respectively .  Discretization of the two shell

 equations  ̂  1  5  0 and  ̂  3  5  0 at the  N F D  1  1 nodes  J  5  0 ,  .  .  .  ,  N F D   yields 2( N D F  1  1)
 nonlinear algebraic equations which involve the 2( N F D  1  1) unknowns within the
 domain .  Due to the discretization of the highest derivatives at the end-points of the
 domain ,  they also make reference to the six ‘‘virtual’’ gridpoints  9  3

 A ( 2 2) ,  9 1
 A ( 2 1) ,

 9 3
 A ( 2 1) ,  9 1

 A ( N F D 1 1) ,  9 3
 A ( N F D 1 1)  and  9 3

 A ( N F D 1 2) .  Discretization of the six boundary
 conditions (56) and (57) provides the final six equations .

 Discretization of the pressure gradient in (55) using central dif ferences ,  i . e .

 d p

 d x 1  5
 3 ( J 1 1)  2  3 ( J 2 1)

 2 h F D
 (61)

 at nodes  J  5  1 ,  .  .  .  ,  N F D  ,  generates  N F D   equations involving the  N F D  1  2 unknowns
 3 ( 0 ) ,  .  .  .  ,  3 ( N F D 1 1) .  Prescribing the pressure at the upstream end yields only one
 additional equation ,   3 ( 0 )  5  p entry ,  and it can also be shown that the even and odd
 numbered pressure variables remain uncoupled in this scheme .  The ‘‘missing’’
 additional equation which links all pressure variables is obtained by integrating (55)
 analytically between  x 1  5  L / R 0  and  x  1  5  L / R 0  1  h F D .  Since this part of the domain is
 inside the rigid support where  y  i  5  0 we obtain

 3 ( N F D 1 1)  2  3 ( N F D )

 h F D
 5  2

 qR 0

 (1  2  h  / 2 R 0 )
 4 L

 ,  (62)

 where we assumed that the inner radius of the downstream support is equal to the
 inner radius of the undeformed tube .
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 This transforms the ordinary dif ferential equations and the boundary conditions into
 a system of 3 N F D  1  10 nonlinear algebraic equations .  The system of equations can
 readily be solved using the Newton-Raphson technique which enables us to compute
 the axisymmetric pre-buckling displacements for a wide range of parameters ,  i . e .
 9  i

 A ( J ) ( q ,  p entry ,  » U ) .

 4 . 2 .  T HE  B UCKLING  D EFORMATION

 We discretize the three buckling equations (59) ,  using standard second order central
 finite dif ferences for the pre-buckling displacements  9  i

 A ( J )  and for the buckling
 displacements  9  i

 B ( J )  at the  N F D  1  1 gridpoints  J  5  0 ,  .  .  .  ,  N F D .  This yields 3( N F D  1  1)
 linear algebraic equations which involve the 3( N F D  1  1) discretized buckling displace-
 ments at  J  5  0 ,  .  .  .  ,  N F D   and eight ‘‘virtual’’ gridpoints  9  3

 B ( 2 2) ,  9
 1
 B ( 2 1) ,  9

 2
 B ( 2 1) ,  9

 3
 B ( 2 1) ,

 9 1
 B ( N F D 1 1) ,  9 2

 B ( N F D 1 1) ,  9 3
 B ( N F D 1 1)  and  9  3

 B ( N F D 1 2) .  The eight additional equations are
 obtained by discretizing the eight displacement boundary conditions (60) .  This yields a
 system of 3 N F D  1  11 homogeneous linear algebraic equations for the discretized
 buckling displacements  9  i

 B ( J ) ,  which we write symbolically as

 B V  5  0 ,  (63)

 where  B  is the (3 N F D  1  11)  3  (3 N F D  1  11) buckling matrix and  V  stands for the vector
 of the buckling displacements .  The coef ficients of the buckling matrix  B  depend on the
 wavenumber  N  of the buckling mode and on the pre – buckling displacements  9  i

 A ( J )
 which are functions of the parameters  q ,p entry  and  » U .  The buckling equations have a
 non-trivial solution if the determinant of the buckling matrix vanishes ,  i . e .

 det  B  5  0 .  (64)

 This is a condition for the parameter combinations ( N ,  q ,  p entry ,  » U ) for which the
 axisymmetric deformation of the tube becomes unstable .

