Chapter 5

Parallel Flows

5.1 The parallel flow equations

- The main difficulty in the solution of the Navier Stokes equations arises from their nonlinearity. There are, however, situations in which the nonlinear terms vanish identically.
- This happens (for instance) if the flow is unidirectional. If this is the case then we can choose our coordinate system such that the x-axis is aligned with the flow and the velocity field has the form $\mathbf{u}=u(x, y, z, t) \mathbf{e}_{x}$.
- Inserting this assumption into the Navier Stokes and continuity equation shows that this is only possible if

$$
\begin{equation*}
\mathbf{u}=u(y, z, t) \mathbf{e}_{x}, \tag{5.1}
\end{equation*}
$$

i.e. if the velocity is independent of the streamwise coordinate.

- The flow governed by the following three linear equations

$$
\begin{gather*}
\rho \frac{\partial u}{\partial t}=\rho F_{x}-\frac{\partial p}{\partial x}+\mu\left(\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right) \tag{5.2}\\
0=\rho F_{y}-\frac{\partial p}{\partial y} \tag{5.3}
\end{gather*}
$$

and

$$
\begin{equation*}
0=\rho F_{z}-\frac{\partial p}{\partial z} . \tag{5.4}
\end{equation*}
$$

5.2 The parallel flow equations without body force

- If the body force vanishes (i.e. $F_{x}=F_{y}=F_{z}=0$) it can be shown that $p=p(x, t)$ and the pressure gradient has to have the form

$$
\begin{equation*}
\nabla p=G \mathbf{e}_{x} \tag{5.5}
\end{equation*}
$$

where G is a constant. (If the pressure gradient has any other form, then no parallel flow is possible).

- In this case, the only non-trivial equation is the x-momentum equation which becomes

$$
\begin{equation*}
\rho \frac{\partial u}{\partial t}=-G+\mu\left(\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right) . \tag{5.6}
\end{equation*}
$$

