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Large axisymmetric deformations of collapsible tubes conveying a viscous flow are
examined. Geometrically nonlinear Lagrangian shell theory is used to describe the
deformation of the tube. The fluid flow is modelled using lubrication theory. The coupled
fluid-solid problem is solved numerically using an FEM technique. In order to explain the
mechanisms involved in the tube deformation, the effects of bending stiffness, wall shear
stress and axial pre-stretch are examined in detail. The dependence of the tube resistance
on the volume flux is investigated for two different experimental set-ups {constant pressure
at either upstream or downstream end of the collapsible tube). Finally, the exact nonlinear
shell theory used in this paper is compared to Sanders’ moderate rotation theory and an
improvement to his theory is suggested.

1. INTRODUCTION

THE PROBLEM OF FLOW THROUGH COLLAPSIBLE TUBES has been studied both theoretically
and experimentally by many authors [for a recent review see Kamm & Pedley (1989)}.
The main motivation for this work comes from the investigation of certain biological
flows, such as blood flow in veins and arteries or air flow in the bronchial airways
during forced expiration. The tubes collapse when the transmural pressure difference
(internal minus external pressure) falls below a critical ievel. Following the collapse,
self-excited oscillations can be observed for a wide range of parameters. So far, most
theoretical models of the complex interaction between fluid and solid mechanics have
used relatively simple ‘tube laws’ to describe the elastic behaviour of the tube wail,
These tube laws relate the cross-sectional area of the tnbe to the local transmural
pressure difference. The fluid flow was either modelled one-dimensionally or ad hoc
assumptions about the shape of the deformed cross-sectional area had to be made
(Wild er gl 1977). Membrane theory has been used to model axisymmetric deforma-
tions of the tube [e.g. Hart & Shi (1992) who modelled the axisymmetric deformation
of semi-infinite tubes composed of sections of different materials], but these models
cannot be used to investigate the postbuckling behaviour of the collapsed tube,

A typical experimental set-up is shown in Figure 1. Inside a pressure chamber, a
finite-length collapsible tube is mounted on two rigid tubes and viscous fluid is pumped
through. Various combinations of parameters can be varied in the experiments (e.g.,
external pressure and volume flux or external pressure and upstream pressure, etc.).
For sufficiently large external pressure and/or volume flux, the tube collapses at the
downstream end, i.e. it buckies nonaxisymmetrically [see, e.g., Elad er al. (1992))]. Since
the collapsed region is very close to the mounting, end effects can be expected to play
an important role but they cannot be captured by the tube laws mentioned above.

In this paper we use Lagrangian nonlinear shell theory to develop an improved
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Figure 1. Sketch of the model problem.

model of the elastic behaviour of the tube wall. In the first section the shell theory used
is summarized briefly, but in the form needed to describe peneral nonaxisymmetric
deformations. The fluid flow is modelled using lubrication theory. In this paper we
examine the pre-buckling deformation, i.e. the case of steady flow and axisymmetric
deformations. The influence of bending stiffness, which has not been taken into account
in previous models, is examined. Also investigated are the effects of wall shear stress
and axial pre-stretch of the tube, Diagrams of the pressure drop as a function of the
volume flux under various conditions are presented. Finally, the exact nonlinear shell
theory used in this paper is compared to Sanders’ (1963) moderate rotation theory and
an improvement o his theory is suggested.

2. THE MODEL

We model the tube of length, L, undeformed radius, R, and wall thickness, ki, as a
cylindrical sheil and describe its deformation using a geometricaily nonlinear
Kirchhoff/Love type shell theory [e.g., Wempner (1973)}. Using the usual assumptions
(thickness of the shell is constant, normals to the undeformed midplane remain
fliormal}, the deformation of the shell can be expressed in terms of the midplane
displacement, v. We use Lagrangian coordinates, x®, (Greek and Latin indices have
values 1, 2 and 1, 2, 3, respectively, and the summation convention is used) to
parametrize the shell’s midplane. Let r°(x®) be the vector to a material point on the
midplane before deformation. We choose cylindrical coordinates as the Lagrangian
coordinates (x' and x* are the arc-lengths in the axial and circumferential direction,
respectively). Lower case leiters refer to the undeformed reference staie and the
superscript ‘0” indicates the vector to the midplane:

' = (x', Rpsin(x’/Ry), Rocos(x*/Rp))", x'e[0, L], x%ef0,2nRy]. (1)

The position of an arbitrary point in the shell at a distance x* from the midplane can be
written as (see Figure 2):

r=r’+x’n, x*e([-h/2, A2 (2)

n =a; is the unit vector normal to the two midplane base vectors a, =r",, where the
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Deformed tube

