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DIMENSIONAL ANALYSIS AND SCALING

Observation 1:

• Consider the flow past a sphere:
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Figure 1: Flow past a sphere. Far away from the sphere of radius a, the fluid has a

uniform velocity, u = Ue
x
.

• To determine the velocity field we need to solve the Navier-

Stokes equations

ρ
Dui

Dt
= −

∂p

∂xi
+ µ∇2ui

together with the continuity equation

∂ui

∂xi
= 0,

subject to the boundary conditions

ui = 0 for r = a (no slip on the surface of the sphere)

and

u → Uex as r → ∞ (uniform velocity far away from the sphere).
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• The solution which we could obtain by solving the equations

analytically, numerically or even by carrying out experiments

(!) will have the form

u = u(x, y, z, t; ρ, µ, a, U),

i.e. the velocity field will depend on the spatial coordinates,

on time and on the four physical parameters appearing in the

problem.

• This implies that a change to any one of the physical param-

eters will (in general) change the entire flow field.

• This is not a problem if we can find an exact analytical solution

which explicitly shows the dependence of the solution on each

parameter.

• However, if we perform numerical computations (in which all

parameters have to be given fixed numerical values), then each

change of a physical quantity would require a completely new

computation.

• If we perform experiments, then a different experiment has

to be performed for each set of physical parameters (such as

doubling the size of the sphere, making the fluid more viscous,

etc.).

• Think of the implications for (e.g.) wind tunnel testing. If

the above was true, then to obtain the flow field past a newly

developed prototype car, you’d have to build the car in its full

size. This might not be a problem but what about testing

jumbo jets...?
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Observation 2:

• When we solve the Navier Stokes equations (or any other equa-

tion of continuum mechanics), we tend to get results like

u = sin(r).

• Do we really?

• What about the dimensions of the above equation?

u
︸︷︷︸

m/sec

= sin( r
︸︷︷︸

m
).

• How do you take the sin of ‘metres’?

• Actually, we tend to get results like

u/U = sin(r/a),

i.e. all quantities appear in dimensionless form.

• The fact that the equations of continuum mechanics are de-

rived from (dimensionally coherent!) physical statements im-

plies that we can always write our equations in dimensionless

form.
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Non-dimensionalisation

• We obtain non-dimensional equations by non-dimensionalising

all quantities with characteristic scales which are in the prob-

lem. E.g.

u
︸︷︷︸

dimensional velocity
= U

︸︷︷︸

velocity scale:

velocity far from

the sphere

ũ
︸︷︷︸

non-dimensional velocity

• Convention: Use a tilde to distinguish dimensional from non-

dimensional variables (where necessary).

• The non-dimensionalisation typically reduces the number of

free parameters in the problem and shows that ‘similar’ phys-

ical problems often have ‘similar’ solutions.

• A very useful side-effect of the non-dimensionalisation is that

the non-dimensionalised equations provide additional insight

into the relative size of the various terms in the equations

(provided the ‘scales’ were chosen appropriately).

• The identification of small terms in an equation often motivates

significant simplifications which can be obtained by neglecting

the small terms against bigger ones.
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Example: Flow past sphere
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Figure 2: Flow past a sphere. Far away from the sphere of radius a, the fluid has a

uniform velocity, u = Ue
x
.

• Scales:

length scale: a

velocity scale: U

time scale: Steady boundary conditions, so there’s no ex-

plicit time scale in the problem. Hence, we need to con-

struct a time scale from the available parameters. Choose:

T = a/U .

pressure scale: There’s no natural scale for the pressure.

We can construct two reference pressures from the physical

parameters.

