
Chapter 8

The Streamfunction and Vorticity

• For 2D incompressible flows, it is possible to recast the Navier-Stokes equations in an alternative
form in terms of the streamfunction and the vorticity.

• In many applications, the streamfunction-vorticity form of the Navier Stokes equations provides
better insight into the physical mechanisms driving the flow than the ‘primitive variable’ formulation
in terms of u, v and p.

• The streamfunction and vorticity formulation is also useful for numerical work since it avoids some
problems resulting from the discretisation of the continuity equation.

Unless specifically stated, all results in this chapter are restricted
to 2D incompressible flows.

8.1 The Streamfunction

• The streamfunction is defined as

ψA(P ) =

∫ P

A

u · n ds, (8.1)

where the integral has to be evaluated along a line from the arbitrary but fixed point A to point
P. n is the unit normal on the line from A to P. We regard ψA(P ) as a function of the location of
point P.
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Figure 8.1: Sketch illustrating the definition of the streamfunction.

• The sketch in Fig. 8.1 shows that u · n is equal to the component of the velocity u that crosses the
line AP. Therefore ψA(P ) represents the volume flux (per unit depth in the z-direction) through
the line between A and P.
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• Evaluating ψA(P ) along two different paths and invoking the integral form of the incompressibility
constraint shows that ψA(P ) is path-independent, i.e. its value only depends on the locations of
the points A and P.

• Changing the position of point A only changes ψA(P ) by a constant. It turns out that for all
applications such changes are irrelevant. It is therefore common to suppress the explicit reference
to A. Hence, we regard ψA(P ) as a function of the spatial coordinates only, i.e. ψA(P ) = ψ(P ) =
ψ(x, y).

• Streamlines are lines which are everywhere tangential to the velocity field, i.e. u · n = 0, where n

is the unit normal to the streamline. Hence the streamfunction ψ is constant along streamlines.

• Note that stationary impermeable boundaries are also characterised by u · n = 0, where n is the
unit normal on the boundary. Therefore, ψ is also constant along such boundaries.

• Invoking the integral incompressibility constraint for an infinitesimally small triangle shows that ψ
is related to the two cartesian velocity components u and v via

u =
∂ψ

∂y
and v = −

∂ψ

∂x
(8.2)

• Similarly, in plane cylindrical polars, the velocity components are given by

ur =
1

r

∂ψ

∂ϕ
and uϕ = −

∂ψ

∂r
. (8.3)

• Flows which are specified by a streamfunction automatically satisfy the continuity equation since

∂u

∂x
+
∂v

∂y
=

∂

∂x

(

∂ψ

∂y

)

+
∂

∂y

(

−
∂ψ

∂x

)

= 0. (8.4)

• For 2D flows, the vorticity vector ωωω = ∇×u only has one non-zero component (in the z-direction),
i.e. ωωω = ωez where

ω =
∂v

∂x
−
∂u

∂y
. (8.5)

Using the definition of the velocities in terms of the streamfunction shows that

ω =
∂

∂x

(

−
∂ψ

∂x

)

−
∂

∂x

(

∂ψ

∂x

)

(8.6)

and therefore
ω = −∇

2ψ, (8.7)

where ∇
2 = ∂2/∂x2 + ∂2/∂y2 is the 2D Laplace operator.

8.2 The Streamfunction-Vorticity form of the Navier-Stokes equa-

tions

• Straightforward algebraic manipulation of the 3D momentum equations transforms them into the
vorticity transport equation

Dωωω

Dt
= (ωωω · ∇)u + ν∇2ωωω (8.8)

(see the separate handout for the derivation; this equation is valid in 3D).

• This equation shows that the rate of change of the vorticity of material particles, Dωωω/Dt, is con-
trolled by ‘vortex stretching’ (described by (ωωω · ∇)u; this is a familiar result from inviscid fluid
mechanics) and by diffusion (described by ν∇2ωωω). The diffusion of vorticity only occurs in viscous
flows.
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• For 2D flows, vortex stretching is absent since u = u(x, y) ex + v(x, y) ey and ωωω = ω(x, y) ez and
therefore (ωωω · ∇)u = 0.

• For 2D flows, the scalar vorticity transport equation

Dω

Dt
= ν∇2ω (8.9)

together with the equation for the vorticity in terms of the streamfunction

ω = −∇
2ψ (8.10)

and
u = ∂ψ/∂y and v = −∂ψ/∂x (8.11)

provide the streamfunction-vorticity formulation of the Navier-Stokes equations. It consists of only
two PDEs for the scalars ω and ψ rather than the three PDEs for u, v and p in the ‘primitive
variable’ form.

• In the limit of zero Reynolds number, only one fourth-order PDE for the streamfunction ψ needs
to be solved, namely the biharmonic equation

∇
4ψ = 0, (8.12)

where

∇
4 =

∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
. (8.13)

This can be shown by, e.g., taking the curl of the Stokes equations.