Centreline of tube

Figure 2. Transformation between Lagrangian coordinates used for the description of the tube wall and
Eulerian fluid coordinates: the material point P on the inner surface of the undeformed tube wall is moved
to P’

comma denotes partial differentiation with respect to x* Let a,,=4a,-a; be the
covariant metric tensor, ¢ its determinant and b,z =n - a, 4z the curvature tensor of the
undeformed midplane. After deformation, the material point on the midplane with the
Lagrangian coordinates x® has been displaced to a new position R%(x®)=1%(x")+
v(x®). We decompose the displacement vector, v, into the undeformed basis, v = vfaj.
We use capital letters for the quantities associated with the deformed tube: base
vectors, A, =R, unit normal, N, metric tensor, A.z=A, A, curvature fensor,
B.s=N-A,; and vector to a point in the deformed shell, R = R’ + x’N. Then, the
deformation is described by the strain tensor, y,z = 1/2{A.z —a.g), and the bending
tensor x,5 = —(B,z — b,g). In spite of the large deformations, the strain of the shell is
still relatively small (Elad et al. (1992) report about 2-3% maximum extension in their
experiments); therefore, we use Hooke’s law (linear constitutive equations) and Love’s
first approximation to express the strain energy function, ¢ (strain energy per unit area
of the undeformed midplane of the shell} in terms of the strain and bending tensors:

¢ = %hEaﬁys(YaB‘yfyﬁ + f%hzknﬁk'y&)) (3)

with the plane stress stiffness tensor

Fobyd ____.E_____ (auyass + gt Pr &

v 5
21+ ) a*a ) @

where E is Young’s modulus, v is Poisson’s ratio and a®# is the contravariant metric
tensor of the undeformed midplane, a®Pa,., = 8%
We use the principle of virtual displacements

2aRy L .
[ 8 -6 oRYoo Vo e’ a2 =0, )
[1} V]

where f is the load per unit area of the undeformed midplane acting on the shell
surface.
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We nondimensionalize the coordinates x', the displacements v and the bending
tensor, K., with the undeformed radius, x' = x*Ry, v=v*R,, k., = x¥s/R, and the
stiffness tensor and the loads with Young’s modulus, E*5*® = E**8¥F and f= P*E. The
strain tensor, ¥,g, is already dimensionless. Then we obtain the following variational
equation for the equilibrium of the tube wall

28 cLIRy s 1 h 2 RO
f f [E*a'gy ('Ya;aa'}‘ys += ("‘) K:BSK;ﬁ) - ("'"') (f* - 6R*)]x*’=ih.’(2Ro)]
0 0 12 R() h

X Vade* dx*?=0, (6)

where the variations of strain and bending tensor have to be taken with respect to the
displacements, v*', and their derivatives. The tube is clamped at both ends. Therefore,
at x'=0 and x'=L the displacements have to be prescribed (which allows the
possibility of pre-stretch) and we have dv®/dx'=0. This formulation is valid for
arbitrary deformations, as long as the strains are small enough to justify the use of
Hooke’s law. This small strain assumption implies that the large deformation of the
tube correspond to large rigid body rotations. Therefore, we used the exact, fully
nonlinear expressions for the strain and bending tensors and did not introduce any
further simplifications in the strain-displacement relations. Sanders (1963) developed a
shell theory for small strains and moderately large rotations which has been widely
used for similar problems. In Section 4.4 we shall show that Sanders's strain-
displacement relations have to be slightly modified to obtain accurate results in the
large displacement regime. In this paper we restrict ourseives to axisymmetric
deformations (v =0, 8/3x* = 0).

The eiastic and fluid problem are coupled through wall position and through the
traction exerted by the fluid on the tube wall. Assuming that the product of wall slope
{(a, say) and Reynolds number of the flow is small everywhere, Re a «< 1, we can use
lubrication theory to model the flow. We use Eulerian cylindrical coordinates
(r*Ry, 2*Ry, 9) for the fluid flow. In this coordinate system the position of the tube
wall is given as R.(2) = R¥,.(z*)Ry. This can be translated into the Lagrangian
description of the tube wail needed above by following the path of particles on the
inner tube wall during deformation (Figure 2), so that

h
o= (R-2As) o, @

h
Rupelz) = \[RO - 5 A;

This transformation is valid for arbitrary deformations but for nonaxisymmetric
deformations the vectors in Figure 2 do not necessarily lie in the same plane. For long
thin tubes with L > h we can neglect the effect of the rotation of the normal in this
transformation and use

z=x'+v' and R,,.=R,-hi2+v’ (9)

This introduces an error of order O(h/L) which is O(h/R) smaller than the error
already introduced by using lubrication theory.

Lubrication theory for circular tubes with slowly varying cross-sectional area predicts
a parabolic velocity profile

2y = =2 [1—( r )2] (10)

?TREM,,(Z) Rmbe(z)

2

-z {8
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where V is the volume flux through the tube. In order to find the traction exerted by
the fluid on the wall we first have to determine the stress vector of the fluid at the wall.
Then, it has to be decomposed into components normal and parallel to the deformed
wall. Within the accuracy of lubrication theory, the stress component normal to the
tube wall is equal to the fluid pressure, and the tangential component is equal to the
wall shear stress, 7,, = 7,,, due ta the parabolic velocity profile.