– P = ρU 2 which is a dynamic pressure. This is appro-

priate if we expect dynamic effects to be dominant, i.e.

for high velocity flows

or

– P = µU/a which is a viscous pressure scale. This is

appropriate if we expect viscous effects to be dominant,

i.e. for slow flows with large viscosity.
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• Use these scales to non-dimensionalise the physical quantities:

ui = Uũi

xi = ax̃i

t =
a

U
t̃

p =







ρU 2p̃ for the dynamic pressure scale

µU/a p̃ for the viscous pressure scale

• Inserting the scaled quantities into the Navier Stokes equations

turns the problem of the flow past a sphere into






ReDũi

Dt̃
= −

∂p̃
∂x̃i

+ ∇̃
2ũi for p = µU/a p̃

Dũi

Dt̃
= −

∂p̃
∂x̃i

+ 1
Re∇̃

2ũi for p = ρU 2 p̃

together with the continuity equation

∂ũi

∂x̃i
= 0,

and the boundary conditions

ũi = 0 for r̃ = 1 (no slip on the surface of the sphere)

and

ũ → ex as r̃ → ∞ (uniform velocity far away from the sphere).

• In non-dimensional form, the problem depends only on one

dimensionless parameter, the Reynolds number

Re =
ρaU

µ
=

aU

ν

which represents the ratio of inertial to viscous forces in the

flow.
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• Hence, in non-dimensional terms, the solution will only depend

on one parameter, i.e.

ũ = ũ(x̃, ỹ, z̃, t̃; Re).

• This implies that the non-dimensional velocity (the ratio of the

actual velocity to the velocity far away from the sphere) at a

fixed non-dimensional position (e.g. two diameters in front of

the sphere) will have the same value for all physical realisations

of the experiment provided the Reynolds number of the flows

is the same.

• This means that an experiment with a 1:100 scale model of a

jumbo jet will give the correct non-dimensional flow field, pro-

vided the velocity of the oncoming flow is reduced by a factor of

100 – and provided any physical effects which are not included

in the incompressible Navier Stokes equations are unimpor-

tant. [The latter point is important in aerodynamics where

compressibility often becomes an issue. Compressibility intro-

duces another non-dimensional parameter (the Mach number)

whose value also has to be conserved].
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Simplification of the scaled equations

• Writing the Navier Stokes equations in dimensionless form not

only reduces the number free parameters, it also shows the ap-

propriate limiting form of the equations if the Reynolds num-

ber approaches extreme values.

• For Re → 0 (slow viscous flow), the viscous pressure scaling

is appropriate. Performing the limit Re → 0 in

Re
Dũi

Dt̃
= −

∂p̃

∂x̃i
+ ∇̃

2ũi

yields the Stokes equations:

0 = −
∂p̃

∂x̃i
+ ∇̃

2ũi

which are linear since the non-linear inertial terms disappear.

• For Re → ∞ (high speed flows), the inertial pressure scaling

is appropriate. Performing the limit Re → ∞ in

Dũi

Dt̃
= −

∂p̃

∂x̃i
+

1

Re
∇̃

2ũi

shows that such flows are governed by the Euler equations

Dũi

Dt̃
= −

∂p̃

∂x̃i

• Note that the order of the Euler equations is lower than that of

the full Navier Stokes equations (first rather than second spa-

tial derivatives!). This means that not all boundary conditions

can be applied on the surface of solid bodies.

• Typically, the no-slip condition is discarded in favour of the no-

penetration condition (compare to inviscid flow theory which is

also governed by these equations – in fact, the Euler equations

can be derived by setting the viscosity to zero).



9

• However, close to the surface of the body, the no-slip condi-

tion always becomes important since viscosity (no matter how

small) will always reduce the fluid velocity to zero as one ap-

proaches the surface of the solid body. This manifests itself

in the existence of a thin layer (a so-called boundary layer) in

which viscous effects are important and in which the velocity

varies rapidly to fulfill the no-slip condition.

• Mathematically, the limit Re → ∞ represents a singular limit

and the solution has to be found by matched asymptotic ex-

pansions.

• We will briefly look at boundary layers at the end of this course.

Further comments

• The choice of the ‘right’ scales often requires some physical in-

tuition. Especially when we use scaling arguments to simplify

the equations (by dropping small terms), we have to choose the

scales for the physical quantities such that the non-dimensional

quantities are all of comparable magnitude (‘of order one’).


