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Figure 5: The displacement of a harmonically-forced, damped mechanical oscillator com-

x(t)

transient motion

x,{t)

forced (periodic)
motion

Xq(t)

prises the periodic (forced) solution zp(t) and the transient solution xy(t).



2
Qe&‘o O Ce Z‘\

—

No dom\ofr\g‘ e
s (? cos {24) = Re(Fe.

AS alsve uwlesy 2 =5

T Hrok Cose. ¢ @_fs?k S

& SRn. of fAe Hom@@ QADE™
T ek coge

l)‘z«L

Rt

e = C te qte\%
l‘@e Port
.- sl
Q_( (Zf SL‘““JZ-V

\er QDE -

de\ (2(—5?/7?4//2/ f\
C = _L,_m,.ﬁ_



SO Foveorol IO A &

K52 P cos®Y £ g INENS I

\ N
RSL(—— [\ Lfe(&f(\

s
=0

i@gﬂj C SFV\@,H

—

—P 0y QO QNJB@Q



Basic ideas of perturbation methods:
“Exploiting small parameters”
and “Scaling”

OBservation 1:

o ODEs (and hence their solutions!) typically contain
some parameters, e.g.

mi + kT + cx = F cos(Qt)

SO
r=2z(t) =z(t;m, k,c, Q).

e Often some of the problem’s parameters are “small”.
How can we exploit this?

o ixample:

— Assume that we (only) know the solution of the
above ODE for k£ = 0 (no damping).

— What is the solution for “small” k?



Observation 2:

e ODEs that model physical phenomena typically
express balances (of forces, energies, currents, ...).

® Here’s an example of a balance of forces:
Wall

E
m

O] | g

oL+ _kt  + __cx = _ F cos(Qt)

i, ar W
inertial forces  damping forces  spring forces

>

applied external force

o In general, all terms in the ODE will make a signif-
“icant contribution to the overall “balance” .

e However, there may be regimes in which the balance
oi terms is dominated by a balance between just a
few (ideally two) terms, while the other terms only
provide “negligible” contributions.

o 'The simplified equations (obtained by neglecting the
small terms) are often much easier to solve than the
full equations.

» We may [should!] then be interested in finding the
" effect that the “small” perturbations have on the
solution.

¢ A seemingly trivial observation: You will need at
{east two terms to balance!



E}.‘cample:

Wali

3L
m

X | £(t)

mE + ki + cx = F cos(Qt)
e We established earlier that
z(t) = zp(t) + zg(t)
where 2 (t) — 0 very rapidly.

o [ollowing the decay of the initial transients [described
by zp(t)] we have

z(t) = xp(t) = A C;S(Qt) + B sin(£t)

o Henceif 2is “small”, the mass will move very slowly,
implying that mZ and kz will be much smaller than
. CZ.

o In this “quasi-steady” regime, we expect the motion
of the mass to be described (approximately!) by

cz(t) = F cos(Qt).



“Proof”

@ Check that

z(t) = % cos(2t)

is an approximate solution of
mZ + kz + cx = F cos(2t)
if €2 is small.

® The exact solution is

z(t) = zp(t) = A cos(Qt) + B sin(Qt)

where
¢ — mf)? F
A=F > — Q
(K2 + (c — mQ2)2 c B0
and
B=F o » (0 as ) — 0.

(kQ)% + (c — mQ2)?

- “Q.E.D.”
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