The local pressure gradient is that of an infinitely long tube of the same cross-
sectional area. If we nondimensionalize the pressure with Young’s modulus, p =p*E,
we obtain

ap* (Ro) q
=-(2) —1— 11
az* L7 [Ripe(z®)]* @b
where the parameter
8uVL
O 12
17 IRIE 2

represents the nondimensional pressure drop through the undeformed tube. It
increases linearly with the volume flux.

The nondimensional wall shear stress, 7} = 7.,/ E, due to the parabolic flow profile is:

1Rg q
o= 13
2= 3L IRen T (13)

3. NUMERICAL IMPLEMENTATION AND VALIDATION

Since a variational equation exists for the elastic part of the problem, a displacement-
based finite element technique was chosen to discretize the equations. Carrying out the
variations in (6) is a straightforward process but involves some lengthy algebra. We
used the symbolic algebra manipulator REDUCE to express (6) in terms of the
displacements and their derivatives. Equation (6) can thereby be written as

2n LIRp )
[T etvt + bt + oupdrisgVader ax =0 (14
o <0

The ¢ terms contain up to second derivatives of the displacements; therefore we need
shape functions with continuous first derivatives across the element boundaries. We
used isoparametric Hermite elements with nodal displacements and slopes as indepen-
dent degrees of freedom (Bogner et al. 1967). For the one-dimensional axisymmetric
case the displacement field within element E (with local coordinate s € [0, 1]) depends
only on x*' and is interpolated as

2
v¥(s)= 2 VIORR(G), (1s)
k=1
with shape functions ;=252 =352 +1, P =5"—257+5, ¥ =—(2*~3sY) and
Y2 =5 —5% J(j, E) is the global node number corresponding to the local node
number j (f =1, 2) in element number E. To generate isoparametric elements we used
the same shape functions to map the local coordinate, s, to the global coordinate, x*!,

x*(s)= i XIUER Y (5). (16)

k=1
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This mapping has to interpolate the x*-coordinates of the nodal points J, x}',
therefore we have X”' =x}'. The Jacobian of the mapping, dx*!/ds, can have any
positive value, but it has to be continuous across element boundaries. This was
achieved by choosing X**=h,,,,, where h,,;, is the size of the smaller of the two
elements sharing node J.

We insert (15) into (14) and make use of the axisymmetry. The remaining integration
over x*! has to be split up into integrations over the local coordinate s and a
summation over the N elements, i.e.

%1

N 2 1 dx -
> 2 “; (@it + Pndhpa + ‘Pillek,ll)‘\/g df}c?V”(f’E)k =0 (17)
E=1 jk=1

1 ds
The variations of those V¥ which are not determined by boundary conditions are
arbitrary. This leads to the following set of nonlinear algebraic equations, f;, for the

unknown V#:

N 1 dx*l
fn= 21 5 {(‘ﬁ'f’m T @ty T @O0 '}’lk,n)l}u,E):j_'E'\/E} ds=0. (18)
E= .

We solved this set of equations with a Newton-Raphson technique, using the
displacement variables, V%, as the independent variables. The fluid flow was
incorporated in the following way: at every stage of the iteration the current values of
the V% determine the shape of the tube wall. We specify the volume flux and the
pressure of the fluid as it enters {or leaves) the collapsible segment, plo—o= Penyy (0T
Plyi=L = Pexs). Then we use (11) to determine the pressure distribution in Lagrangian
coordinates [by using (9) we see that d/dz = 1/(1+ v},) d/dx"; use of (7) makes the
Jacobian of this transformation more complicated but the effect on the result is
negligible]. Equation (13) gives the tangential load on the tube wall. The load terms in
(6) can therefore be determined and the residuals of the functions f;; can be evaluated.
Then this information is used to update the values of the unknowns using the
Newton—Raphson technique. The Jacobian matrix

ik
J ELRLLKY T PYVZS (19)

was determined using finite differencing. A finite difference step of AV¥ =107* was
found to be optimal. The integrations in (18) were carried out numerically with three
Gauss points per element. Hence, the integrand of (18) only needs to be evaluated at
the Gauss points within each element (squares in Figure 3). We used a numerical
three-point Gauss-Radau integration [see, e.g., Kopal (1955)] to integrate the pressure
gradient from cne FEM Gauss point to the next one. The integration points for the
numerical integration of the pressure gradient are marked with solid black circles in
Figure 3. The results were not changed by an increase in the number of integration
points in either of these numerical integrations.

The code was developed on a Silicon Graphics 4D/480 computer with four
processors and it was specifically designed for parallel processing. The most important
feature of the implementation is the determination of the elements of the Jacobian
matrix in parallel mode (CPU time reduced to about 35% of that of the serial version
when running on four processors).