 4 . 3 .  T RACING OF THE  C RITICAL  P ARAMETER  C OMBINATIONS

 To compute the critical parameter combinations in the form  q crit ( N ,  p entry ,  » U ) we use a
 secant Newton method based on the method proposed in Press  et al .  (1992) :
 (i)  choose  N ,p entry  and  » U  ;
 (ii)  start with an initial guess  q 0  for  q c r i t ;

 (iii)  compute the value of the corresponding buckling determinant ,
 d 0  5  det  B ( q 0  ,  p entry ,  » U ) ;
 (iv)  set  q 1  5  1 ? 05 q 0  and compute the value of the corresponding buckling determinant ,
 d 1  5  det  B ( q 1  ,  p entry ,  » U ) ;
 (v)  extrapolate

 q 2  5  q 0  2
 q 1  2  q 0

 d 1  2  d 0
 d 0 ;

 (vi)  compute the value of the buckling determinant at the new value ,
 d 2  5  det  B ( q 2  ,  p entry ,  » U ) ;
 (vii)  choose the new  q 0  and  q 1  from the old  q 0  ,q 1  and  q 2  ,  such that either

 (a)  the root remains bracketed between the new  q 0  and  q 1  or
 (b)  the new  q 0  and  q 1  are the values closest to the root ;

 (viii)  go to (v) until convergence .
 The determinant of the buckling matrix  B  can easily be determined by computing its
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 LU-decomposition and by multiplying the diagonals of the upper triangular factor .  It
 should be noted that the absolute value of the determinant is irrelevant since it can
 easily be scaled by multiplying the matrix by an arbitrary factor (which does not make
 the matrix ‘‘more singular’’) .  Therefore ,  the determinants were scaled with the value of
 the first  d 0  computed during the above iteration (scaling of the determinant is also
 necessary to avoid overflow during the multiplication of the diagonal elements) .  The
 convergence criterion for the iteration was based on the change of subsequent values of
 q c r i t .  The iteration was stopped when

 U q 2  2  q a

 q a
 U  #  »  d e t  for  a  5  0 , 1 ,  (65)

 where  » d e t  5  10 2 5  proved to be a good choice .  For this value ,  the above scheme
 typically reduced the determinant of the buckling matrix by a factor of 10 2 1 0  in 10 to 15
 iterations .

 This procedure was embedded in an outer loop which increased  p entry  and thereby
 traced the entire path of critical parameters for a fixed geometry .

 Having established the critical parameter combination and computed the approxim-
 ately singular buckling matrix ,  the buckling modes were determined from (63) by
 Gauss-Jordan elimination with pivoting (Lowe 1994) .  For an exactly singular matrix
 this procedure transforms the original buckling matrix  B  into an upper triangular
 matrix ,  the last row of which contains only zero entries .  The magnitude of the largest
 nonzero entry in the last row of the transformed matrix can be used as an indicator of
 ‘‘how singular’’ the buckling matrix is .  In the computations ,  it was typically of the order
 of the machine precision .  After assigning an arbitrary value to the last component of
 the buckling vector  V  and discarding the last equation ,  the remaining 3 N F D  1  10
 equations were solved for the remaining buckling displacements by backsubstitution .

 4 . 4 .  C ODE  V ALIDATION AND  P ERFORMANCE

 The code was validated by performing a number of tests .  Firstly ,  the FD-solution of the
 pre-buckling equations was compared to the numerical solution obtained from the
 FEM program ,  described in Heil & Pedley (1995a) .  The two independent numerical
 codes were in perfect agreement .

 Then the code was used to predict the buckling loads of cylindrical shells of various
 geometries under constant external pressure ,   q  5  0 .  Table 1 compares the predictions
 for the buckling loads for tubes under constant internal pressure ,  obtained with the FD

 T ABLE  1
 Comparison of the predictions for the critical buckling pressures for zero volume
 flux .  For all cases  …  5  0 ? 3 was used .   p  Yamaki

 crit   is the buckling pressure obtained from
 diagram 2 ? 12 in Yamaki (1984)

 L / R 0  h  / R 0  N buckl  p  FD
 crit  p  Yamaki

 crit

 Dif ference
 (%)

