MATH35001: EXAMPLE SHEET ${ }^{1}$ II

1.) A 2D flow field is given by $u_{1}=a x_{2}$ and $u_{2}=a x_{1}$, where $a>0$ is a constant.
a) Sketch the flow field (begin by considering the velocity vectors on the coordinate axes and on the main diagonals).
b) Determine the trajectories $x_{i}^{p}(t)$ of particles which are at position $x_{i}=X_{i}$ at time $t=0$ by integrating the equations of motion $\partial x_{i}^{p}(t) / \partial t=u_{i}\left(x_{j}^{p}(t), t\right)$.
c) Determine the acceleration of material particles directly from their trajectories (i.e. by evaluating $a_{i}=\partial^{2} x_{i}^{p}(t) / \partial t^{2}$).
d) Compare this to the result obtained by using the material derivative $a_{i}=$ $D u_{i} / D t$.
e) What is the divergence of the flow field?
2.) A 2D flow field is given by $u_{1}=U x_{2}$ and $u_{2}=0$, where $U>0$ is a known constant.
a) Sketch the flow field in the region $x_{2} \in[0,1]$.
b) Determine the rate of strain and the rate of rotation tensors $\epsilon_{i j}$ and $\omega_{i j}$.
c) Sketch the deformation of a small rectangular fluid element whose edges of lengths δx_{1} and δx_{2} are parallel to the x_{1} and x_{2} axes, respectively. [Hint: Sketch the corners of the fluid element at time t and at time $t+\delta t$.] Relate this to the interpretation of the rate of strain and rate of rotation tensors. [Hint: To interpret the entries in the rate of rotation tensor, consider the average of the rate at which the lines that were initially parallel to the x_{1} and x_{2} axes rotate about the x_{3}-axis.]

Coursework

Please exchange your solution to question 2 with your "marking buddy" and assess each other's work, using the master solution made available on the course webpage (probably in week 3).

[^0]
[^0]: ${ }^{1}$ Any feedback to: M.Heil@maths.manchester.ac.uk