It should be noted that the fluid—solid interaction leads to a nonsymmetric and dense
Jacobian matrix. This can easily be seen from the following argument: instead of using
the variational principle (14), the system of equations (18} could have been derived by
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Figure 3. Integration scheme for coupled fluid-solid solver. The integrand in {18) needs to be evaluated at
the three FEM Gauss points within each element. The fluid pressure is determined by imtegrating (11)
numerically using a three point Gauss—Radau rule.

an examination of the local balance of internal and external forces. In this sense, the
functions fj; are a measure of the imbalance between the generalized internal and
external forces associated with the generalized displacements, V% Therefore, the
coefficient J; 1)1.7.x) TEpPresents the change in the force imbalance, f, due to a small
change in the generalized displacement, V¥X.

Without fluid flow, the change in one of the discrete generalized displacements, V¥,
only affects the balance of forces in the two adjacent elements. This is due to the
particular choice of shape functions in the FE method. Their finite support leads 1o a
sparse band structure of the Jacobian matrix. In this case the Jacobian matrix is also
symmetric and positive definite, as can be deduced from the conservation of energy
(the elastic system alone is conservative).

To examine the case with through flow let us assume that the pressure at the
upstream end of the tube is prescribed. Then the pressure distribution is obtained by
integrating the pressure gradient (11) in the downstream direction. This implies that
changes in the discrete displacements at one point affect the pressure distribution (and
therefore the local balance of forces} everywhere downstream of this point, whereas
the pressure upsiream of this point remains unaffected. This mechanism couples
upstream and downstream degrees of freedom and leads to an asymmetric and rather
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dense Jacobian matrix. Physically, the asymmetry corresponds to the fact that the
elastic system can now gain energy from the fiuid flow.

The asymmetry of the Jacobian matrix increases the computational cost con-
siderably. Firstly, a substantially larger number of entries in the Jacobian matrix has to
be computed. Secondly, the linear system to be solved during the Newton~Raphson
iteration has to be solved using LU decomposition. This is much slower than the
banded Cholesky solver which can be used for the symmetric positive definite matrix of
the no-flow case.

For a typical FEM discretization of 50 elements, the CPU time required to compute
a converged solution increases from about 17s for the no-flow case to about 120 for
the case with through flow.

To validate the resuits of the numerical computations, we carried out a number of
tests. Firstly, we checked that for small displacements the FEM code yields the same
results as the analytical solution of the linearized equations [see, e.g., Schnell &
Eschepauer (1984)]. Secondly, we compared our exact (within the framework of the
Kirchhoff~Love assumption and the linear constitutive equations) equations to
Sanders’ moderate rotation theory {Sanders 1963). As will be shown in Section 4.4,
Sanders’ equations have to be modified slightly to yield accurate resuits for the large
displacement regime. Replacing the exact expressions for strain and bending tensor and
their variations in our code by the modified Sanders expressions, as derived below, had
very little effect on the results. The modified Sanders’ equations are much simpler than
the exact ones. For the no-flow case we could transform them into a system of six
first-order ODEs which we solved using the finite difference solver DO2GAF from the
NAG library. The results were in perfect agreement with those obtained using our
FEM code. We also compared our results for this load case with the results obtained
using the commercial FEM package ABAQUS. We found good agreement with our
results.

Finally, we tested the numerical integration of the pressure gradient by prescribing a
wall shape for which (11) could be integrated analytically and compared the results of
the numerical and analytical integration. The integration scheme described above was
found to be sufficiently accurate. Different numbers of elements were used to check for
convergence.

4. RESULTS AND DISCUSSION

The different mechanisms involved in the interaction between fluid and solid mechanics
are examined in three steps. First, to illustrate the general deformation characteristics
of the tube we investigate the deformation of the tube without any through flow. The
effects of the pressure distribution due to the viscous flow can then be explained easily,
and in the last step we include the effect of the wall shear stress. Then, the effect of
axial pre-stretch is examined and plots of the tube resistance as a function of the
volume flux are presented. Finally, possible simplifications of the shell equations are
discussed.

The computations presented here were carried out with L{ Ry =10, Af/Ry=1/20 and
v = 0-49. This corresponds 1o a nondimensional bending stiffness of

K= 1 (—h—)3 =1-37x 1073 (20)
12(1 — v)* \R, ‘

Poisson’s ratio and relative wall thickness were chosen to be in the range of
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Figure 4. Deformation of the tube without through flow p%, = 0, constant fluid pressure, p* = —2-0x 1072
to ~5-0X 1072 in equal steps.

parameters in the experiments of Elad er al 1992, where (by the standards of shell
theory) relatively thick-walled rubber tubes had been used. We used a smaller L/R,
ratio to enhance the interesting effects. The effect of a change of tube geometry is
discussed in the last section.

4.1. DEFORMATION OF aN UNSTRETCHED TURE

In the absence of fluid flow, a stepwise increase in external pressure gives rise to the
deformation shown in Figure 4. For small external pressures the deformation is that
predicted by linear shell theory [see, e.g., Schnell & Eschenauer (1984)]: a very rapidly
damped wave-like deformation pattern of the form v** ~ exp[+(1 % {)px*'] with

p=Y31—-+) \/3;2 > 1 (21)

gives rise to a sharp bending boundary layer near the mounting (the horizontal slope at
the mounting can hardly be resolved in the plots). Away from the mounting, the radius
is nearly constant and equal to the value predicted by membrane theory. As the load
increases, the wave-like pattern grows both in amplitude and axial extension as the
geometrical nonlinearities play an increasingly important role (see the Appendix for a
discussion of this peculiar wavy deformation pattemn).

