MATH35001: EXAMPLE SHEET¹ VII

- 1.) Fig. 1 shows the (2D) free surface flow in an inclined channel (note the direction of gravity!) which contains a submerged cylinder of radius a. Far away from the cylinder the flow becomes uniform and has a parabolic velocity profile such that $\mathbf{u} = Uy(2H y)/H^2\mathbf{e}_x$ as $x \to \pm \infty$. The undisturbed free surface height above the channel bed (at y = 0) is H and the centre of the cylinder is located at x = 0 and y = b. Gravity acts vertically downwards and surface tension σ acts along the free surface. The air pressure above the fluid is zero.
 - (i) Formulate the problem in dimensional terms: Write down the governing equation and all boundary conditions.
 - (ii) Non-dimensionalise all quantities and derive the non-dimensional version of the problem. Thus show that the problem is governed by only six non-dimensional parameters, namely the Reynolds number $Re = Ua/\nu$, the Capillary number $Ca = U\mu/\sigma$, the Grasshoff number $Gr = \rho g a^2/(\mu U)$ and the geometrical parameters a/b and H/a and α (or equivalent combinations of those).

Figure 1: Free surface flow over a submerged cylinder.

- **2.)** Viscous fluid of kinematic viscosity ν occupies the region y > 0 and is at rest for t < 0. For t > 0 a uniform constant tangential shear stress τ_0 is exerted on the fluid in the x-direction on the plane y = 0.
 - (i) Assuming that the shear stress induces a parallel flow of the form $\mathbf{u} = u(y,t)\mathbf{e}_x$ state the governing equations and the boundary and initial conditions for this problem [Be careful about the sign in the tangential shear stress condition].
 - (ii) Use linearity and dimensional arguments (in that order) to show that a similarity solution of the form $u=(\tau_0/\rho)\sqrt{t/\nu}f(\eta)$ must exist. The similarity variable η has to be determined as part of the solution. Show that the transformation to the similarity variable reduces the governing PDE to the ODE

$$2f'' + \eta f' - f = 0,$$

- subject to the boundary conditions f'(0) = -1 and $f(\infty) = 0$. [Hint: The dimensions of the physical quantities are: $[\tau_0] = kg/(sec^2 m)$, $[\rho] = kg/m^3$, $[\nu] = m^2/sec$, $[\mu] = kg/(sec m)$, [y] = m, [t] = sec].
- (iii) [Not required for the coursework] A particular solution of the homogeneous ODE is given by $f_1(\eta) = \eta$. Use this to derive the second solution $f_2(\eta)$ and thus the general solution of the homogeneous ODE.
- (iv) [Not required for the coursework] Determine the two free constants from the boundary conditions.

Coursework

Please exchange your solution to question 2 (i)-(ii) with your "marking buddy" and assess each other's work, using the master solution made available on the course webpage (probably in week 10).

 $^{^1}$ Any feedback to: M.Heil@maths.man.ac.uk