DIMENSIONAL ANALYSIS AND SCALING

Observation 1:

e Consider the flow past a sphere:

Figure 1: Flow past a sphere. Far away from the sphere of radius a, the fluid has a
uniform velocity, u = Ue,.

e To determine the velocity field we need to solve the Navier-
Stokes equations
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together with the continuity equation
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oz;

subject to the boundary conditions

Uy
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u; =0 for r = a (no slip on the surface of the sphere)
and

u— Ue,; asr — co (uniform velocity far away from the sphere).
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e The solution which we could obtain by solving the equations
analytically, numerically or even by carrying out experiments
(1) will have the form

u=u(z,y,zt;p,ua ),

i.e. the velocity field will depend on the spatial coordinates,
on time and on the four physical parameters appearing in the
problem.

e This implies that a change to any one of the physical param-
eters will (in general) change the entire flow field.

e This is not a problem if we can find an exact analytical solution
which explicitly shows the dependence of the solution on each
parameter.

e However, if we perform numerical computations (in which all
parameters have to be given fixed numerical values), then each
change of a physical quantity would require a completely new
computation.

e If we perform experiments, then a different experiment has
to be performed for each set of physical parameters (such as
doubling the size of the sphere, making the fluid more viscous,
etc.).

e Think of the implications for (e.g.) wind tunnel testing. If
the above was true, then to obtain the flow field past a newly
developed prototype car, you'd have to build the car in its full
size. This might not be a problem but what about testing
jumbo jets...?



Observation 2:

e When we solve the Navier Stokes equations (or any other equa-
tion of continuum mechanics), we tend to get results like

u = sin(r).

e Do we really?

e What about the dimensions of the above equation?

*

u =sin(r)
N
m/sec m
e How do you take the sin of ‘metres’?
e Actually, we tend to get results like
u/U = sin(r/a),
i.e. all quantities appear in dimensionless form.

e The fact that the equations of continuum mechanics are de-
rived from (dimensionally coherent!) physical statements im-
plies that we can always write our equations in dimensionless
form.



Non-dimensionalisation

e We obtain non-dimensional equations by non-dimensionalising
all quantities with characteristic scales which are in the prob-
lem. E.g.

u = U u
. i Ve . S . "-.v-‘ .
dimensional velocity velocity scale: non-dimensional velocity

velocity far from
the sphere

e Convention: Use a tilde to distinguish dimensional from non-
dimensional variables (where necessary).

e The non-dimensionalisation typically reduces the number of
free parameters in the problem and shows that ‘similar’ phys-
ical problems often have ‘similar’ solutions.

o A very useful side-effect of the non-dimensionalisation is that
the non-dimensionalised equations provide additional insight
into the relative size of the various terms in the equations
(provided the ‘scales’ were chosen appropriately).

e The identification of small terms in an equation often motivates
significant simplifications which can be obtained by neglecting
the small terms against bigger ones.
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Example: Flow past sphere
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Figure 2: Flow past a sphere. Far away from the sphere of radius a, the fluid has a
uniforin velocity, u = Ue,.

e Scales:

length scale: a
velocity scale: U
time scale: Steady boundary conditions, so there’s no ex-
plicit time scale in the problem. Hence, we need to con-
struct a time scale from the available parameters. Choose:
T=a/U.
pressure scale: There's no natural scale for the pressure.
We can construct two reference pressures from the physical
parameters.
— P = pU? which is a dynamic pressure. This is appro-
priate if we expect dynamic effects to be dominant, i.e.
for high velocity flows

or
— P = pU/a which is a viscous pressure scale. This is

appropriate if we expect viscous effects to be dominant,
i.e. for slow flows with large viscosity.
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e Use these scales to non-dimensionalise the physical quantities:

U; = Uﬁi

:le_arfl

t=2f
U

pU?p  for the dynamic pressure scale
pU/a p for the viscous pressure scale

e Inserting the scaled quantities into the Navier Stokes equations
turns the problem of the flow past a sphere into

R =~ + V2 for p = uU/fa p
Bt = =5+ RV for p = pU” §

together with the continuity equation
O _ o,
85&;
and the boundary conditions
u; =0 for ¥ =1 (no slip on the surface of the sphere)

and

i —e; asf? — oo (uniform velocity far away from the sphere).

e In non-dimensional form, the problem depends only on one
dimensionless parameter, the Reynolds number

_paU  aU

===

which represents the ratio of inertial to viscous forces in the
flow.

Re
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Hence, in non-dimensional terms, the solution will only depend
on one parameter, i.e.

u = u(z,9, 2, t, Re).

This implies that the non-dimensional velocity (the ratio of the
actual velocity to the velocity far away from the sphere) at a
fixed non-dimensional position (e.g. two diameters in front of
the sphere) will have the same value for all physical realisations
of the experiment provided the Reynolds number of the flows
is the same.

This means that an experiment with a 1:100 scale model of a
jumbo jet will give the correct non-dimensional flow field, pro-
vided the velocity of the oncoming flow increased by a factor of
100 - and provided any physical effects which are not included
in the incompressible Navier Stokes equations are unimpor-
tant. [The latter point is important in aerodynamics where
compressibility often becomes an issue. Compressibility intro-
duces another non-dimensional parameter (the Mach number)
whose value also has to be conserved].

Lo = S
ST
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14.6 FLOW AROUND A CIRCULAR CYLINDER

387 Do ke Q‘QW\
O N T ol K'rd)

lﬁ’. FESRETTY B ST
3

of 2K
. Colla pd)

onrtka the
100-; . +y -ty “Mwm% - gp ’e’
] B [ 0
{:‘f‘ : Crarve.
o -
| o i If-‘ ’e .
-1 T T T T T T T T T T T T T T T TI P T T T T TITTTTTTI H
10 10~ 10° 10! 107 107 10

10° 108 10’
Re= Vd/v

Figure 14.14 Drag curve for a cylinder, Dara is from Delany and Sarenson {1953),
Finn (1953). Roshko (1961). Tritton (1959), and Wiesclsberger (1921).
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