Figure 5 shows the effect of an increase in the volume flux when oaly the traction
normal to the tube wall is taken into account. The external pressure and the upstream
PIESSUTIE, P, are set 10 a constant value while the volume flux is increased in equal
steps.

The viscous pressure drop increases with the volume flux—see equation (11);
therefore, the compressive load and the deformation increase in the downstream
direction. Since the reduced cross-sectional area increases the pressure drop even
further, see (11), the collapse at the downstream end is accelerated. As the
deformation of the tube grows at the downstream end, the wave-like pattern discussed
above begins to develop and grows in the upstream direction. This pattern also
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Figure 5. Deformation with through flow, only traction normal to tube wall 1aken ino account, pt, =0,
Plury= —2:0X 1073, dimensionless volume flux, g =6-0% 10™* to 30-0 X 107 in equal steps.

dominates the pressure gradient since dp/dz ~ R4, As the pressure distribution itself
is obtained by an integration, it is much smoother and the wavy pattern is nearly
averaged out.

The dominating displacement of the tube is radially inwards {markers identify the
position of material points of the tube wall).

When the wall shear stress is taken into account, the deformation pattern changes
significantly, as shown in Figure 6. The general effect of the wall shear stress is to move
the wall downstream. Since no displacements are possibie at the downstream end, the
tube starts to ‘fold up’ and increases the ampiitude of the wave-like pattern which is
induced by the essentially unchanged pressure distribution.

As can be seen in (13) we have 7, ~ R.3.. therefore 1, is significantly higher in the
narrower cross-sections of the tube. As a result of this, material points (again indicated

11
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Figure 6. Deformation with through flow, wall shear stress included. pk. =0, pk,,,=-20X 1073,
dimensionless volume flux, g = 6:0 X 107% to 30-0x 107 in equal steps.
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Figure 7. Deformation with 5% axial pre-stretch, pt, =0, pf,,, = -2:.0% 1072, dimensionless volume fux,
g =60 x107* to 30-0 X 10~* in equal steps.

by markers) are displaced in the downstream direction while the wave pattern itself
remains nearly stationary.

4.2. EFFECT OF AXIAL PRE-STRETCH

Since veins and arteries in the human body are under pre-tension [they contract by up
to 40% when they are cut; see Bergel (1972)], experiments have been carried out with
axially pre-stretched tubes. The effects of axial pre-stretch can be examined with this
model by prescribing nonzero axial displacements of the tube at the upstream and
downstream ends. In this case, two effects compete with each other. Firstly, the
pre-tension tends to make the tube stiffer. However, the axial pre-siretch in
combination with the cylindrical geometry of the tube also increases the radial
contraction of the tube due to the Poisson effect. Therefore, for a given external
pressure, the cross-sectional area of a pre-stretched tube is smaller than that of an
unsiretched 1ube. This results in an increased pressure drop in the fluid which increases
the compressive load on the tube. The combination of these two effects can be seen in
Figure 7. The radial deformation of a pre-stretched tube is greater than that of an
unstretched one but the increased axial tension suppresses the oscillations of the tube
near the downstream end.

To explain the latter effect, let us examine small deformations superimposed on a
pre-stretched tube whose length has been changed from L to L + U. To simplify the
analysis we assume that a uniform pressure,

*_‘_(i) Vfu(fu‘l'z)
P07 \Ro/ 20~ AL - (2RI + €0’
acts on the inside of the tube. The relative pre-stretch is denoted by e, = U/L. If the

external pressure is zero, p§ suppresses the contraction due to the Poisson effect and
the pre-stretched displacement field is

(22)

u
y* =yl = (x*’ —-———) 7 and v¥*=v$3=0. (23)
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The governing differential equations for the displacements are the Euler-Lagrange
equations of the variational equation (6). Inserting the displacements v*' = v§' + u and
v** = y¥®+ w and linearizing with respect to u, w » 1 we obtain two coupled linear
ODEs which govern the small deformations superimposed on the pre-stretched state. If
no tangential load acts on the tube, we can eliminate u from the equation for w and
obtain the following ODE for the nondimensional radial displacement, w:

pt +
[1 = (h/2R))(1 + &)
pT is the small pressure superimposed on the constant initial pressure, pg, and Cis a

constant of integration, to be determined by the boundary conditions for u. Primes
denote differentiation with respect 1o x*!. The coefficients are:

kwm'f + mlwﬂ + ’nzw =

C 24

1 %
i ) ®
. 3ei, + 6ey + v(R{R,)Y h
™= 6(1— v?) (RB)’ 26)
~ (h/Ry) NN
2T 1=V (3E, + bep + 2) {"Ei’(%eff T 2AL-Y Y (Ro)

