Where have we (you!) seen z = zp + 25 before?

Recall:

The general solution of the inhomogeneous ODE
V' + (@)Y +q(z)y = r(z) (I)
can be written as
y(@) = vp(z) + ay1(z) + Bya(z),
where:
e o and [ are arbitrary constants.

* yy(z) is any particular solution of the inhomogeneous
ODE.

e y1(z) and yy(z) are fundamental solutions of the cor-
responding homogeneous QDE.

Compare this to the solution of the system of linear (algebraic)

equations:
Ax = b,

where A is an n X n matrix, and b a given vector of size 7.
The general solution x (another vector of size n) is given by
X =Xp+ Xy
where
® Xp is a(ny) particular solution of Ax = b

® Xy Is the generalsolution of the homogeneous system Ax = 0.



Example

1 =10 I 1
2 =20 o | =1 2
3 -3 0 I3 3

Note that the matrix is singular, so Ax = 0 has non-trivial solu-
tions!

e Transform into “triangular” form

1 =10 I 1
0 0 0 z | =10
0 0 0 T3 0

showing that the RHS is consistent. We're left with one equa-
tion for three unknowns.

o Set 79 = v and 3 = 3, where o and 3 are arbitrary constants.

e The general solution is: x; = 1 4+ « and, of course, 79 = «
and z3 = B.

e Rewrite in vector form:

I 1 1 0

) = O + ¢ 1 -+ ﬁ

I3 0 0 1

Xp X
e Note that

T 2 —42.2 523.2
o | = 1 +o | —422 | +8 | 523.2
T3 3.1415 1145.2 13.423

is another (not so pretty) representation of the general solu-
tion.



The key features of both solutions are:
e Xp and X) solve the inhomogeneous equation.
e xg and X} “span the null space” of A, i.e. they
1. satisfy Ax =0,

2. are nonzero,

3. are linearly independent.

“Off the record comment”:

In linear algebra it’s “easier” to overlook the additional solutions
represented by xp. In an ODE context, the fact that BCs [or ICs]
have to be satisfied too, tends to provide an instant “reminder”
that just having a particular solution of the ODE is not enough to
solve the entire IVP/BVP.
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