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Some theory for linear 2nd order ODEs
Existence and Uniqueness

Consider the linear second-order ODE

V' +p(@)y +g(x)y = (), (1)
subject to the initial conditions
y(X) =Y, ¢y (X)=2, (2)
where the constants X,Y and Z, and the functions p(z),

¢(z) and r(z) are given.

Theorem
&

If the functions p(z), ¢(z) and r(z) are continuous func-
tions of z in an interval I, and if X & I then there exists
exactly one solution to the initia] value problem defined
by (1) and (2) in the entire interval 7.

Notes:

e This is the promised extension of the statement for first-order
problems. The extension to even higher-order linear ODEs
should be obvious...

o If the functions p(z), ¢(z) and 7(z) are “well-behaved” (no
jumps, singularities, etc.), the theorem guarantees the exis-
tence of a unique solution for z € R.

e However, the statement still only applies to initial value prob-
lems!



2
The homogeneous ODE & superposition of its solutions

If we set r(x) = 0 in the inhomogeneous ODE

y' +p(@)y +qlz)y =r(z), (I)
we obtain the corresponding homogeneous ODE
y' +p(@)y +q(z)y =0. (H)

A trivial (?) but useful observation

If y1(z) and ya(x) are two solutions of (H) then the linear combi-
nation

ys(z) = Ay(z) + B ya(z)
is also a solution, for any values of the constants A and B.

Linear independence

To see why this is a useful observation, we need to define the
concept of linear independence: Two nonzero functions ¥ (x) and
yo(x) are linearly independent if

Ay(z) + By(z) =0 Vo <~ A=B=0

(...just as in linear algebra...).

Examples:
e y1(x) = = and yp(x) = 322 are linearly independent.

o yi(z) = z and yo(z) = 3 are linearly dependent — they're
just multiples of each other.
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Fundamental solutions of the homogeneous ODE

Theorem

Any solution of the homogeneous ODE
Y +p(z)y +qlz)y =0. (H)

can be written as a linear combination of any two non-zero,
linearly independent solutions, y;(x) and y»(z), say:

y(z) = Ayi(z) + Byo(z).

The two non-zero, linearly independent solutions {yl(a:), yg(ac)}
are called “fundamental solutions” of the homogeneous ODE (H).

Notes:

* The set of fundamental solutions is not unique!



The general solution of the inhomogeneous ODE

Theorem

The general solution of the inhomogeneous ODE
y' +p()y +q(z)y =r(z) (I)
can be written as
y(z) = yp(z) + Api(z) + Be(z),
where:

e A and B are arbitrary constants.

e y,(x) is any particular solution of the inhomogeneous

ODE.

o y1(z) and y»(z) are fundamental solutions of the cor-
responding homogeneous ODE.

Notes:

e Note the similarities between the structure of the solution of
the linear ODE and the structure of the solution of the linear
(algebraic) equation Ax = b. This is not accidental! There
are deep connections between the two fields — matrices and the
homogeneous part of a linear ODE are both “linear operators”.

e The values of the constants A and B are determined by the
boundary or initial conditions.
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