+ ey[eu(3 +§ (R%)z + (7~ ZV)) + 6 +% (%)2 +v(2~ 4v)]}. 27

The homogeneous solution of (24) is of the form w ~ exp(Ax*') with four roots,
A==a xi8. For small pre-stretch, the influence of m; on the value of the roots is
negligible and we have a, 8 >0 which yields the strongly damped wave pattern shown
in Figure 4. As the pre-stretch increases, the imaginary part B--—and with it the
oscillatory component in the solution—decreases while the ratio m,/m, increases. If €
is greater than a certain value &,, we have m$ > 4m, which yields four real roots and
the ascillatory component vanishes (see Figure 8). Figure 9 shows the left end of a tube
subject to a small constant load, pf, for various values of the pre-stretch. As the
pre-stretch increases, the characteristic bomp at the end of the bending boundary layer
begins to disappear.

Analysing the physical origin of the coefficients in (24) allows the following

16 T i T I
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Figure 8. Real and imaginary part of the ropts A = o % i8. The imagipary part decreases with increasing
pre-stretch and vanishes for U/L > g, (£, =2-50% for the geometry used).
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Figure 9. Left end of the pre-strerched tube with U/L =0%,1%,..., 5% under p%,=0 and super-
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imposed internal pressure, p¥ = —1-0x 1074

interpretation of this change in the deformation characteristic: for small pre-stretch, the
tube deformation is governed by the interaction between bending moments and
circumferential membranes stresses [which give rise to the coefficients k& and m,,
respectively—see any derivation of the equations without pre-stretch based on the
balance of internal forces; e.g., Schnell & Eschenauer (1984)]. The axial pre-stretch
generates axial membrane forces which give rise to a w” term as in the equation of an
elastic string,

Therefore, the change in the deformation characteristic can be associated with the
ratio of axial and circumferential membrane forces. Numerical studies indicate that this
correlation holds, even in the finite displacement regime. In Figure 7 the finite
pre-stretch together with moderate compressive forces yields a smooth displacement
field due to the large axial membrane forces. As the volume flux increases, the radius at
the downstream end is reduced. The resulting increase in circumferential membrane
forces gives rise to the wavy deformation pattern which was initially suppressed by the
dominating axial membrane forces.

4.3. RESISTANCE OF THE CoOLLAPSIBLE TUBE

The pressure drop through the collapsible tube depends on varios parameters. Apart
from the geometrical parameters, #/R,, L/R, and the axial pre-stretch of the tube, it is
influenced by volume flux, transmural pressure difference at a fixed point and the
position of this point. We examine the tube resistance for prescribed transmural
pressure at either the upstream or the downstream end of the collapsible segment.
These cases correspond to two different experimental set-ups.

Prescribing the volume flux and the transmural pressure at the upstream end of the
collapsible segment could be realized experimentally by feeding the upstream end from
a reservoir while connecting the downstream end to a volumetric pump. The
relationship between pressure drop and volume flux for this case is shown in Figure 10.
For a rigid tube, an increase in volume flux resuits in a proportional increase in the
pressure drop. If the tube is flexible, the reduced downstream pressure increases its
deformation and the reduced cross-sectional area enhances the pressure drop even
further. In extreme cases, where the tube is allowed to buckle and collapse completely,
the process results, experimentally, in ‘flow limitation’, where the volume flux cannot
be increased above a maximum value. If the tube is pre-stretched, its cross-sectional
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Figure 10. Resistance p¥,, — pk, as a function of the nondimensional volume flux g for p¥,=0. The
upstream pressure, p¥,.,, is kept constant aiong the curves (p},,, = 0-0, —1-0X 107 and —2:0 X 1073).

area is smaller than that of an unstretched tube under the same external pressure, and
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the pressure drop is correspondingly greater.

If the pressure at the downstream end were to be prescribed in the experiments, this
end could be connected to a short rigid tube from which the fluid leaves under
atmospheric pressure. Again, the volume flux could be prescribed by a volumetric
pump, now at the upstream end of the collapsible segment. Figure 11 shows the
deformation of the tube under these conditions. An increase in volume flux now
increases the upstream pressure and the tube begins to bulge outwards (after
overcoming the external pressure). This increase in cross-sectional arca reduces the
pressure drop and, if a sufficient length of the tube is bulged outwards, the resistance

Figore 11, Deformation for prescribed pressure at downstream end. p2, =0, pk,=-20x1073
dimensionless volume flux, ¢ =1-0% 1072 to 6-0 X 107 in equal steps.
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Figure 12. Resistance, p¥,,, ~ p2,, as a function of the nondimensional volume flux, ¢ for pX,=0. The
downstream pressure, p,, 1s kept constant along the curves (pZ,, = 0-0, ~2-0x 107 and —-4-0x 107,

becomes less than that of a rigid tube (Figure 12). Again, axial pre-stretch of the tube
increases the pressure drop due to the reduced cross-sectional area. The predicted
trend is also seen experimentally (Kamm & Pedley 1989).

