Chapter 3

Stress, Cauchy’s equation and the
Navier-Stokes equations

3.1 The concept of traction/stress

e Consider the volume of fluid shown in the left half of Fig. 3.1. The volume of fluid is subjected to
distributed external forces (e.g. shear stresses, pressures etc.). Let AF be the resultant force acting
on a small surface element AS with outer unit normal n, then the traction vector t is defined as:

(3.1)

t = lim

AS—0 A—S

Figure 3.1: Sketch illustrating traction and stress.

e The right half of Fig. 3.1 illustrates the concept of an (internal) stress t which represents the
traction exerted by one half of the fluid volume onto the other half across a ficticious cut (along a
plane with outer unit normal n) through the volume.

3.2 The stress tensor

e The stress vector t depends on the spatial position in the body and on the orientation of the plane
(characterised by its outer unit normal n) along which the volume of fluid is cut:

ti = TijNj, (32)
where 7;; = 7; is the symmetric stress tensor.

e On an infinitesimal block of fluid whose faces are parallel to the axes, the component 7;; of the
stress tensor represents the traction component in the positive i-direction on the face x; = const.
whose outer normal points in the positive j-direction (see Fig. 3.2).
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Figure 3.2: Sketch illustrating the components of the stress tensor.

3.3 Examples for simple stress states

e Hydrostatic pressure: 7;; = —Fy d;;; note that ¢; = 7;;n; = —FPy d;jn; = —Fy n;, i.e. the stress on
any surface is normal to the surface and ‘presses against it’ (i.e. acts in the direction opposite to
the outer normal vector) which is precisely what we expect a pure pressure to do; see left half of
Fig. 3.3

Pure shear stress: E.g. 712 = To1 = Tp, 755 = 0 otherwise; see right half of Fig. 3.3. This sketch
also illustrates that the symmetry of the stress tensor is related to the balance of moments: If 791
were not equal to 72 (i.e. if the tangential stress acting on the vertical faces was not equal to the
tangential stress acting on the horizontal ones) then the block would rotate about the z3 axis.
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Figure 3.3: Simple stress states: Hydrostatic pressure (left) and pure shear stress (right).

3.4 Cauchy’s equation

e Cauchy’s equation is obtained by considering the equation of motion (‘sum of all forces = mass
times acceleration’) of an infinitesimal volume of fluid. For a fluid which is subject to a body force
(a force per unit mass) F;, Cauchy’s equation is given by

aTij

8xj ’
where p is the density of the fluid. a; is the acceleration of the fluid, given by (2.5), therefore
Cauchy’s equation can also be written as
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pa; = pF; + (3.3)

(3.4)



or
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e Note that Cauchy’s equation is valid for any continuum (not just fluids!) provided its deformation
is described by an Eulerian approach.

3.5 The constitutive equations for a Newtonian incompressible
fluid

o In chapter 2 we derived a quantity (the rate of strain tensor €;;) which provides a mathematical
description of the rate of deformation of the fluid.

e Cauchy’s equation provides the equations of motion for the fluid, provided we know what state of
stress (characterised by the stress tensor 7;;) the fluid is in.

e The constitutive equations provide the missing link between the rate of deformation and the result-
ing stresses in the fluid.

e A large number of practically important fluids (e.g. water and oil) are incompressible and exhibit
a linear relation between the shear rate of strain and the shear stresses. These fluids are known as
‘Newtonian Fluids’ and their constitutive equation is given by

Tij = —POij + 2pi€ij, (3.6)

or, using the definition of the rate of strain tensor,

Oui | auj) : (3.7)

where p is the pressure in the fluid and g is the ‘dynamic viscosity’, a quantity that has to be
determined experimentally.

e Note that there are also many fluids which do not behave as Newtonian fluids and have different
constitutive equations (e.g. toothpaste, mayonaise). Not very imaginatively, these are often called
‘Non-Newtonian Fluids’ — the behaviour of these fluids is covered in a different lecture.

3.6 The Navier-Stokes equations for incompressible Newtonian
fluids

e We insert the constitutive equations for an incompressible Newtonian fluid into Cauchy’s equations
and obtain the famous Navier-Stokes equations
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Dividing the momentum equations by p provides an alternative form
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where v = pu/p is the ‘kinematic viscosity’.



e In combination with the equation of continuity

(’9ui
=0 3.11
o2, (3.11)
or symbolically
V-u=0, (3.12)

the three momentum equations form a system of four coupled nonlinear, partial differential equa-
tions of parabolic type (second order in space and first order in time) for the three velocity compo-
nents u; and the pressure p.



The governing equations in selected
coordinate systems

Rectangular cartesian coordinates

The rate of strain tensor
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Cylindrical Polar Coordinates

Relation to Cartesian coordinates:

Velocity components:
U= Up, V= U, W = Uy,

The rate of strain tensor
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Spherical Polar Coordinates
Relation to Cartesian coordinates:

r = rcosb,

rsin 6 cos ¢,

= rsinfsingp

Velocity components:
U= Up, v = ug, W = Uy
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