 10
 30
 50
 10
 30
 50

 1 / 50
 1 / 50
 1 / 50

 1 / 100
 1 / 100
 1 / 100

 3
 2
 2
 3
 2
 2

 2 7 ? 38  3  10 2 6

 2 2 ? 49  3  10 2 6

 2 2 ? 25  3  10 2 6

 2 1 ? 43  3  10 2 6

 2 4 ? 04  3  10 2 7

 2 2 ? 93  3  10 2 7

 2 7 ? 40  3  10 2 6

 2 2 ? 44  3  10 2 6

 2 2 ? 22  3  10 2 6

 2 1 ? 42  3  10 2 6

 2 4 ? 16  3  10 2 7

 2 2 ? 92  3  10 2 7

 0 ? 3
 2 ? 0
 1 ? 3
 0 ? 7
 2 ? 8
 0 ? 3
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 code to the predictions based on a Galerkin solution of Flu ̈  gge’s equations [taken from
 diagram 2 . 12 in Yamaki (1984)] .

 Finally ,  the critical parameter combinations ,  predicted by this code ,  were compared
 to the values obtained from the large displacement FEM code which was developed to
 examine the postbuckling behaviour (Heil & Pedley 1995b) .  For a given value of the
 upstream pressure the predictions for the critical volume flux dif fered by less than 3% .

 The computations presented in the next sections were carried out with 150 equally
 spaced FD-nodes .  To check for mesh convergence ,  some of the computations were
 repeated using 300 nodes .  The critical parameter combinations obtained with the two
 dif ferent discretizations dif fered by less than 0 ? 05% .

 The computations were carried out on a Silicon Graphics Challenge / XL computer
 with R4400 processors .  A typical iteration to determine the critical value of the volume
 flux required about 450  s of CPU time for each combination of  N ,p entry  and  » U   when
 using a discretization with 150 FD-nodes .

 5 .  RESULTS AND DISCUSSION

 The computations presented here were carried out with  L / R 0  5  10 and  L / R 0  5  20 ,
 respectively ,   h  / R 0  5  1 / 20 and  …  5  0 ? 49 .  This corresponds to a nondimensional bending
 stif fness of

 K  5
 1

 12(1  2  …  2 )
 S  h

 R 0
 D 3

 5  1 ? 37  3  10 2 5 .  (66)

 Poisson’s ratio and relative wall thickness were chosen to be in the range of parameters
 in the experiments of Elad  et al .  (1992) ,  where (by the standards of shell theory)
 relatively thick-walled rubber tubes had been used .

 We investigate the buckling mechanism corresponding to the following experimental
 procedure :  we keep the external pressure ,   p e x t  5  0 ,  and the fluid pressure at the
 upstream end of the collapsible segment ,   p entry ,  at a constant value while we increase
 the volume flux ,   q ,  slowly until buckling occurs .  This procedure could be realised
 experimentally by connecting the upstream end of the tube to a large reservoir and by
 controlling the volume flux with a volumetric pump ,  connected to the downstream end
 of the collapsible segment .

 For zero volume flux ,  the entire tube is subject to a constant transmural pressure
 p entry .  The tube buckles if  p entry  falls below a critical negative value  p entry(crit) .  For the
 geometries considered here ,  the most unstable buckling mode has  N  5  2 waves in the
 circumferential direction .  The axisymmetric pre-buckling deformation and the most
 unstable buckling mode are symmetric in the axial direction .

 If we set the upstream pressure to a value greater than  p entry(crit) ,  then the tube
 deformation for zero volume flux is axisymmetric .  A nonzero volume flux creates a
 viscous pressure drop in the fluid and thereby increases the compressive load on the
 tube wall in the direction of the flow .  The corresponding axisymmetric deformation
 reduces the tube cross-sectional area which increases the pressure drop even further .
 For a certain volume flux  q crit ,  the compressive load reaches a critical value for which
 the axisymmetric deformation of the tube becomes unstable .  The buckling is initiated
 at the downstream end ,  where the compressive load has its largest value .

 If we increase the upstream pressure  p entry ,  then the tube can sustain a higher viscous
 pressure drop until the downstream end is under suf ficiently strong compression to
 initiate the buckling .  Therefore ,  an increase in the upstream pressure leads to an
 increase in the critical volume flux  q c r i t .  This ef fect is enhanced by the fact that a
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 Figure 5 .  The axisymmetric pre-buckling deformation at the onset of buckling and ,  superimposed ,  the
 corresponding buckling mode for  N  5  2 .  Note the dif ferent scales in the radial direction .   L / R 0  5  10 ,  » U  5  0 .
 Upper figure :   p entry  5  2 ? 0  3  10 2 6  and  q c r i t  5  1 ? 49  3  10 2 4 .  Lower figure :   p entry  5  2 ? 45  3  10 2 3  and  q c r i t  5  3 ? 46  3

 10 2 3 .

 higher upstream pressure reduces the tube’s compressive deformation and thereby
 reduces the tube resistance .