Changing the geometry of the tube affects the deformation in the following way:
reducing the relative thickness of the tube, #/R,, reduces not only its stiffness but also
the wavelength of the wave pattern according to (21). The absolute size of the bending
boundary iayer {or, equivalently, the wavelength of the wave pattern) is not affected by
changes in L/R,. However, for a given volume flux the pressure drop increases with L
and the deformation is correspondingly greater.

4.4. COMPARISON WITH SANDERS' MoDERATE RoratioN THEORY

As mentioned above, the small strain assumption implies that large deformations
correspond to large rigid body rotations. This led us to use the exact expressions for the
strain and bending tensor which leads to very complicated equations. The complexity
of these equations is not too problematic for the numerical solution with the FEM
code. Various simplifications of the exact equations have been derived by a number of
authors and we shall now examine the validity of one particularly popular simpiified
theory.

Sanders (1963) derived a set of first-order nonlinear shell equations, based on the
assumption of small strains and moderately large rotations. His equations are widely
used for the stability analysis of shells and they have been used as the theoretical basis
for shell elements in a number of commercial FEM packages. Sanders’ equations are
valid under the assumption that the midplane strains, y,g, are 0(e?) and the rotations
are O(e) where e ««1. Applying these equations to the axisymmetric deformation of
cylindrical shells gives the following approximations for the determinant of the
midplane metric tensor:

A=ag+0E)=1+0(, (28)
for the strain (ensor y,g = via + O(&%), with

Yii=w' +3w'),  vh=vh=0  vh=w, (29)
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and for the bending tensor, k.5 = %5 + 0(e), with
K =-—w" K=k =kp=0 (30)

The exact expressions are

A= +wl[(1+u P+ (W), (31)
yu=u + 3@’ ) + 3wy, Yi2= Y0 =0, yn=w+iw’, (32abc)
and
ki = {— (e’ +w" —u"w'}w + 1D}/ VA, (33)
Kz =Ky =0,  Kkp=(u +1w+1VA~1 (34)

The most important feature of Sanders’ approximation is the linearization of the
components of the bending tensor, which simplifies the equations considerably. In fact,
in this approximation only the axial strain component, y;,, is nonlinear in the
displacements. Furthermore, equation (28) allows us to caiculate the equivalent
external forces (projected onto the midplane of the deformed shell) under the
assumption that the area elements of the deformed and the undeformed tube are equal,

VA dr! de’~ Vg dx' dx? = dr! di”. (33)

To examine the validity of these approximations, we compared the results obtained
using Sanders’ expressions (dash-dot line in Figure 13) to the ones obtained using the
exact ones (solid line in Figure 13). In Sanders’ solution the wavy deformation pattern
is less pronounced and the displacements are slightly smaller.

A careful analysis of the individual terms in Sanders’ approximation shows that this
discrepancy is caused by the following two effects: firstly, for a compressive deforma-
tion, Sanders’ linearization of the circumferential strain component overestimates 7y,
slightly. This makes the central section of the tube (whose deformation is governed by
membrane stresses) slightly stiffer. We explained in the last section how the interaction
of circumferential membrane stresses with the axial bending moments produces the

10
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092 1 { ! |
0 1 2 3 4 5

Nondimensional axial coordinate

Figure 13. Comparison of Sanders’ first order nonlinear theory with various corrections and exact theory
for constant external pressure {p* = —3-0X 107%). Only the left half of the tube is shown. Solid line: exact
theory; dash-dotted line: Sanders’ theory; dotied line: modified Sanders theory with nonlinear v, and
constant area assumption; dashed line: modified Sanders theory with nonlinear y,, and exact change in area.
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wavy deformation pattern. Therefore, it should not be surprising that the wave pattern
is also slightly changed by an error in .

Secondly, in Sanders’ approximation the equivalent external forces, calculated under
the assumption of an unchanged determinant of the midplane metric tensor, are
overcstimated (the area on which the external pressure acts is reduced by a
compressive deformation). In the large deformation regime investigated here, this
effect cannot be neglected.

These two points suggest the following slight modifications to Sanders’ theory: we
retain the nonlinear expression (32c) for the circumferential strain component and
calculate the equivalent external forces acting on the midplane of the deformed shell
with the deformed metric tensor. This modification conserves the most essential feature
of Sanders’ theory (linear bending tensor) while it improves the accuracy of the
solution remarkably. In Figure 13 the dashed line shows the solution calculated with
the modified Sanders theory. It differs only very slightly from the solution obtained
using the exact expressions. The dotted line is the deformation obtained by using the
nonlinear expression for -vy,; while neglecting changes in the tube area: the correct
membrane stiffness and the overestimated compressive load lead to a larger
deformation.

5. CONCLUSIONS

The axisyminetric deformation of a finite length collapsible tube has been modelled
using geometrically nonlinear shell theory and lubrication theory. The mechanisms
giving rise to the pre-buckling deformations in two different experimental set-ups with
and without axial pre-stretch have been analysed and the dependence of the tube
resistance on various parameters has been examined. The exact nonlinear shell theory
has been compared to Sanders’ moderate rotation theory. We have suggested two
slight meodifications to Sanders’ equations which improve the accuracy of his theory
significantly while they conserve its simplicity.

