
Chapter 2

The Kinematics of Fluid Flow

2.1 The Eulerian flow field

• Eulerian description of the flow field: The velocity u is given as a function of the position relative
to a spatially fixed coordinate system (x, y, z) = (x1, x2, x3) = xi, and of time t.

u = u(x, y, z, t) or in index notation: ui = ui(xj , t). (2.1)

• Note that at different times, different material particles will be at a given spatial position. The

particle paths (i.e. the trajectories xp
i (t) of individual material particles which are at position x

(0)
i

at time t = t0) are obtained by integrating

∂xp
i (t)

∂t
= ui(x

p
j , t) (2.2)

subject to the initial conditions

xp
i (t = 0) = x

(0)
i . (2.3)

2.2 The material derivative

• The acceleration ai of the material particle that is at position xj at time t is given by

ai(xj , t) =

(
d

dt
ui(x

p
j (t), t)

)∣
∣
∣
∣
x

p

j
(t)=xj

=
∂ui

∂t
+

∂ui

∂xk

∂xp
k(t)

∂t
. (2.4)

Comparing this to (2.2) shows that this can be written as

ai =
∂ui

∂t
+ uk

∂ui

∂xk

or symbolically a =
∂u

∂t
+ (u · ∇)u. (2.5)

• The differential operator

D

Dt
=

∂

∂t
+ uk

∂

∂xk

or symbolically
D

Dt
=

∂

∂t
+ (u · ∇) (2.6)

is known as the ‘material (or substantial) derivative’. Given any function φ(xj , t), Dφ/Dt represents
the rate of change of φ experienced by an observer travelling with the velocity ui(xj , t).

2.3 Vorticity and the rate of strain tensor

• The velocity field can be decomposed into four fundamental ‘modes’ which correspond to the trans-
lation, rotation, shearing and dilation of small material elements contained in the flow. The velocity
in the vicinity of a certain point xk can be expressed as

ui(xk + δxk) = ui(xk)
︸ ︷︷ ︸

rigid body translation

+ ωij δxj
︸ ︷︷ ︸

rigid body rotation

+ εij δxj
︸ ︷︷ ︸

shearing and dilation

, (2.7)
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where ωij is the antisymmetric rate of rotation tensor

ωij =
1

2

(
∂ui

∂xj

−
∂uj

∂xi

)

(2.8)

and εij is the symmetric rate of strain tensor

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)

. (2.9)

• The first term in (2.7) represents a rigid body translation: If εij = ωij = 0 then all particles have
the same velocity, i.e. the fluid moves in a straight line as a rigid body.

• The physical meaning of the second term in (2.7) is revealed by rewriting ωij δxj symbolically as
a cross product in the form ΩΩΩ × δxδxδx where ΩΩΩ = (ω32, ω13, ω21) is the rate of rotation vector.

This is illustrated in Fig. 2.1: The differential velocity δu = u(xj)−u(xj + δxj) induced by a rigid
body rotation about point P with rotation rate ΩΩΩ is given by δu = ΩΩΩ × δxδxδx.

Ω     δxX

P

P’
Ω

δx

Figure 2.1: Sketch illustrating the motion induced by a rigid body rotation about point P with rotation
rate ΩΩΩ. In this sketch the rate of rotation vector ΩΩΩ points vertically out of the paper.

The rotation rate ΩΩΩ is equal to half the vorticity ωωω, i.e.

2 ΩΩΩ = ωωω = curl u = ∇× u =






(∂u3

∂x2

−
∂u2

∂x3

)

(∂u1

∂x3

−
∂u3

∂x1

)

(∂u2

∂x1

−
∂u1

∂x2

)




 (2.10)

• The diagonal entries of the rate of strain tensor εij represent the extensional rate of strain in the
direction of the three cartesian coordinate axes, as illustrated in Fig. 2.2, e.g. Ds1/Dt = e11 =
∂u1/∂x1

1δ s  =    xδ 1

2δs 
δ2s (t+  t)δ

x

x2

1

δ1δ δ 1 1 1s (t+  t)   =   x  +du /dx    x    tδ δ1

Figure 2.2: A rectangular block of fluid undergoes a purely extensional deformation which changes the
lengths of the material lines parallel to the coordinate axes.

• The off-diagonal entries of the rate of strain tensor εij represent the shear rate of strain (in fact,
they are equal to half the shear rate in the appropriate directions; see Fig. 2.3).
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Figure 2.3: Sketch illustrating the shearing of an initially rectangular block of fluid at a rate Dγ/Dt =
2 e12 = (∂u1/∂x2 + ∂u2/∂x1).

2.4 The equation of continuity

• Mass conservation requires that the rate at which mass is transported over the surface ∂V of a
spatially fixed volume V must be equal to the rate of change of mass in this volume. This physical
statement can be formulated in an integral or a differential form:

• The integral form of the equation of continuity is given by

∫

V

dρ

dt
dV +

∮

∂V

ρuini dS = 0, (2.11)

or in symbolic form ∫

V

dρ

dt
dV +

∮

∂V

ρu · n dS = 0, (2.12)

where ρ is the density of the fluid (i.e. the mass per unit volume), and n is the outer unit normal
on the surface ∂V of the spatially fixed volume V (note that u · n < 0 corresponds to an inflow).

• The corresponding differential form of the equation of continuity can be derived by applying the
integral statement to an infinitesimally small block of fluid. The result is

∂ρ

∂t
+

∂(ρui)

∂xi

= 0. (2.13)

Using the material derivative introduced in (2.6), this expression can be rewritten as

Dρ

Dt
+ ρ

∂ui

∂xi

= 0. (2.14)

• The latter equation shows that for incompressible fluids (i.e. fluids for which the density of material
fluid elements is constant and thus Dρ/Dt = 0), the equation of continuity presents a purely
kinematic constraint on the velocity field, namely

∂ui

∂xi

= 0 (2.15)

or in symbolic form
div u = 0 or ∇ · u = 0. (2.16)