 Figure 5 shows the pre-buckling deformation ,   y  i
 A ,  (solid line) and ,  superimposed ,  the

 corresponding buckling deformation ,   y  i
 A  Ú  V  i

 B ,  (dotted lines) for two critical parameter
 combinations (  p entry ,  q crit ) and for  N  5  2 .  The amplitude of the buckling modes was
 scaled such that the maximum radial displacement of the buckling deformations  V  3

 B

 had the same value as the maximum radial pre-buckling displacement  y  3
 A .  In the upper

 figure the tube is subject to a small upstream pressure ,   p entry  5  2 ? 0  3  10 2 6 ,  the lower
 figure corresponds to a tube under a high upstream pressure ,   p entry  5  2 ? 45  3  10 2 3 .  The
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 Figure 6 .  The critical parameter combinations for a tube with  L / R 0  5  10 .  The thin broken lines represent
 the critical values for wavenumbers  N  5  2 ,  .  .  .  ,  5 .  The most unstable combination is indicated by the thick

 solid line .  The markers indicate the transition to a new most unstable wavenumber .

 plots show ,  that an increase in upstream pressure confines the buckling to the
 compressed part of the tube near the downstream end .

 This has an important implication :  since under these conditions only a fraction of the
 tube is involved in the buckling ,  the buckling process becomes increasingly similar to
 the buckling of a shorter tube .  The distended upstream part of the tube merely acts as
 a support for the downstream part which is under compression .  As is well known from
 the classical theory of the buckling of cylindrical shells [see e . g .  Yamaki (1984)] ,  the
 most unstable circumferential buckling wavenumber increases as the tube length is
 decreased .  The same ef fect can be seen in our problem .  Figure 6 shows a diagram of
 the critical parameter combinations for the  L / R 0  5  10 case for various values of the
 circumferential buckling wavenumber  N .  In the experimental set-up described above
 (increase the volume flux to the critical value while keeping the upstream pressure
 constant) ,  the most unstable curve is the leftmost one .  For small values of the upstream
 pressure ,  the most unstable buckling wavenumber is  N  5  2 .  For increasing upstream
 pressure (and increasing critical volume flux) the higher wavenumbers become unstable
 first .  The diagram shows that for the value of  p entry ,  corresponding to the tube shown in
 the lower part of Figure 5 ,  the most unstable wavenumber is in fact  N  5  4 .  The tube
 would already buckle at a value of  q c r i t  5  2 ? 98  3  10 2 3  with  N  5  4 waves in the
 circumferential direction .  Figure 7 shows the corresponding pre-buckling deformation
 and the buckling mode .  Due to the lower critical volume flux for the  N  5  4 case ,  the
 compressed fraction of the tube is smaller than for the  N  5  2 case and the buckling is
 confined to the last quarter of the tube length .

 Figure 8 shows the diagram of the critical parameter combinations for a longer tube
 with  L / R 0  5  20 .  It can be seen that the transition to the higher buckling wavenumbers
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 Figure 7 .  The pre-buckling deformation and buckling modes for a tube with  L / R 0  5  10 under high
 upstream pressure ,   p entry  5  2 ? 45  3  10 2 3 ;   q c r i t  5  2 ? 98  3  10 2 3 .  The high upstream pressure confines the buckling

 of the tube to the last quarter of its length .  The corresponding most unstable wavenumber is  N  5  4 .

Nondimensional volume flux

N
on

di
m

en
si

on
al

 u
ps

tr
ea

m
 p

re
ss

ur
e

0·002

0·001

0·000

0·0000 0·0005 0·0010 0·0015 0·0020 0·0025

2 3

N=2
N=3
N=4
N=5

 Figure 8 .  The critical parameter combinations for a tube with  L / R 0  5  20 .
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 is delayed to higher values of the upstream pressure .  Again ,  this is due to the fact that
 the transition between the most unstable buckling wavenumbers is related to the length
 of the compressed part of the tube .  An examination of the buckling modes shows that
 for both geometries the transition between  N  5  2 and  N  5  3 occurs when the length
 L buckl  of the collapsing part of the tube is about  L buckl  .  9 R 0  .  For the shorter tube only
 a small upstream pressure  p entry  is required to distend the first 10% of the tube length .
 For the longer tube ,  a significantly higher upstream pressure is required to keep more
 than 50% of the tube’s upstream length distended .

