


1

Existence and Uniqueness for non-linear 2nd order
ODEs

Consider the non-linear second-order QDE

y' = fz,y,9) (1)
subject to the initial conditions
y(X) =Y, y(X)=2, (2)

where the constants X,Y and Z, and the function f(z,y,/),
are given.

Theorem

If f(z,y,v) and & (“é‘;”y!) and & (g?’j{’y!) are continuous func-
tions of z,y and y' in a region 0 < |z — X| < a,
0 <|ly—Y| <band 0 < |y — Z| < c, then there
exists exactly one solution to the initial value problem
defined by (1) and (2) in an interval 0 < |z—X| < h < a.

Notes:

e The statement is easily generalised to (even) higher-order ODEs.
e The theorem only provides a local statement!
e The statement only applies to initial value problems!

o The criteria listed are sufficient to ensure the existence of a
unique solution but they are not necessary! = An IVP may
still have a unique solution even if the conditions are violated.
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[Numerical] experiment: Finite-amplitude oscillation
of an undamped pendulum

e Governing (non-linear!) ODE:
f +sinf =0
subject to the initial conditions
Ot=0)=¢ and 6(t=0)=0.

e Plot for e =0.1,0.7,1.4,2.1:
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e Observation: Period of the oscillation increases for larger
amplitudes.
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Comparison between perturbation solution and
“exact” solution for ¢ = 1.2

e One-term perturbation solution (red), exact solution (green):

e Two-term perturbation solution (red), exact solution (green):
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Comparison between perturbation solution and
“exact” solution for ¢ = 1.2 (cont.)

e Three-term perturbation solution (red), exact solution (green):

prt ol

0.0 T

-0.5

Llrelragn

]
—h
P
Ll
e

¢ Four-term perturbation solution (red), exact solution (green):
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Comparison between perturbation solution and
“exact” solution for ¢ = 1.2 (cont.)

e Four-term perturbation solution (red), exact solution (green):
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e Agreement over a finite time-interval is very pleasing. How-
ever, over sufficiently large times, the perturbation solution

diverges:
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“Multinomial expansions”

® One tedious task that one tends to face regularly when using
perturbation methods is that of raising a power series in € to
some integer power

S=(ro+ezi+e2m+..)", (1)

and collecting the terms multiplied by the same power of ¢, i.e.
re-writing S in the form -

S = S()(SCQ) + € Sl(xo, 3.5'1) + (:'2 SQ(LEQ, Ty, .‘1?2) 4+ ... (2)
where the functions S;(xg, 21, ...) do not depend on €.

e Formally, the expansion of S may be obtained by using the
“multinomial series” (a generalisation of the binomial series)
as

|
" n: ‘
(a1+a2+m+ak) - Z milnel...mn la?l 032...CEZA
n1,M2,M3, ...,k € Np 1- 7620 vea TULS
mtnet+..tnp=n

S€€, €.8. http://mathworld.wolfram.com/MultinomialSeries.html

e However, we usually only need the first few terms in (2) for
low-ish powers of n. Here they are:
(zo + €z1 + 33 + )2 = (25) + € (2zmoz1) + € (2} + 230 22) + ...
(:co + ez + € To + )3 = (xg) +€ (3:1:3 :cl) + € (3zoz7 + 3z :cg) +
(acg + ex1 + € To + ...)4 = (xﬁ) +€ (43:8 :cl) + ¢ (43:?3'2 + 6:1:% :c%) +
e Exercise: Convince yourself that you understand how these
terms arise. Hint: Either use the multinomial series given
above, or write S explicitly as a product of n power series le.g.

forn=2: 8= (zp+ex1+..)(zo+ ez +...)] and inspect
which combination of terms gives rise to what powers of €.

e Relax! In an exam these expressions would be provided!



“Bootstrapping”

The theorem only guarantees the existence and uniqueness in the
“vicinity” of the initial condition. However, if you can show that
the function f(z,y,y’) and its derivatives are “well behaved” (in
the sense of the theorem), for any values of z,y and %/, then the
repeated application of the theorem guarantees the existence and
uniqueness of the solution for all values of z.
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restart, read("ode.map");

The ODE (second order correction for weakly damped
mass spring damper system)

ode:=diff(x(t),t$2)+x (t;=-l/2*t*s1' n(t);

ode .= %2- x(t) + x(t) = -% tsin{t)

ode_h:=diff(x(t),t$2)+x(t);
ode_h:= L x(6) + x(1)

dé?

dsolve(ode,x(t));

X(t) = sin(£) _C2+ cos(t) _CI — % t (-cos(t) t+sin(t))

Here's the straightforward ansatz: multiple of rhs
is not a solution of the homogeneous ODE, but creates
a new linearly independent function: cos(t).

X_p:=A*t*sin(t);
X_p:=Atsin(t)

eval (subs(x(t)=x_p,ode_h));
2 Acos(t)

eval (subs (x(t)=x_p,ode));
2 Acos(t) = % t sin(¢)



V 33wV

. so we should add cos(t), but this won't work
because it solves the homogeneous ODE, so multiply
by t first and then add:

X_p:=A*t*sin(t)+B*t*cos(t);
xX_p:=Atsin(t) + Btcos(t)

eval(subs(x(t)=x_p,ode_h));
2 Acos(t) —2 Bsin(t)

eval (subs (x(t)=x_p,ode));
2 Acos(t) —2 Bsin(t) = % £sin(f)

Of course, that now simply produces sin(t), which
we ought to add to the ansatz. But it's a solution
of the homogeneous ODE, so multiply by t and then
add. But, hang on, that's what we started with.
AAAARGH.

Solution: Need to increase the power of t:

X_p:=A*t*sin(t)+B*tA2*cos(t);
X_p:=Atsin(t) +B 4 cos(t)

eval (subs (x(t)=x_p,ode_h));
2 Acos(t) +2 Beos(t) —4 Btsin(t)

eval (subs(x(t)=x_p,ode));
2 Acos(t) +2 Bcos(t) —4 B tsin(t) = % tsin(t)

subs(A=-1/8,B=1/8,eval (subs(x(t)=x_p,ode)));

1, .. 1.
2l‘sm(t)— 2ts.m(lr)



