MT3261: EXAMPLE SHEET ${ }^{1}$ VI

1.) An infinite pipe of circular cross-section and radius b has a rigid circular rod of radius a lying along its axis which coincides with the z-axis of a circular cylindrical coordinate system. The annular region between the rod and the walls of the pipe is filled with a viscous fluid of dynamic viscosity μ. The rod is drawn along the length of the pipe with constant speed $U \mathbf{e}_{z}$ and the fluid is subject to an axial pressure gradient $\nabla p=G \mathbf{e}_{z}$.
(i) Find the flow field in the pipe and the drag (per unit axial length) exerted by the fluid onto the rod.
(ii) Determine the value of $G=G_{0}$ for which the drag is equal to zero. Sketch velocity distributions for $G=0, G<0$ and $G=G_{0}$.
2.) Fluid is contained in an infinitely long pipe of square cross section whose edges of length a are situated at $x= \pm a / 2$ and $y= \pm a / 2$. The fluid is driven through the pipe by an applied pressure gradient $\nabla p=G \mathbf{e}_{z}$. Determine the flow field in the pipe. You might want to follow these steps:
(i) Choose a particular solution which is independent of x and fulfills the boundary conditions at $y= \pm a / 2$.
(ii) Use separation of variables for the homogeneous solution; choose the sign of the constant such that the y-dependence involves trigonometric functions.
(iii) Determine the unknown coefficients from the boundary conditions at $x=$ $\pm a / 2$. Hint: Expand the particular solution into a Fourier series. You can use the following results:

$$
\begin{gathered}
\int_{-a / 2}^{a / 2} \cos \left(\frac{(2 m-1) \pi y}{a}\right) \cos \left(\frac{(2 n-1) \pi y}{a}\right) d y= \begin{cases}a / 2 & \text { for } n=m \\
0 & \text { for } n \neq m\end{cases} \\
\int_{-a / 2}^{a / 2} \frac{G}{2 \mu}\left(y^{2}-\frac{1}{4} a^{2}\right) \cos \left(\frac{(2 m-1) \pi y}{a}\right) d y
\end{gathered}
$$

Coursework

Please hand in the solution to question 1 by 12 noon on Friday. Please place them into the envelope at the door of Dr. Heil's office (room 1.05 in the Lamb building).

[^0]
[^0]: ${ }^{1}$ Any feedback to: M.Heil@maths.man.ac.uk