The inclusion of the tube bending stiffness allowed us to make accurate predictions
of the tube pre-buckling deformation near the mounting where the nonaxisymmetric
collapse begins in practise. On the basis of these results, a stability analysis to derive
criteria for the beginning of this collapse is currently under way. Furthermore, the
FEM code is being extended to two dimensions to examine the postbuckling
deformations.

The following points should be noted regarding the assumptions made in the model:
the Reynolds number does not explicitly enter our model since we nondimensionalized
all pressures with Young’s modulus, E. The fluid and wall properties only appear as the
ratio of Young’s modulus, E, and the typical fluid shear stress, wV/(zR3). To check the
condition Re ¢ «<1 we have to specify the tube material. The wall slope can be of
considerable magnitude in the bending boundary layer which makes the use of
lubrication theory questionable in these regions. To aliow for arbitrary wall slopes and
realistic Reynolds numbers, a solution of the Navier-Stokes equations should be used
at some later stage to improve the mode! in this respect. In this context, it is interesting
to note that Lowe & Pedley (1995) investigated the flow through a two-dimensional
channel with a collapsible wall segment (modelied as an elastic membrane). They
found surprisingly good agreement between lubrication theory and Stokes flow, even
for strongly collapsed channels.

We have carried out calculations up to a range in which the real tube would buckle
nonaxisymmetrically. This collapse would increase the pressure drop drastically.
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Therefore, the values for the resistance shown in Figures 10 and 12 are lower than
those measured in actual experiments [see, e.g., Bonis & Ribreau (1978)]. The tube
shown in figure 8 in Elad er al. (1984), for geometrical parameters #/R,=0-06;
L/Ry =35 shows strong nonaxisymmetric collapse under a dimensionless transmural
pressure difference of p%, = —6:56 X 107° and a dimensionless volume flux, g = 8:05 X
1077
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APPENDIX: THE MECHANISM FOR THE WAVY DEFORMATION

In this appendix we will illustrate the mechanism which gives rise to the wavy deformation of the
cylindrical shell near the supports. As mentioned in the foregoing, the wavy deformation pattern
is already present in the small displacement solution although its amplitude decays rapidly with
increasing distance from the support. If the shell were not supported, then its deformation under
uniform pressure would be homogeneous and equal to the value predicted by membrane theory.
For small deformations, the presence of the supports is only felt in the narrow bending boundary
layer near the ends of the shell. The most surprising feature of this bending boundary layer is
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Figure 14. Sketch showing the first four derivatives of an assumed deformation in the bending boundary
layer.
the appearance of the little bump in which the deformation is larger than in the central part of
the shell, whereas, intuitively, one would expect a deformation similar to that shown in Figure
14,
As shown in Section 4.2, the small deformation of a cylindrical shell under constant external
pressure is governed by an equation of the form

few™ + m]w" 4+ naw =p = Const., (Al}

where the w" term does not play an important role as long as the pre-stretch is smail.

Figure 14 shows a sketch of the first four derivatives of the assumed radia! displacement w. Far
away from the support, the displacement approaches a constant value and all derivatives vanish.
Without the bump, the displacement, w, has a point of inflection (marked by the leftmost dashed
line) before w begins to approach the value prescribed by the membrane forces. This point of
inflection generates an extremum in the first derivative w', which leads to a point of inflection in
w' further away from the support. This process repeats itself with evey new differentiation, and
extremum and point of inflection move further and further into the shell. Now the governing
ODE, equation (Al), requires that the sum of first, second and fourth derivatives be equal to a
constant. From the sketch it is clear that the bump in the fourth derivative can only be balanced
by a corresponding small bump in the displacement w itself.

Now the argument can be repeated and applied to the zone to the right of the bump in w: the
zone between the bump and the region far away from the support contains a point of inflection,
However, all slopes and curvatures in this region have signs opposite to the case illustrated in
Figure 14. Hence, the first bump has to be followed by a second one of smaller amplitude and
opposite orientation. Continuation of this process generates the wavy deformation pattern, as
found in numerical and analytical solution. For larger deformations the bending moments near
the support are much stronger and the zone in which bending effects can be felt extends further
into the shell.
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It should be noted that the w term corresponds to the shell circumferential membrane stresses
and that the w" term represents the axial bending moments. The interaction of these two
quantities is a characteristic feature of the cylindrical shell geometry. A flat plate deforms
smoothly near its clamped ends since (for small deformations) bending moments and midplane
stresses are uncoupled. In this context it should be noted that a cylindrical shell whose radius
tends to infinity does not approach the behaviour of a flat plate. The only important
dimensionless geometrical parameter governing the behaviour of the shell is the radius-to-
thickness ratio, Ro/h. Increasing the radius is therefore equivalent to reducing the shell thickness.
In the limit, Ry/h — o, the shell behaves like a membrane shell as the bending stiffness vanishes.



