Example: Flow past sphere
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Figure 2: Flow past a sphere. Far away from the sphere of radius a, the fluid has a

uniform velocity, u = Ue;.

e Scales:

length scale: a

velocity scale: U

time scale: Steady boundary conditions, so there’s no ex-
plicit time scale in the problem. Hence, we need to con-
struct a time scale from the available parameters. Choose:

T=a/U.

pressure scale: There’s no natural scale for the pressure.
We can construct two reference pressures from the physical

parameters.

— P = pU? which is a dynamic pressure. This is appro-
priate if we expect dynamic effects to be dominant, i.e.

for high velocity flows

or

— P = pU/a which is a viscous pressure scale. This is
appropriate if we expect viscous effects to be dominant,

i.e. for slow flows with large viscosity.
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o Use these scales to non-dimensionalise the physical quantities:

U; = Uﬁi

T; = aT;

t=—f
U

_ [ pU?p  for the dynamic pressure scale
p pU/a p  for the viscous pressure scale

e Inserting the scaled quantities into the Navier Stokes equations
turns the problem of the flow past a sphere into

Refp=—g+ Vi, frp=uUjap
=tV for p = pU”

together with the continuity equation
81%}; ~0,
633,'

and the boundary conditions

4; =0 for 7 =1 (no slip on the surface of the sphere)
and

i —e; asf — oo (uniform velocity far away from the sphere).

o In non-dimensional form, the problem depends only on one
dimensionless parameter, the Reynolds number

_paU aU

=T

which represents the ratio of inertial to viscous forces in the
How.
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e Hence, in non-dimensional terms, the solution will only depend
on one parameter, i.e.

i = (%, g, 2, t; Re).

e This implies that the non-dimensional velocity (the ratio of the
actual velocity to the velocity far away from the sphere) at a
fixed non-dimensional position (e.g. two diameters in front of
the sphere) will have the same value for all physical realisations
of the experiment provided the Reynolds number of the flows
is the same.

e This means that an experiment with a 1:100 scale model of a
jumbo jet will give the correct non-dimensional flow field, pro-
vided the velocity of the oncoming flow increased by a factor of
100 — and provided any physical effects which are not included
in the incompressible Navier Stokes equations are unimpor-
tant. [The latter point is important in aerodynamics where
compressibility often becomes an issue. Compressibility intro-
duces another non-dimensional parameter (the Mach number)
whose value also has to be conserved).
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Simplification of the scaled equations

o Writing the Navier Stokes equations in dimensionless form not
only reduces the number free parameters, it also shows the ap-
propriate limiting form of the equations if the Reynolds num-
ber approaches extreme values.

e For Re — 0 (slow viscous flow), the viscous pressure scaling

is appropriate. Performing the limit Re — 0 in
Dﬁz 3ﬁ =
Re = = — \Y% ’Lfi
Dt~ og " —

yields the Stokes equations: ﬂQ = S—K&
L F) )A

0%;

which ace linear since the non-linear inertial terms disappear.

0=

o For Re — oo (high speed flows), the inertial pressure scaling
is appropriate. Performing the limit Re — oo in

Di;, 8 1 -

DF = og R
shows that such flows are governed by the Fuler equations
D1; op
Dt~  og;

- @ Note that the order of the Euler equations is lower than that of
the.full Navier Stokes equations (first rather than second spa-
tial derivatives!). This means that not all boundary conditions
can be applied on the surface of solid bodies.

o Typically, the no-slip condition is discarded in favour of the no-
penetration condition (compare to inviscid flow theory which is
also governed by these equations — in fact, the Euler equations
can be derived by setting the viscosity to zero).
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o However, close to the surface of the body, the no-slip condi-
tion always becomes important since viscosity (no matter how
small) will always reduce the fluid velocity to zero as one ap-
proachss the surface of the solid body. This manifests itself
in the existence of a thin layer (a so-called boundary layer) in
which viscous effects are important and in which the velocity
varies rapidly to fulfill the no-slip condition.

o Mathematically, the limit Re — oo represents a singular limit
and the solution has to be found by matched asymptotic ex-
pansions.

e We will briefly look at boundary layers at the end of this course.

Further comments

e The choice of the ‘right’ scales often requires some physical in-
tuition. Especially when we use scaling arguments to simplify
the equations (by dropping small terms), we have to choose the
scales for the physical quantities such that the non-dimensional
quantities are all of comparable magnitude (‘of order one’).
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146 FLOW AROUND A CIRCULAR CYLINDER
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Figure 14.14 Drag curve for a cylinder. Data is from Delany and Sorenson (1953),
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Finn {1933). Roshko (196i), Tritton (1959), and Wieselsberger (1921).
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