MATH35001: EXAMPLE SHEET¹ II

- 1.) A 2D flow field is given by $u_1 = ax_2$ and $u_2 = ax_1$, where a > 0 is a constant.
 - a) Sketch the flow field (begin by considering the velocity vectors on the coordinate axes and on the main diagonals).
 - **b)** Determine the trajectories $x_i^p(t)$ of particles which are at position $x_i = X_i$ at time t = 0 by integrating the equations of motion $dx_i^p(t)/dt = u_i(x_i^p(t), t)$.
 - c) Determine the acceleration of material particles directly from their trajectories (i.e. by evaluating $a_i = d^2 x_i^p(t)/dt^2$).
 - d) Compare this to the result obtained by using the material derivative $a_i = Du_i/Dt$.
 - e) What is the divergence of the flow field?
- **2.)** A 2D flow field is given by $u_1 = Ux_2$ and $u_2 = 0$, where U > 0 is a known constant.
 - a) Sketch the flow field in the region $x_2 \in [0, 1]$.
 - b) Determine the rate of strain and the rate of rotation tensors ϵ_{ij} and ω_{ij} .
 - c) Sketch the deformation of a small rectangular fluid element whose edges of lengths δx_1 and δx_2 are parallel to the x_1 and x_2 axes, respectively. [Hint: Sketch the corners of the fluid element at time t and at time $t + \delta t$.]

Relate this to the interpretation of the rate of strain and rate of rotation tensors. [**Hint**: To interpret the entries in the rate of rotation tensor, consider the average of the rate at which the lines that were initially parallel to the x_1 and x_2 axes rotate about the x_3 -axis.]

Coursework

Please exchange your solution to question 2 with your "marking buddy" and assess each other's work, using the master solution made available on the course webpage (probably in week 3).

¹Any feedback to: *M.Heil@maths.manchester.ac.uk*