Where have we (you!) seen $x = x_P + x_H$ before?

Recall:

The general solution of the inhomogeneous ODE

$$y'' + p(x) y' + q(x) y = r(x)$$
 (I)

can be written as

$$y(x) = y_p(x) + \alpha y_1(x) + \beta y_2(x),$$

where:

- α and β are arbitrary constants.
- $y_p(x)$ is any particular solution of the inhomogeneous ODE.
- $y_1(x)$ and $y_2(x)$ are fundamental solutions of the corresponding homogeneous ODE.

Compare this to the solution of the system of linear (algebraic) equations:

$$Ax = b$$

where **A** is an $n \times n$ matrix, and **b** a given vector of size n.

The general solution \mathbf{x} (another vector of size n) is given by

$$\mathbf{x} = \mathbf{x}_P + \mathbf{x}_H$$

where

- \mathbf{x}_P is $\mathbf{a}(\mathbf{n}\mathbf{y})$ particular solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$
- \mathbf{x}_H is the *general* solution of the homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$.

Example

$$\begin{pmatrix} 1 & -1 & 0 \\ 2 & -2 & 0 \\ 3 & -3 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Note that the matrix is singular, so Ax = 0 has non-trivial solutions!

• Transform into "triangular" form

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

showing that the RHS is consistent. We're left with one equation for three unknowns.

- Set $x_2 = \alpha$ and $x_3 = \beta$, where α and β are arbitrary constants.
- The general solution is: $x_1 = 1 + \alpha$ and, of course, $x_2 = \alpha$ and $x_3 = \beta$.
- Rewrite in vector form:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \underbrace{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}}_{\mathbf{x}_P} + \alpha \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

• Note that

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \underbrace{\begin{pmatrix} 2 \\ 1 \\ 3.1415 \end{pmatrix}}_{\mathbf{x}_P'} + \underline{\alpha' \begin{pmatrix} -42.2 \\ -42.2 \\ 1145.2 \end{pmatrix}}_{\mathbf{x}_H'} + \underline{\beta' \begin{pmatrix} 523.2 \\ 523.2 \\ 13.423 \end{pmatrix}}_{\mathbf{x}_H'}$$

is another (not so pretty) representation of the general solution. The key features of both solutions are:

- \mathbf{x}_P and \mathbf{x}_P' solve the inhomogeneous equation.
- \mathbf{x}_H and \mathbf{x}_H' "span the null space" of \mathbf{A} , i.e. they
 - 1. satisfy Ax = 0,
 - 2. are nonzero,
 - 3. are linearly independent.

"Off the record comment":

In linear algebra it's "easier" to overlook the additional solutions represented by \mathbf{x}_H . In an ODE context, the fact that BCs [or ICs] have to be satisfied too, tends to provide an instant "reminder" that just having a particular solution of the ODE is not enough to solve the entire IVP/BVP.

Summory: Tesks for soln of 2nd order linear ODEs: Offind 2 Rin. indep. nontero Folkers. at home, one (2) find a(nx) particular solar of the inhomoger ope (3) Add & apply ICs.

(2 Constant sorthicient over /y"+Py'+97= r(x) 9 fg ore constants (I) Soln. of homor. One 7"+P7'+97=0 (H) (Nok: Forn enits Kx) Ideo: Itz to find a soln. that has the same x-dependence for each term in (H) Ansatz: 7 = Alex 7 - OX EX inh ode 3" = (A) 2 (e)x $A(\lambda + p\lambda + q)e^{\lambda x} = 0$

(3 con echieve this by A=0 => J=0 (not helpfu. So Choose & S.M. >+p2+9=0 "chorochenshic polynomiae" 712=-f+/(f)2-9 A Two nonzero

(4) are

7,(x) = e RORNS OF & 72(X) = e 2x But: possibility of repeated =D 3 CORS

(1) p2 49: 2, 22, ore In that cope the Den. Foln. of (H) y = Aexix + Bezix (2) p²=49: Reproted voots $\lambda_1 = \lambda_2 = \lambda = -f$ Our onsetz now only produces one sorn, y, (x) = exx However: y, (x) = x x x is onether, en. indep. sorn. Proof: Note: P=-21 9 = 4 p2 = >2 $y' = e^{\lambda x} (1 + \lambda x)$ $y'' = \lambda (2 + \lambda x) e^{\lambda x}$

into OPE: y"+Py"+97=0 $e^{\chi} \left(\frac{\lambda}{\lambda(2+\lambda\chi)} + \rho(1+\chi\chi) + \chi \right) = 0$ 2/1+(12) -2/2-222 +(12) ? Jo in this cose the Jen- Folh. of (H) is 7(X)=Aexx+Bxexx

(3) p2 < 49: >12 ore complex confugates $\lambda_{12} = -\frac{f}{2} \pm \sqrt{(\frac{f}{2})^2 - 9}$ = ptiw J(X)=AQ +Be = e MX (A e iwx + B e -iwx) Complex If we want a real soln then A&B must be complex Loo! = co(wx) + i sin(wx)

We can replace the complex exponentiels by stheoxy & COSEX. (EXERCISE) 50 the pen. teel soln of (H) Y(X)=exx(A-coscox/+B sincox/ Example. y"-3y'+2y=6 $e^{\lambda x} \left(\frac{1}{\lambda^2 - 3\lambda} + 2 \right) = 0 \text{ by}$ $\lambda_{12} = \frac{3}{2} + \left(\frac{3}{2}\right)^2 - 2$

A,=2, A2=1 J=Ae"+Bex Granple: y"+27'+7=0 Chor-bol>: 1+21+1=0 dos ()+1) = 0 A12 =-1 repeated woof! y=Aex+Bxex

Exomple: y"+27'+5y=0 char.poly: x+27+5=0 $712^{2} - \frac{2}{2} \pm ((\frac{2}{2})^{2} - 5)$ 712=-1 = 2i = x = iw JIX) = e X (A e 2ix + B e - 2ix) = e (A cos(2x) + B sin(2x))

(II) Porticulor Folhs 10 y"+Py+97 = F(X) Gen. Doln: J(K) = Jp(X) + Ay,(X) + B y2(X) Strotest. Triol & error method fuided by the form of r(x). =D'Method of undetermined coefficients" To illustrate the idea & the pit-falls consider: 7"+PJ'+97=Aeax Ada ore fiven.

Given the form of the RASI Fry: y = (e (9))x 7"+P7'+97=Aecx Cex (a + pa + 9) = A 2x 50 C= A a2+pa+9 a form of the ope 7p(x) = A 2+pq+9 (c)