MATH35001: EXAMPLE SHEET 1 III

- 1.) A 2D flow field is given by $u_1 = 1 + x_2^2 \cos x_1$ and $u_2 = 3 + Ax_2^3 \sin x_1$. For which value of the constant A is this flow field consistent with the assumption of incompressibility?
- **2.)** The observation of a 2D flow field shows that the velocities along the four edges of the unit square $(x_i \in [0,1])$ are given by

$$\mathbf{u} = (3 + x_2, 4) \text{ on } x_1 = 0,$$

$$\mathbf{u} = (3 + x_2 + x_2^3, 7 - \frac{1}{2}x_2^4) \text{ on } x_1 = 1,$$

$$\mathbf{u} = (3, 4 + 3x_1^2) \text{ on } x_2 = 0,$$

$$\mathbf{u} = (4 + x_1^2, 4 - \frac{1}{2}x_1 + 3x_1^2) \text{ on } x_2 = 1.$$

Is the fluid incompressible? (Think carefully about this!).

3.) Consider the infinitesimal tetrahedron used in the derivation of the stress tensor and show that

$$\mathbf{n}_i ds_i + \mathbf{n} ds = 0$$

where the \mathbf{n}_i are the outside unit normal vectors on the three faces on which $x_i = const.$, the ds_i are their areas, \mathbf{n} is the outside unit normal vector on the fourth (general) face and ds is its area. [Hint: Express the areas via cross products of the three vectors forming the tetrahedron's edges on the coordinate axes].

Coursework

Please exchange your solution to questions 1 and 2 with your "marking buddy" and assess each other's work, using the master solution made available on the course webpage (probably in week 4).

¹Any feedback to: M.Heil@maths.man.ac.uk