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HIGH REYNOLDS NUMBER FLOWS

& BOUNDARY LAYERS

• Recall the derivation of the scaled Navier-Stokes equations (us-

ing an inertial pressure scale p = ρU2 p̃):

Dũi
Dt̃

= − ∂p̃

∂x̃i
+

1

Re
∇̃2ũi

• The Reynolds number

Re =
Ua

ν

of the flow was formed with

– the typical velocity scale for the flow U ,

– the typical length scale a over which the velocity undergoes

characteristic changes and

– the kinematic viscosity ν.

• Considering the limit Re → ∞ (which corresponds to high

speed flows over large length scales and small viscosity), shows

that, as a first approximation, such flows can be described by

the Euler equations

Dũi
Dt̃

= − ∂p̃

∂x̃i
,

which are the equations of inviscid fluid flow.

• Note that the order of the Euler equations is lower than that of

the full Navier Stokes equations (first rather than second spa-

tial derivatives!). This means that not all boundary conditions

can be applied on the surface of a solid body.

• Typically, the no-slip condition is discarded in favour of the

no-penetration condition (see inviscid flow theory).
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• However, close to the surface of the body, the no-slip condi-

tion always becomes important since viscosity (no matter how

small) will always reduce the fluid velocity to zero as one ap-

proaches the surface of the solid body. This manifests itself

in the existence of a thin layer (a so-called boundary layer) in

which viscous effects are important and in which the velocity

varies rapidly to fulfill the no-slip condition:

a
U

δ

u

u=0

|   | = O(U)

Detail of the flow near the sphere’s surface

Figure 1: Boundary layer: Over length scales comparable with the size of the sphere, a,
the flow behaves like an inviscid flow since Ua/ν ≫ 1 (see upper half of the sketch). Close
to the surface of the sphere, viscosity enforces the no-slip condition. This leads to rapid
variations of the velocity (whose size is still |u| = O(U)) over short distances δ ≪ a.
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Illustrative example for the occurrence of bound-

ary layers

• Mathematically, the limitRe→ ∞ represents a singular limit

and appropriate simplified solutions of the Navier-Stokes equa-

tions have to be found by matched asymptotic expansions:

• The inviscid solution which is valid at sufficiently large dis-

tances from the surface of the solid body represents the ‘outer

solution’ which has to be matched to an ‘inner solution’ which

represents the flow in the boundary layer.

• To illustrate the mathematical mechanism behind the forma-

tion of a boundary layer, consider the model equation:

ǫu′′ + u′ = 0, (1)

subject to a ‘no-slip’ condition on the ‘surface’,

u(0) = 0,

and the asymptotic approach to the ‘free stream’ velocity U

far away from the ‘surface’,

u→ U as x→ ∞.
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• Fig. 2 shows the exact solution

u(x) = U (1− exp(−x/ǫ))

for various values of the ‘small’ parameter ǫ.
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Figure 2: A model boundary layer for U = 1

• If we set ǫ = 0, in (1) we obtain a first order equation which

we can only subject to one boundary condition (e.g. u →
U as x→ ∞) and the solution is uǫ≡0(x) ≡ U .

• This is different from actually performing the limit ǫ→ 0: The

smaller ǫ, the better u(x) is approximated by uǫ≡0(x) = U .

However, for any finite ǫ (no matter how small), the solution

undergoes a rapid variation inside a narrow ‘boundary layer’

near x = 0 to also fulfill the second boundary condition u(0) =

0.
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The boundary layer equations

• We will now derive the equations which govern the flow in the

boundary layer.

• They will turn out to be simpler than the full Navier-Stokes

equations (that’s why they are useful!) but more complicated

than the Euler equations which describe the flow at a suffi-

ciently large distance from the surface.

• Remember that we are interested in the flow in a very thin

layer close to the surface of the solid body. Since the layer is

very thin, we can neglect the surface curvature (as a first ap-

proximation) and introduce a local cartesian coordinate system

whose x-axis is aligned with the surface.

• Boundary layer scales (for 2D steady flow):

x-scale: a

y-scale: δ ≪ a (but as yet unknown)

u-scale: U

v-scale: V (as yet unknown)

p-scale: P = ρU2 (the inertial pressure scale is appropriate).

• Note that in the main flow, we non-dimensionalised all lengths

by the global length scale a, whereas in the boundary layer, we

use different scales for the x and y-directions. To distinguish

the two sets of non-dimensional variables, we will use a hat to

identify variables which have been non-dimensionalised by the

boundary layer scales, e.g. y = δŷ = aỹ.
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• As in previous examples of scaling, we must ensure that the

terms in the continuity equation,

∂u

∂x
+
∂v

∂y
= 0,

are balanced. This provides the v-scale (as in lubrication the-

ory) as

V =




δ

a



 U ≪ U.

• With this scaling, the x-momentum equation becomes

ρU2

a



û
∂û

∂x̂
+ v̂

∂û

∂ŷ



 = −ρU
2

a

∂p̂

∂x̂
+
µU

δ2














δ

a





2 ∂2û

∂x̂2
︸ ︷︷ ︸

≪1

+
∂2û

∂ŷ2











.

