MT35001: SOLUTION FOR EXAMPLE SHEET¹ I

- 1.) Which one of these equations in index notation are valid? Remember the summation convention!
 - **a)** $c = a_i b_i$ (OK, this is the dot product $c = \mathbf{a} \cdot \mathbf{b}$)
 - **b**) $c = a_{ij}b_i$ (Wrong, the free index *j* doesn't appear on LHS)
 - c) $c_i = a_{ij}b_i$ (Wrong, the indices on LHS and RHS don't match)
 - d) $c_i = a_{ij}b_j$ (OK, this is the matrix vector product with the matrix $\underline{\mathbf{a}}$: $\mathbf{c} = \underline{\mathbf{a}}\mathbf{b}$)
 - e) $c_i = a_{ji}b_j$ (OK, this is the matrix vector product with the transposed matrix $\underline{\mathbf{a}}$: $\mathbf{c} = \underline{\mathbf{a}}^T \mathbf{b}$)
 - **f)** $\sigma_{ij} = \alpha_{ij}T + E_{ijkl}e_{kl}$ (Correct meet your first 4th order tensor. By the way: this is the constitutive equation for a linearly elastic solid incl. temperature variations)
 - g) $\sigma_{ij} = \alpha_{kl}T_i + E_{ijkl}e_{ij}$ (Wrong, the indices of all terms are different)
 - **h**) $k_{ijkl} = a_i b_{kl} c_{njm} d_{mn} + e_{ik} e_{jn} f_{nl}$ (Messy, but correct)
- 2.) Using a comma to denote partial differentiation (e.g. $\partial u/\partial x_2 = u_{,2}$), transform the following expressions into index notation:
 - a) $\nabla u(x_1, x_2, x_3) \rightarrow u_{,i}$
 - b) $\underline{\mathbf{A}} = \nabla \mathbf{u}(x_1, x_2, x_3) \rightarrow a_{ij} = u_{i,j}$
 - c) $\nabla \cdot \mathbf{u}(x_1, x_2, x_3) = f(x_1, x_2, x_3) \rightarrow u_{i,i} = f$
 - **d)** $\nabla^2 u(x_1, x_2, x_3) = f(x_1, x_2, x_3) \rightarrow u_{,ii} = f$
 - e) $\nabla^2 \mathbf{u}(x_1, x_2, x_3) = \mathbf{f}(x_1, x_2, x_3) \to u_{i,jj} = f_i$
- **3.) a)** Show that $\frac{\partial x_i}{\partial x_j} = \delta_{ij}$: Cartesian coordinates are independent of each other, so $\frac{\partial x_i}{\partial x_i} = 1$ if i = j and 0 if $i \neq j$.
 - **b)** Show that $\delta_{ii} = 3$: Using the summation convention this expands as $\delta_{ii} = \delta_{11} + \delta_{22} + \delta_{33}$, which, given the properties of the Kronecker delta, is equal to three.
 - c) For arbitrary vectors u_i and v_i show that

$$S_{ij} = u_i v_j + u_j v_i$$

is symmetric (i.e. $S_{ij} = S_{ji}$) and that

$$T_{ij} = u_i v_j - u_j v_i$$

is antisymmetric (i.e. $T_{ij} = -T_{ji}$). Exchange the indices *i* and *j* and re-arrange the terms.

¹Any feedback to: *M.Heil@maths.manchester.ac.uk*