MT35001: SOLUTION FOR EXAMPLE SHEET ${ }^{1}$ I

1.) Which one of these equations in index notation are valid? Remember the summation convention!
a) $c=a_{i} b_{i}$ (OK, this is the dot product $c=\mathbf{a} \cdot \mathbf{b}$)
b) $c=a_{i j} b_{i}$ (Wrong, the free index j doesn't appear on LHS)
c) $c_{i}=a_{i j} b_{i}$ (Wrong, the indices on LHS and RHS don't match)
d) $c_{i}=a_{i j} b_{j}$ (OK , this is the matrix vector product with the matrix $\underline{\mathbf{a}}: \mathbf{c}=\underline{\mathbf{a}} \mathbf{b}$)
e) $c_{i}=a_{j i} b_{j}$ (OK, this is the matrix vector product with the transposed matrix $\underline{\mathbf{a}}$: $\mathbf{c}=\underline{\mathbf{a}}^{T} \mathbf{b}$)
f) $\sigma_{i j}=\alpha_{i j} T+E_{i j k l} e_{k l}$ (Correct - meet your first 4th order tensor. By the way: this is the constitutive equation for a linearly elastic solid incl. temperature variations)
g) $\sigma_{i j}=\alpha_{k l} T_{i}+E_{i j k l} e_{i j}$ (Wrong, the indices of all terms are different)
h) $k_{i j k l}=a_{i} b_{k l} c_{n j m} d_{m n}+e_{i k} e_{j n} f_{n l}$ (Messy, but correct)
2.) Using a comma to denote partial differentiation (e.g. $\partial u / \partial x_{2}=u_{, 2}$), transform the following expressions into index notation:
a) $\nabla u\left(x_{1}, x_{2}, x_{3}\right) \rightarrow u_{, i}$
b) $\underline{\mathbf{A}}=\nabla \mathbf{u}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow a_{i j}=u_{i, j}$
c) $\nabla \cdot \mathbf{u}\left(x_{1}, x_{2}, x_{3}\right)=f\left(x_{1}, x_{2}, x_{3}\right) \rightarrow u_{i, i}=f$
d) $\nabla^{2} u\left(x_{1}, x_{2}, x_{3}\right)=f\left(x_{1}, x_{2}, x_{3}\right) \rightarrow u_{, i i}=f$
e) $\nabla^{2} \mathbf{u}\left(x_{1}, x_{2}, x_{3}\right)=\mathbf{f}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow u_{i, j j}=f_{i}$

[^0]
[^0]: ${ }^{1}$ Any feedback to: M.Heil@maths.man.ac.uk

