MATH35001: EXAMPLE SHEET ${ }^{1}$ III

1.) A 2D flow field is given by $u_{1}=1+x_{2}^{2} \cos x_{1}$ and $u_{2}=3+A x_{2}^{3} \sin x_{1}$. For which value of the constant A is this flow field consistent with the assumption of incompressibility?
2.) The observation of a 2 D flow field shows that the velocities along the four edges of the unit square ($x_{i} \in[0,1]$) are given by

$$
\begin{aligned}
& \mathbf{u}=\left(3+x_{2}, 4\right) \quad \text { on } \quad x_{1}=0 \\
& \mathbf{u}=\left(3+x_{2}+x_{2}^{3}, 7-\frac{1}{2} x_{2}^{4}\right) \quad \text { on } x_{1}=1 \\
& \mathbf{u}=\left(3,4+3 x_{1}^{2}\right) \quad \text { on } x_{2}=0, \\
& \mathbf{u}=\left(4+x_{1}^{2}, 4-\frac{1}{2} x_{1}+3 x_{1}^{2}\right) \quad \text { on } \quad x_{2}=1 .
\end{aligned}
$$

Is the fluid incompressible? (Think carefully about this!).
3.) Consider the infinitesimal tetrahedron used in the derivation of the stress tensor and show that

$$
\mathbf{n}_{i} d s_{i}+\mathbf{n} d s=0
$$

where the \mathbf{n}_{i} are the outside unit normal vectors on the three faces on which $x_{i}=$ const., the $d s_{i}$ are their areas, \mathbf{n} is the outside unit normal vector on the fourth (general) face and $d s$ is its area. [Hint: Express the areas via cross products of the three vectors forming the tetrahedron's edges on the coordinate axes].

Coursework

Please hand in the solution to questions 1 and 2 by 12 noon on Thursday. Please place them into the envelope at the door of Prof. Heil's office (room 2.224 in the Alan Turing building).

[^0]
[^0]: ${ }^{1}$ Any feedback to: M.Heil@maths.man.ac.uk