 In this context it should be noted that the volume flux parameter ,   q ,  is based on the
 nondimensional pressure drop through the undeformed tube and contains the ratio
 L / R 0  .  Therefore ,  the volume flux ,   V ~  ,  corresponding to identical values of  q  in Figures 6
 and 8 dif fers by a factor of two .  For a given upstream pressure ,  longer tubes buckle at a
 lower value of the dimensional volume flux ,   V ~  .

 Since veins and arteries in the human body are under pre-tension [they contract by
 up to 40% when they are cut ;  see Bergel (1972)] ,  experiments have been carried out
 with axially pre-stretched tubes .  The ef fects of axial pre-stretch can be examined with
 our model by prescribing nonzero axial displacements of the tube at the upstream and
 downstream ends .

 As discussed in Heil & Pedley (1995a) ,  the axial pre-stretch has two opposing ef fects .
 The increased axial tension makes the tube stif fer .  However ,  the axial pre-stretch also
 reduces the tube’s cross-sectional area due to the Poisson ef fect (the rubber tubes used
 in the experiments are nearly incompressible) .  The reduced cross-sectional area
 increases the tube resistance and thereby increases the compressive load on the tube
 wall .

 These two ef fects lead to an interesting change in the stability of the tubes as the
 upstream pressure is increased .  The lines in Figure 9 show the critical parameter
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 most unstable combinations are shown and the transition between the most unstable wavenumbers is
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 combination for a tube with  L / R 0  5  10 ,  subject to dif ferent values of the axial
 pre-stretch .  For vanishing volume flux ,  the axial pre-stretch is clearly stabilizing and the
 curves for the pre-stretched tubes lie below the one for the unstretched tube .

 For moderately large upstream pressure ,  the unstretched tube buckles at a lower
 value of the volume flux than the pre-stretched tubes .  However ,  as the upstream
 pressure increases ,  the pre-stretched tubes become more unstable in the sense that ,  in
 the experiment described above ,  they buckle at a lower value of the volume flux than
 the unstretched tube—the pre-stretch seems to destabilize the system .

 This apparent contradiction can be resolved by an examination of the axisymmetric
 pre-buckling deformation and the corresponding pressure distribution at the onset of
 buckling .  This shows that ,  at the onset of buckling ,  the pre-stretched tube is ,  in fact ,
 under a higher compressive load than the corresponding unstretched tube at the same
 value of the upstream pressure .  Therefore ,  from a purely solid mechanics point of view ,
 a pre-stretched tube is indeed ‘‘more stable’’ than an unstretched one ,  as one would
 expect .

 However ,  for a given value of the upstream pressure ,  the resistance of a
 pre-stretched tube is higher than that of an unstretched tube since its cross-sectional
 area is reduced by Poisson’s ef fect .  For suf ficiently high values of the volume flux ,  the
 destabilization due to the increase in the compressive load on the tube wall is stronger
 than the stabilization due to the axial pre-stretch .

 Figure 9 also shows that the axial pre-stretch moves the transition to higher buckling
 wavenumbers to lower values of the upstream pressure .

 Finally ,  we note that the iteration procedure described in Section 4 . 3 occasionally
 converged to a buckling mode with a higher number of axial waves ,  like the one shown
 in Figure 10 .  Obviously ,  the numerical procedure does not allow us to prescribe the
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 number of axial waves in the buckling modes (as one could in a Galerkin method based
 on a Fourier expansion of the buckling modes in the axial direction) .  However ,  these
 instabilities were located in the unstable region and the buckling modes with one axial
 wave appear to be the most unstable ones .  In fact ,  the buckling modes with higher axial
 wavenumbers were only obtained from iterations in which the initial guess for the
 volume flux ,   q 0  ,  had been chosen too high .