• We neglect the first term in the scaled Laplace operator and

obtain

û
∂û

∂x̂
+ v̂

∂û

∂ŷ
= −∂p̂

∂x̂
+




µa

ρUδ2





︸ ︷︷ ︸

=O(1)

∂2û

∂ŷ2

• Now we use our knowledge about the balance of forces in the

boundary layer: The inertial forces (which dominate outside

the boundary layer) have to be balanced by viscous forces

(which reduce the velocity to zero on the surface). Hence

the viscous and inertial terms have to be of the same order

of magnitude. This can only be the case if the term in the

round brackets is of order O(1).
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• This provides a scale for the boundary layer thickness

δ =

√
√
√
√
√

aµ

ρU
=

√
√
√
√
√
νa2

Ua
=

a√
Re

,

and yields the scaled and simplified version of the x-momentum

equation

û
∂û

∂x̂
+ v̂

∂û

∂ŷ
= −∂p̂

∂x̂
+
∂2û

∂ŷ2
.

• Note that the boundary layer thickness decreases as δ ∼ Re−1/2

as Re→ ∞.

• The same scaling applied to the y-component of the momen-

tum equations shows that to leading order

∂p̂

∂ŷ
= 0,

which is again similar to lubrication theory.
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The boundary layer equations and the associated

boundary conditions

• To summarise, the flow in the boundary layer is governed by

û
∂û

∂x̂
+ v̂

∂û

∂ŷ
= −∂p̂

∂x̂
+
∂2û

∂ŷ2
,

∂p̂

∂ŷ
= 0,

and
∂û

∂x̂
+
∂v̂

∂ŷ
= 0.

• The boundary layer equations present a parabolic system of

PDEs (note that the highest derivative in the x-direction is of

first order).

• The boundary and initial conditions are derived by matching

the flow in the boundary layer to the inviscid Euler flow uE
‘outside’ the boundary layer.

• For the matching process, remember that the y-coordinate

in the Euler flow (y = aỹ) is scaled differently from the y-

coordinate in the boundary layer (y = δŷ).

• Since a ≫ δ, the matching (which must be performed at the

‘outer edge’ of the boundary layer) can be carried out at ŷ →
∞ and ỹ = 0, in the respective coordinates.

• The physical basis for this approximation is the assumption

that the presence of the very thin boundary layer does not

affect the outer inviscid flow. Similarly, since the changes in

the boundary layer take place over very short distances, we

see that on the length scale of the boundary layer, the velocity

distribution in the outer inviscid flow near the solid surface

appears to be constant (and is thus given by the value at ỹ =

0).
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• Hence, at the present level of approximation, the solution of

the boundary layer problem consists of two steps:

1. Solve the outer inviscid flow problem, subject to the no-

penetration condition to determine the inviscid Euler flow

field uE(x̃, ỹ). This flow field has a non-zero slip velocity

on the surface, i.e. uE(x̃, ỹ = 0) 6= 0.

2. Solve the corresponding boundary layer problem and match

the boundary layer velocity ‘far from the surface’ to the slip

velocity predicted by the inviscid flow.

• The boundary and initial conditions are:

– At the ‘upstream edge’ of the boundary layer, the velocity

distribution has to be prescribed (e.g. the undisturbed

inviscid velocity distribution at the leading edge of a flat

plate, as in Fig. 3)

– On the surface of the body, the boundary layer equations

allow us to fulfill the no-slip condition.

– ‘Far away’ from the surface of the solid body (i.e. as ŷ →
∞), the velocity distribution in the boundary layer has

to approach the inviscid Euler velocity distribution at the

surface of the body, i.e.

u(x, ŷ → ∞) = uE(x, ỹ = 0).

– The pressure is constant throughout the thickness of the

boundary layer and is therefore determined by the pressure

distribution in the inviscid Euler flow, i.e.

p(x, ŷ) = p(x) = pE(x, ỹ = 0).
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• Fig. 3 illustrates the required boundary and initial conditions

for the case of the flow past a thin plate which is aligned with

the direction of the flow.

u E
(x

=
0,

y)
u 

(x
=

0,
y)

 =
 

u u E(x,y        ) = (x,y=0)

u E = U ex

x
y

no slip & no penetration: u=0, v=0 at y=0

in
iti

al
 c

on
di

tio
n:

boundary condition: 

[n
o 

do
w

ns
tr

ea
m

 c
on

di
tio

n 
re

qu
ir

ed
]

(x,y=0)Epp(x,y) = p(x) =

Figure 3: Boundary and initial conditions for the boundary layer equations, illustrated
for the case of the flow past a thin flat plate, aligned with the uniform far-field flow,
uE = Uex. Note the different non-dimensional y-coordinates inside the boundary layer
and in the Euler region.
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Remarks:

• Note that the boundary layer equations are non-linear. Ana-

lytical solutions are only known for a few special cases and in

general numerical solution techniques have to be employed.

• The continuity equation and the transverse velocity v can be

eliminated by formulating the problem in terms of a stream-

function ψ(x, y).

• Throughout the derivation we have assumed that viscous ef-

fects remain confined to the boundary layer. This assumption

breaks down when the boundary layer separates from the sur-

face.

• Boundary layer separation occurs frequently in the flow past

blunt bodies (see, e.g., the recirculation area behind the sphere

in Fig. 1).

• In aircraft design, one tries to design the wing profile such

that the boundary layer remains attached to the wing in all

operating conditions. Therefore, boundary layer theory is an

extremely powerful tool in aerodynamics.