 For all cases presented in this study ,  the tube-wall slope at the onset of buckling was
 small enough to justify the use of lubrication theory for small Reynolds numbers
 (typically tan  a  m a x  5  2 (10 2 2 ) at either the upstream or the downstream end for the
 most strongly collapsed tubes) .  Even for the strongly deformed tube shown in Figure
 10 ,  the maximum wall slope is only tan  a  m a x  5  0 ? 27 .  The maximum strains in the axial
 and circumferential direction were approximately 5% ;  therefore the linear constitutive
 equations can be expected to provide an adequate description of the tube’s stress-strain
 relationship .

 6 .  CONCLUSIONS

 We have investigated the linear stability of cylindrical shells conveying a viscous flow
 using geometrically nonlinear shell theory and lubrication theory .  The buckling
 mechanism has been examined for an experimental procedure in which the upstream
 pressure is held at a constant value while the volume flux is increased until buckling
 occurs .  It has been shown how variations of the upstream pressure ,  the tube geometry
 and the axial pre-stretch af fect the tube stability and its buckling deformation .

 The results presented have been shown to be consistent with the small strain
 assumption used in the constitutive equations and with the small wall-slope assumption
 used in the simplification of the fluid equations .  Hence ,  we expect them to be accurate
 for small Reynolds numbers .

 The results of the parameter studies (critical combination of upstream pressure and
 volume flux and the wavenumber of the most unstable buckling mode) define the
 starting points for the examination of the large displacement postbuckling behaviour
 presented in Heil & Pedley (1995b) .
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 APPENDIX :  WARPING OF THE CROSS-SECTION IS A SECOND-ORDER
 EFFECT

 In this appendix we shall show that the warping of the cross-sections due to the axial component
 of the buckling displacements can be neglected in the transformation between Eulerian and
 Lagrangian coordinates .  For simplicity we neglect the ef fect of the wall thickness in the following
 analysis .  We denote the order of magnitude of the buckling displacements by  »  Ô  1 .

 Let us examine the deformation of the tube in two steps .  During the axisymmetric
 pre-buckling deformation ,  material points which were in a plane  z  5  x  1  in the undeformed
 configuration (thin lines in the left half of Figure 11) are displaced to a new position
 z axisym ( x 1 )  5  x  1  1  y  1

 A ( x 1 )   and they remain in one plane (thick lines in the left half of Figure 11) .  In
 Section 2 . 2 we used this transformation to establish a mapping between the axial Eulerian and
 Lagrangian coordinates before the buckling .  In the axisymmetric prebuckling configuration the
 Eulerian polar angle  w   and the radius  R  of a point in the cross-section  z axisym ( x 1 ) depend only on
 the circumferential Lagrangian coordinate  x  2 —in fact we have  w  5  x  2  and  R  5  const .

 Once the tube buckles ,  the axial component of the buckling displacement ,
 y  1

 B  5  V  1
 B ( x  1 )  cos( Nx  2 )  5  2 ( »  ) ,  moves material points ,  which were originally in one plane ,  to

 dif ferent axial coordinates .  A cross-section  z  5  z ̂    contains material points which were separated
 by a distance  d z  5  2 V  1

 B  5  2 ( »  ) in the pre-buckling configuration (see right half of Figure 11) .  Let
 us denote the dif ference in the axial Lagrangian coordinates of the points in the cross section
 z  5  z ̂    by  d x  1 .  For moderate axial strains we have  d x  1  .  d z  5  2 ( »  ) .

 The radial distance to a material point on the tube’s surface is  R  5  y  3
 A ( x 1 )  1

 V  3
 B ( x 1 )  cos( Nx 2 ) .  Therefore ,  the dif ference in the radial displacement due to the

 warping is

 d R  5 F Û y  3
 A

 Û x 1  1
 Û V  3

 B

 Û x 1  cos( Nx 2 ) G  d x  1 .  (67)
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 Figure 11 .  Sketch illustrating the warping of the cross-sections during buckling .  Due to the axial
 component of the buckling displacement ,  a cross-section  z  5  z ̂    in the buckled configuration contains material
 points which were separated by a distance  d x 1  in the undeformed configuration .  In (a) :  thin lines are for the
 undeformed wall ,  thick lines for axisymmetric deformation .  In (b) :  thin lines are for axisymmetric

 deformation ,  while thick lines are for the buckled wall .

 Since  Û V  3
 B / Û x 3  5  2 ( »  ) ,  the change in the tube’s radius is a second order ef fect provided

 Û y  3
 A

 Û x 1  5  2 ( »  ) ,  (68)

 which is consistent with the small slope assumption used in the simplification of the
 fluid equations .


